Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Nitrogen-doped Graphene Oxide: Production and its Applications in Onepot Five-component Reaction of Highly Substituted Tetrahydropyridines

Author(s): Shahnaz Rostamizadeh, Bahram Zamiri* and Mehrdad Mahkam

Volume 20, Issue 3, 2023

Published on: 19 October, 2022

Page: [239 - 249] Pages: 11

DOI: 10.2174/1570178619666220902144837

Price: $65

Abstract

This article proposes a new and facile method to prepare a carbon-based catalyst entitled graphene oxide quantum dots that contain nitrogen-doped groups (GOQDs-N-doped), and which are bioactive and safe possessing economical free transition metal properties. In this study, GOQDs-Ndoped was synthesized by means of the pyrolysis of citric acid at 180°C in the presence of ammonia. The prepared catalyst, which embodies an amorph and 3D structure, acts similar to nanoreactors, and was successfully used in the synthesis of tetrahydropyridines (THP) derivatives with antimicrobial, anticancer, antifungal and anti-Alzheimer’s properties through five-component reactions. We believe that the production of affordable and green carbocatalysts to be used in multi-component reactions and in chemical and pharmaceutical industries can be promising. Finally, we were able to synthesize highly substituted and efficient Tetrahydroperidines by utilizing laboratory-produced carbocatalysts.

Keywords: Nitrogen- doped graphene oxide, carbo catalyst, green, solvent free, Tetrahydropyridine, five-component reaction

Graphical Abstract

[1]
Bahuguna, A.; Kumar, A.; Krishnan, V. Asian J. Org. Chem., 2019, 8(8), 1263-1305.
[http://dx.doi.org/10.1002/ajoc.201900259]
[2]
Su, C.; Loh, K.P. Carbocatalysts, 2013, 46, 2275-2285.
[3]
Tien, C.L.; Chen, G. J. Heat Transfer, 1994, 116, 799.
[http://dx.doi.org/10.1115/1.2911450]
[4]
Chen, G. Inter Society Conference on Thermal Phenomena, 2004, pp. 447-452.
[5]
Kim, W.; Singer, S.; Majumder, A. International Conference on Thermoelectric, 2005, p. 9.
[6]
Ruiz-Tijerina, D.A.; da Silva, L.G.G.V.D. Phys. Rev. B, 2016, 94(8), 085425.
[http://dx.doi.org/10.1103/PhysRevB.94.085425]
[7]
Si, C.; Sun, Z.; Liu, F. Nanoscale, 2016, 8(6), 3207-3217.
[http://dx.doi.org/10.1039/C5NR07755A] [PMID: 26796960]
[8]
Gui, G.; Li, J.; Zhong, J. Phys. Rev. B Condens. Matter Mater. Phys., 2008, 78(7), 075435-1.
[http://dx.doi.org/10.1103/PhysRevB.78.075435]
[9]
Lytovchenko, V. Ukr. J. Phys, 2005, 50, 1175.
[10]
He, C.; Sun, L.; Zhang, C.; Peng, X.; Zhong, K.; Zhong, J. JSSC, 2012, 152, 1560.
[11]
He, C.; Sun, L.; Zhang, C.; Zhong, J. Cond.-Mat. Mater. Sci., 2012, 0104, 1207.
[12]
Dattaa, J.; Biswasb, H.; Rao, P.; Reddy, G.; Kumar, S.; Ray, N.; Chowdhury, D.; Reddy, A. Nucl. Instrum. Methods Phys. Res. B, 2014, 328, 27.
[http://dx.doi.org/10.1016/j.nimb.2014.02.127]
[13]
Adel, M.; El-Maghraby, A.; El Shazly, O.; El Wahidy, E-W.F.; Mohamed, M.A.A. J. Mater. Res., 2016, 31(4), 455-467.
[http://dx.doi.org/10.1557/jmr.2016.25]
[14]
Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Chen, G. Carbon, 2012, 50(12), 4738-4743.
[http://dx.doi.org/10.1016/j.carbon