Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Perspective

Applications of Chitosan Derivatives as Adjuvant for Nanoparticles Based Vaccines

Author(s): Ravi Ram Narayanan and Saba Maanvizhi*

Volume 23, Issue 3, 2023

Published on: 28 October, 2022

Article ID: e220922209066 Pages: 12

DOI: 10.2174/1871526522666220922102621

Abstract

This review focuses on the applications of chitosan derivatives towards vaccine delivery for their role as adjuvants. Adjuvants have been used as one of the key components in modern-day vaccines to enhance the immune response or as a drug delivery carrier. Generally, vaccines are administered to protect the host against harmful disease-causing infectious pathogens. The area of vaccine delivery is reaching new heights day by day with the evolution of the strategies and tools used for vaccine development. Currently, the vaccines have created a great impact by saving the lives of many human beings. A narrative review of all the relevant papers were conducted across the databases of PubMed and ScienceDirect. Based on the various studies performed in various animal models, the chitosan nanoparticle (CNP) was reported to be a safe and effective adjuvant candidate for a wide range of prophylactic and therapeutic vaccines that require a balanced and potent stimulation of both the cellular and humoral responses, due to its natural origin and good biocompatibility, as well as its lack of lethal toxicity to humans and animals. There was a tremendous shift in the paradigm of vaccine drug delivery from the use of conventional to novel adjuvants. For the development of a promising vaccine delivery system, adjuvant plays an irreplaceable role, but the adjuvants have not been utilized to their full potential because of the limited number of approved adjuvants. Hence the search for novel adjuvants is highly increased. In the list of versatile adjuvants, chitosan derivatives occupy an important place because of their huge benefits. The chitosan derivatives are obtained by the chemical modification of chitosan. The studies performed on various animal models validate the potential use of chitosan dervatives as adjuvants for vaccine delivery.

Keywords: Chitosan derivatives, Vaccines, Adjuvants, Antigens, Immune response

Graphical Abstract

[1]
Riva R, Ragelle H, des Rieux A, Duhem N, Jérôme C, Préat V. Chitosan and chitosan derivatives in drug delivery and tissue engineering. Adv Polym Sci 2011; 244(1): 19-44.
[http://dx.doi.org/10.1007/12_2011_137]
[2]
Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011; 36(8): 981-1014.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.001]
[3]
Tiyaboonchai W. Chitosan nanoparticles: A promising system for drug delivery. Naresuan Univ J 2003; 11(3): 51-66.
[4]
Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan based micro and nanoparticles in drug delivery. J Control Release 2004; 100(1): 5-28.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.010] [PMID: 15491807]
[5]
Aiedeh K, Taha MO. Synthesis of chitosan succinate and chitosan phthalate and their evaluation as suggested matrices in orally administered, colon-specific drug delivery systems. Arch Pharm (Weinheim) 1999; 332(3): 103-7.
[http://dx.doi.org/10.1002/(SICI)1521-4184(19993)332:3<103:AID-ARDP103>3.0.CO;2-U] [PMID: 10228455]
[6]
Florea BI, Thanou M, Geldof M, Junginger HE, Borchard G. Modified chitosan oligosaccharides as transfection agents for gene therapy of cystic fibrosis. Proc Int Symp Control Release Bioact Mater 2000; 27: 846-7.
[7]
Thanou M, Verhoef JC, Marbach P, Junginger HE. Intestinal absorption of octreotide: N-trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J Pharm Sci 2000; 89(7): 951-7.
[http://dx.doi.org/10.1002/1520-6017(200007)89:7<951:AID-JPS13>3.0.CO;2-1] [PMID: 10861597]
[8]
Jiang GB, Quan D, Liao K, Wang H. Preparation of polymeric micelles based on chitosan bearing a small amount of highly hydrophobic groups. Carbohydr Polym 2006; 66(4): 514-20.
[http://dx.doi.org/10.1016/j.carbpol.2006.04.008]
[9]
Sinha VR, Kumria R. Polysaccharides in colon specific drug delivery. Int J Pharm 2001; 224(1-2): 19-38.
[http://dx.doi.org/10.1016/S0378-5173(01)00720-7] [PMID: 11472812]
[10]
Park PJ, Je JY, Kim SK. Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry. J Agric Food Chem 2003; 51(16): 4624-7.
[http://dx.doi.org/10.1021/jf034039+] [PMID: 14705887]
[11]
Artan M, Karadeniz F, Karagozlu MZ, Kim MM, Kim SK. Anti-HIV-1 activity of low molecular weight sulfated chitooligosaccharides. Carbohydr Res 2010; 345(5): 656-62.
[http://dx.doi.org/10.1016/j.carres.2009.12.017] [PMID: 20117763]
[12]
Suzuki K, Okawa Y, Hashimoto K, Suzuki S, Suzuki M. Protecting effect of chitin and chitosan on experimentally induced murine candidiasis. Microbiol Immunol 1984; 28(8): 903-12.
[http://dx.doi.org/10.1111/j.1348-0421.1984.tb00746.x] [PMID: 6094990]
[13]
Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I. Immunological activity of chitin and its derivatives. Vaccine 1984; 2(1): 93-9.
[http://dx.doi.org/10.1016/S0264-410X(98)90039-1] [PMID: 6397928]
[14]
Nishimura K, Ishihara C, Ukei S, Tokura S, Azuma I. Stimulation of cytokine production in mice using deacetylated chitin. Vaccine 1986; 4(3): 151-6.
[http://dx.doi.org/10.1016/0264-410X(86)90002-2] [PMID: 2429471]
[15]
Nishimura K, Nishimura S, Nishi N, et al. Adjuvant activity of chitin derivatives in mice and guinea-pigs. Vaccine 1985; 3(5): 379-84.
[http://dx.doi.org/10.1016/0264-410X(85)90127-6] [PMID: 3936299]
[16]
van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan for mucosal vaccination. Adv Drug Deliv Rev 2001; 52(2): 139-44.
[http://dx.doi.org/10.1016/S0169-409X(01)00197-1] [PMID: 11718937]
[17]
Read RC, Naylor SC, Potter CW, et al. Effective nasal influenza vaccine delivery using chitosan. Vaccine 2005; 23(35): 4367-74.
[http://dx.doi.org/10.1016/j.vaccine.2005.04.021] [PMID: 15916838]
[18]
McNeela EA, Jabbal-Gill I, Illum L, et al. Intranasal immunization with genetically detoxified diphtheria toxin induces T cell responses in humans: enhancement of Th2 responses and toxin-neutralizing antibodies by formulation with chitosan. Vaccine 2004; 22(8): 909-14.
[http://dx.doi.org/10.1016/j.vaccine.2003.09.012] [PMID: 15161067]
[19]
Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev 2001; 51(1-3): 81-96.
[http://dx.doi.org/10.1016/S0169-409X(01)00171-5] [PMID: 11516781]
[20]
Heffernan MJ, Zaharoff DA, Fallon JK, Schlom J, Greiner JW. In vivo efficacy of a chitosan/IL-12 adjuvant system for protein based vaccines. Biomaterials 2011; 32(3): 926-32.
[http://dx.doi.org/10.1016/j.biomaterials.2010.09.058] [PMID: 20965561]
[21]
Azab AK, Doviner V, Orkin B, et al. Biocompatibility evaluation of crosslinked chitosan hydrogels after subcutaneous and intraperitoneal implantation in the rat. J Biomed Mater Res A 2007; 83A(2): 414-22.
[http://dx.doi.org/10.1002/jbm.a.31256] [PMID: 17455216]
[22]
Yao J, Zhou JP, Ping QN, Lu Y, Chen L. Distribution of nobiletin chitosan-based microemulsions in brain following i.v. injection in mice. Int J Pharm 2008; 352(1-2): 256-62.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.010] [PMID: 18053660]
[23]
Kwak C, Hong SK, Seong SK, Ryu JM, Park MS, Lee SE. Effective local control of prostate cancer by intratumoral injection of 166Ho-chitosan complex (DW-166HC) in rats. Eur J Nucl Med Mol Imaging 2005; 32(12): 1400-5.
[http://dx.doi.org/10.1007/s00259-005-1892-y] [PMID: 16133378]
[24]
Amidi M, Romeijn SG, Verhoef JC, et al. N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: Biological properties and immunogenicity in a mouse model. Vaccine 2007; 25(1): 144-53.
[http://dx.doi.org/10.1016/j.vaccine.2006.06.086] [PMID: 16973248]
[25]
Shepherd R, Reader S, Falshaw A. Chitosan functional properties. Glycoconj J 1997; 14(4): 535-42.
[http://dx.doi.org/10.1023/A:1018524207224] [PMID: 9249156]
[26]
Alves NM, Mano JF. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 2008; 43(5): 401-14.
[http://dx.doi.org/10.1016/j.ijbiomac.2008.09.007] [PMID: 18838086]
[27]
Prabaharan M. Review paper: chitosan derivatives as promising materials for controlled drug delivery. J Biomater Appl 2008; 23(1): 5-36.
[http://dx.doi.org/10.1177/0885328208091562] [PMID: 18593819]
[28]
Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 2003; 250(1): 215-26.
[http://dx.doi.org/10.1016/S0378-5173(02)00548-3] [PMID: 12480287]
[29]
Thomas MS, Koshy RR, Mary SK, et al. Starch, Chitin and Chitosan Based Composites and Nanocomposites. Switzerland: Springer, Springer Nature 2019; pp. 1-8.
[http://dx.doi.org/10.1007/978-3-030-03158-9]
[30]
Wu T, Farnood R, O’Kelly K, Chen B. Mechanical behavior of transparent nanofibrillar cellulose-chitosan nanocomposite films in dry and wet conditions. J Mech Behav Biomed Mater 2014; 32: 279-86.
[http://dx.doi.org/10.1016/j.jmbbm.2014.01.014] [PMID: 24508714]
[31]
Svirshchevskaya EV, Zubareva AA, Boiko AA, et al. Analysis of toxicity and biocompatibility of chitosan derivatives with different physico-chemical properties. Prikl Biokhim Mikrobiol 2016; 52(5): 467-75.
[PMID: 29513411]
[32]
Aranaz I, Harris R, Heras A. Chitosan amphiphilic derivatives. Chemistry and applications. Curr Org Chem 2010; 14(3): 308-30.
[http://dx.doi.org/10.2174/138527210790231919]
[33]
Rinaudo M, Auzely R, Vallin C, Mullagaliev I. Specific interactions in modified chitosan systems. Biomacromolecules 2005; 6(5): 2396-407.
[http://dx.doi.org/10.1021/bm0580025] [PMID: 16153074]
[34]
Ortona O, D’Errico G, Mangiapia G, Ciccarelli D. The aggregative behavior of hydrophobically modified chitosans with high substitution degree in aqueous solution. Carbohydr Polym 2008; 74(1): 16-22.
[http://dx.doi.org/10.1016/j.carbpol.2008.01.009]
[35]
Ngimhuang J, Furukawa J, Satoh T, Furuike T, Sakairi N. Synthesis of a novel polymeric surfactant by reductive N-alkylation of chitosan with 3-O-dodecyl-d-glucose. Polymer (Guildf) 2004; 45(3): 837-41.
[http://dx.doi.org/10.1016/j.polymer.2003.11.034]
[36]
Onésippe C, Lagerge S. Studies of the association of chitosan and alkylated chitosan with oppositely charged sodium dodecyl sulfate. Colloids Surf A Physicochem Eng Asp 2008; 330(2-3): 201-6.
[http://dx.doi.org/10.1016/j.colsurfa.2008.07.054]
[37]
Philippova OE, Korchagina EV. Chitosan and its hydrophobic derivatives: Preparation and aggregation in dilute aqueous solutions. Polym Sci Ser A 2012; 54(7): 552-72.
[http://dx.doi.org/10.1134/S0965545X12060107]
[38]
Shantha K, Harding DRK. Synthesis and characterisation of chemically modified chitosan microspheres. Carbohydr Polym 2002; 48(3): 247-53.
[http://dx.doi.org/10.1016/S0144-8617(01)00244-2]
[39]
Zhang C, Ping Q, Ding Y, Cheng Y, Shen J. Synthesis, characterization, and microsphere formation of galactosylated chitosan. J Appl Polym Sci 2004; 91(1): 659-65.
[http://dx.doi.org/10.1002/app.13232]
[40]
Xiangyang X, Ling L, Jianping Z, et al. Preparation and characterization of N-succinyl-N′-octyl chitosan micelles as doxorubicin carriers for effective anti-tumor activity. Colloids Surf B Biointerfaces 2007; 55(2): 222-8.
[http://dx.doi.org/10.1016/j.colsurfb.2006.12.006] [PMID: 17254755]
[41]
Bernkop-Schnürch A, Hornof M, Zoidl T. Thiolated polymers-thiomers: Synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int J Pharm 2003; 260(2): 229-37.
[http://dx.doi.org/10.1016/S0378-5173(03)00271-0] [PMID: 12842342]
[42]
Roldo M, Hornof M, Caliceti P, Bernkop-Schnürch A. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: Synthesis and in vitro evaluation. Eur J Pharm Biopharm 2004; 57(1): 115-21.
[http://dx.doi.org/10.1016/S0939-6411(03)00157-7] [PMID: 14729087]
[43]
Shukla SK, Mishra AK, Arotiba OA, Mamba BB. Chitosan-based nanomaterials: A state of the art review. Int J Biol Macromol 2013; 59: 46-58.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.043] [PMID: 23608103]
[44]
Ramon G. On diphtheria toxin and toxoid. Ann Inst Pasteur (Paris) 1924; 38: 1-10.
[45]
Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol 2009; 30(1): 23-32.
[http://dx.doi.org/10.1016/j.it.2008.09.006] [PMID: 19059004]
[46]
Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW. Vaccine adjuvant systems: Enhancing the efficacy of sub-unit protein antigens. Int J Pharm 2008; 364(2): 272-80.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.036] [PMID: 18555624]
[47]
Saupe A, McBurney W, Rades T, Hook S. Immunostimulatory colloidal delivery systems for cancer vaccines. Expert Opin Drug Deliv 2006; 3(3): 345-54.
[http://dx.doi.org/10.1517/17425247.3.3.345] [PMID: 16640495]
[48]
Singh M, O’Hagan DT. Recent advances in vaccine adjuvants. Pharm Res 2002; 19(6): 715-28.
[http://dx.doi.org/10.1023/A:1016104910582] [PMID: 12134940]
[49]
Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat Med 2005; 11(4) (Suppl.): S63-8.
[http://dx.doi.org/10.1038/nm1210] [PMID: 15812492]
[50]
Goto N, Akama K. Histopathological studies of reactions in mice injected with aluminum-adsorbed tetanus toxoid. Microbiol Immunol 1982; 26(12): 1121-32.
[http://dx.doi.org/10.1111/j.1348-0421.1982.tb00261.x] [PMID: 7169970]
[51]
Olive C. Pattern recognition receptors: Sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines 2012; 11(2): 237-56.
[http://dx.doi.org/10.1586/erv.11.189] [PMID: 22309671]
[52]
Hamman JH, Schultz CM, Kotzé AF. N-trimethyl chitosan chloride: optimum degree of quaternization for drug absorption enhancement across epithelial cells. Drug Dev Ind Pharm 2003; 29(2): 161-72.
[http://dx.doi.org/10.1081/DDC-120016724] [PMID: 12648013]
[53]
Xu J, Xu B, Shou D, Xia X, Hu Y. Preparation and evaluation of vancomycin loaded N-trimethyl chitosan nanoparticles. Polymers (Basel) 2015; 7(9): 1850-70.
[http://dx.doi.org/10.3390/polym7091488]
[54]
Kotzé AR. Lueβen HL, de Leeuw BJ, de Boer BG, Verhoef JC, Junginger HE. N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: In vitro evaluation in intestinal epithelial cells (Caco-2). Pharm Res 1997; 14(9): 1197-202.
[http://dx.doi.org/10.1023/A:1012106907708] [PMID: 9327448]
[55]
Thanou MM, Kotzé AF, Scharringhausen T, et al. Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J Control Release 2000; 64(1-3): 15-25.
[http://dx.doi.org/10.1016/S0168-3659(99)00131-5] [PMID: 10640642]
[56]
Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm J 2011; 19(3): 129-41.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[57]
Garg U, Chauhan S, Nagaich U, Jain N. Current advances in chitosan nanoparticles-based drug delivery and targeting. Adv Pharm Bull 2019; 9(2): 195-204.
[http://dx.doi.org/10.15171/apb.2019.023] [PMID: 31380245]
[58]
Luangtana-anan M, Opanasopit P, Ngawhirunpat T, et al. Effect of chitosan salts and molecular weight on a nanoparticulate carrier for therapeutic protein. Pharm Dev Technol 2005; 10(2): 189-96.
[http://dx.doi.org/10.1081/PDT-54388] [PMID: 15926667]
[59]
Ohya Y, Shiratani M, Kobayashi H, Ouchi T. Release behaviour of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. Pure Appl Chem 1994; A31: 629-42.
[60]
Songjiang Z, Lixiang W. Amyloid-beta associated with chitosan nano-carrier has favorable immunogenicity and permeates the BBB. AAPS PharmSciTech 2009; 10(3): 900-5.
[http://dx.doi.org/10.1208/s12249-009-9279-1] [PMID: 19609682]
[61]
Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Deliv 2004; 12(1): 41-57.
[http://dx.doi.org/10.1080/10717540590889781] [PMID: 15801720]
[62]
Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 2001; 47(1): 83-97.
[http://dx.doi.org/10.1016/S0169-409X(00)00123-X] [PMID: 11251247]
[63]
Nasti A, Zaki NM, de Leonardis P, et al. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharm Res 2009; 26(8): 1918-30.
[http://dx.doi.org/10.1007/s11095-009-9908-0] [PMID: 19507009]
[64]
Lin AH, Liu YM, Ping QN. Free amino groups on the surface of chitosan nanoparticles and its characteristics. Yao Xue Xue Bao 2007; 42(3): 323-8.
[PMID: 17520835]
[65]
Wu Y, Wang Y, Luo G, Dai Y. In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour Technol 2009; 100(14): 3459-64.
[http://dx.doi.org/10.1016/j.biortech.2009.02.018] [PMID: 19329306]
[66]
Brunel F, Véron L, David L, Domard A, Delair T. A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir 2008; 24(20): 11370-7.
[http://dx.doi.org/10.1021/la801917a] [PMID: 18774829]
[67]
Peniche H, Peniche C. Chitosan nanoparticles: A contribution to nanomedicine. Polym Int 2011; 60(6): 883-9.
[http://dx.doi.org/10.1002/pi.3056]
[68]
Sharma S, Mukkur TKS, Benson HAE, Chen Y. Enhanced immune response against pertussis toxoid by IgA-loaded chitosan-dextran sulfate nanoparticles. J Pharm Sci 2012; 101(1): 233-44.
[http://dx.doi.org/10.1002/jps.22763] [PMID: 21953499]
[69]
Wang JJ, Zeng ZW, Xiao RZ, et al. Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine 2011; 6: 765-74.
[PMID: 21589644]
[70]
Wen ZS, Xu YL, Zou XT, Xu ZR. Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar Drugs 2011; 9(6): 1038-55.
[http://dx.doi.org/10.3390/md9061038] [PMID: 21747747]
[71]
Wu KY, Wu M, Fu ML, et al. A novel chitosan CpG nanoparticle regulates cellular and humoral immunity of mice. Biomed Environ Sci 2006; 19(2): 87-95.
[PMID: 16827178]
[72]
Danesh-Bahreini MA, Shokri J, Samiei A, Kamali-Sarvestani E, Barzegar-Jalali M, Mohammadi-Samani S. Nanovaccine for leishmaniasis: Preparation of chitosan nanoparticles containing Leishmania superoxide dismutase and evaluation of its immunogenicity in BALB/c mice. Int J Nanomedicine 2011; 6: 835-42.
[PMID: 21589651]
[73]
Jearanaiwitayakul T, Sunintaboon P, Chawengkittikul R, et al. Whole inactivated dengue virus loaded trimethyl chitosan nanoparticle-based vaccine: Immunogenic properties in ex vivo and in vivo models. Hum Vaccin Immunother 2021; 17(8): 2793-807.
[http://dx.doi.org/10.1080/21645515.2021.1884473] [PMID: 33861177]
[74]
Chuang CC, Tsai MH, Yen H, et al. A fucoidan-quaternary chitosan nanoparticle adjuvant for anthrax vaccine as an alternative to CpG oligodeoxynucleotides. Carbohydr Polym 2020; 229: 115403.
[http://dx.doi.org/10.1016/j.carbpol.2019.115403] [PMID: 31826481]
[75]
Yang Y, Xing R, Liu S, et al. Chitosan, hydroxypropyltrimethyl ammonium chloride chitosan and sulfated chitosan nanoparticles as adjuvants for inactivated Newcastle disease vaccine. Carbohydr Polym 2020; 229: 115423.
[http://dx.doi.org/10.1016/j.carbpol.2019.115423] [PMID: 31826462]
[76]
Abkar M, Fasihi-Ramandi M, Kooshki H, Sahebghadam LA. Oral immunization of mice with Omp31-loaded N-trimethyl chitosan nanoparticles induces high protection against Brucella melitensis infection. Int J Nanomedicine 2017; 12: 8769-78.
[http://dx.doi.org/10.2147/IJN.S149774] [PMID: 29263667]
[77]
Zhao K, Li S, Li W, et al. Quaternized chitosan nanoparticles loaded with the combined attenuated live vaccine against Newcastle disease and infectious bronchitis elicit immune response in chicken after intranasal administration. Drug Deliv 2017; 24(1): 1574-86.
[http://dx.doi.org/10.1080/10717544.2017.1388450] [PMID: 29029568]
[78]
Cai J, Zhang W, Xu J, Xue W, Liu Z. Evaluation of N-phosphonium chitosan as a novel vaccine carrier for intramuscular immunization. J Biomater Appl 2017; 32(5): 677-85.
[http://dx.doi.org/10.1177/0885328217735221] [PMID: 28992775]

© 2024 Bentham Science Publishers | Privacy Policy