Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Weak Interactions between Epinephrine and Thymine

Author(s): Ling Pei*

Volume 20, Issue 3, 2023

Published on: 28 October, 2022

Page: [230 - 238] Pages: 9

DOI: 10.2174/1570178619666220922091653

Price: $65

Abstract

The weak interactions between epinephrine and thymine were investigated by combining the 6-311+G(d,p) basis set with the M06-2X method based on density functional theory. Results suggest that epinephrine and thymine form 22 steady geometries through weak interactions, which primarily contain hydrogen bonds and π–π stacking. Hydrogen bonding is the main character. In addition, the interaction energies range from −20.98 kJ·mol−1 to −63.14 kJ·mol−1, with the basis set superposition error correction, which are in line with the energy range of the hydrogen bond. Geometrical parameters, frequency analysis, natural bond orbital (NBO) analysis, atoms-in-molecules (AIM) analysis, and reduced density gradient (RDG) analysis were also used to analyze and verify hydrogen bond formation. Most of the hydrogen bonds in optimized structures of the epinephrine–thymine complex are closed-shell interaction and electrostatic dominant, whereas N···H–N, which exist in geometries 3, 4, 5, and 14, are interacting between the closed-shell and shared-shell. N-H…N is almost linear, which is more conducive to the study of the role of hydrogen bonds in the system.

Keywords: Density functional theory, Hydrogen bond, NBO, AIM, RDG

[1]
Jeffrey, G.A.; Saenger, W. Springer-Verlag: Berlin, 1991.
[2]
Yagai, S.; Nakajima, T.; Kishikawa, K.; Kohmoto, S.; Karatsu, T.; Kitamura, A. J. Am. Chem. Soc., 2005, 127(31), 11134-11139.
[http://dx.doi.org/10.1021/ja052645a] [PMID: 16076221]
[3]
Dong, K.; Zhang, S. J. Chem. Comm., 2016, 52, 6744-6764.
[http://dx.doi.org/10.1039/C5CC10120D]
[4]
Alberty, R.A. Biophys. Chem., 2006, 121(3), 157-162.
[http://dx.doi.org/10.1016/j.bpc.2006.01.004] [PMID: 16466672]
[5]
Zgierski, M.Z.; Alavi, S. Chem. Phys. Lett., 2006, 426(4-6), 398-404.
[http://dx.doi.org/10.1016/j.cplett.2006.05.125]
[6]
Bell, D.R. Lip pincott Williams & Wilkins; Philadelphia, 2009.
[7]
Van Mourik, T. Mol. Phys., 2005, 103, 1633-1639.
[http://dx.doi.org/10.1080/00268970500086039]
[8]
Gunasekaran, S.; Thilak, R.; Kumar, S. Indian J. Pure Appl. Phy., 2007, 45, 884-892.
[9]
Yadav, T.; Mukherjee, V. J. Mol. Struct., 2017, 1147, 702-713.
[http://dx.doi.org/10.1016/j.molstruc.2017.06.140]
[10]
Yadav, T.; Mukherjee, V. J. Mol. Struct., 2018, 1160, 256-270.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.066]
[11]
Yadav, T.; Sahu, R.K.; Mukherjee, V. J. Mol. Struct., 2019, 1176, 94-109.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.077]
[12]
Pei, L.; Li, D.Z.; Zhang, L.J. J. Mol. Model., 2019, 25(8), 252.
[http://dx.doi.org/10.1007/s00894-019-4123-3] [PMID: 31353431] [http://dx.doi.org/10.1080/00268977000101561]
[13]
Hobza, P.; Šponer, J. Chem. Rev., 1999, 99(11), 3247-3276.
[http://dx.doi.org/10.1021/cr9800255] [PMID: 11749516]
[14]
Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. J. Comput. Chem., 2019, 40(32), 2868-2881.
[http://dx.doi.org/10.1002/jcc.26068] [PMID: 31518004]
[15]
Alabugin, I.V.; Manoharan, M.; Peabody, S.; Weinhold, F. J. Am. Chem. Soc., 2003, 125(19), 5973-5987.
[http://dx.doi.org/10.1021/ja034656e]
[16]
Bader, R.F.W. Clarendon: Oxford, 1994.
[17]
Reed, A.E.; Curtiss, L.A.; Weinhold, F. Chem. Rev., 1988, 88(6), 899-926.
[http://dx.doi.org/10.1021/cr00088a005]
[18]
Wu, Y.; Feng, L.; Zhang, X.D. Acta Phys. Chim. Sin., 2008, 24(4), 653-658.
[http://dx.doi.org/10.3866/PKU.WHXB20080418]
[19]
Bader, R.F.W. Chem. Rev., 1991, 91(5), 893-928.
[http://dx.doi.org/10.1021/cr00005a013]
[20]
Koch, U.; Popelier, P.L.A. J. Phys. Chem., 1995, 99(24), 9747-9754.
[http://dx.doi.org/10.1021/j100024a016]
[21]
Popelier, P.L.A. J. Phys. Chem. A, 1998, 102(10), 1873-1878.
[http://dx.doi.org/10.1021/jp9805048]
[22]
Lipkowski, P.; Grabowski, S.J.; Robinson, T.L.; Leszczynski, J. J. Phys. Chem. A, 2004, 108(49), 10865-10872.
[http://dx.doi.org/10.1021/jp048562i]
[23]
Rozas, I.; Alkorta, I.; Elguero, J. J. Am. Chem. Soc., 2000, 122(45), 11154-11161.
[http://dx.doi.org/10.1021/ja0017864]
[24]
Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. J. Chem. Phys., 2002, 117(12), 5529-5542.
[http://dx.doi.org/10.1063/1.1501133]
[25]
Johnson, E.R.; Keinan, S.; Mori, S.P.; Contreras, G.J.; Cohen, A.J.; Yang, W. J. Am. Chem. Soc., 2010, 132(18), 6498-6506.
[http://dx.doi.org/10.1021/ja100936w] [PMID: 20394428]
[26]
Tian, Lu. Molclus program, Version xx., 2022. Available from: http://www.keinsci.com/research/molclus.html
[27]
Zheng, Y.Z.; Zhou, Y.; Liang, Q.; Chen, D.F.; Guo, R. J. Mol. Model., 2016, 22(4), 95.
[http://dx.doi.org/10.1007/s00894-016-2968-2] [PMID: 27029620]
[28]
Zheng, Y.Z.; Xu, J.; Liang, Q.; Chen, D.F.; Guo, R.; Fu, Z.M. J. Mol. Model., 2017, 23(8), 245.
[http://dx.doi.org/10.1007/s00894-017-3409-6] [PMID: 28748284]
[29]
Zheng, Y.Z.; Zhou, Y.; Liang, Q.; Chen, D.F.; Guo, R.; Xiong, C.L.; Xu, X.J.; Zhang, Z.N.; Huang, Z.J. Dyes Pigments, 2017, 141, 179-187.
[http://dx.doi.org/10.1016/j.dyepig.2017.02.021]
[30]
Zheng, Y.Z.; Zhou, Y.; Liang, Q.; Chen, D.F.; Guo, R.; Lai, R.C. Sci. Rep., 2016, 6(1), 34647.
[http://dx.doi.org/10.1038/srep34647] [PMID: 27698481]
[31]
Zheng, Y.Z.; Zhou, Y.; Liang, Q.; Chen, D.F.; Guo, R. J. Mol. Model., 2016, 22(11), 257.
[http://dx.doi.org/10.1007/s00894-016-3128-4] [PMID: 27709439]
[32]
Boys, S.F.; Bernardi, F. Mol. Phys., 1970, 19(4), 553-566.
[33]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B. Gaussian 09; Gaussian Inc: Wallingford, 2009.
[34]
Lu, T.; Chen, F. J. Comput. Chem., 2012, 33(5), 580-592.
[http://dx.doi.org/10.1002/jcc.22885] [PMID: 22162017]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy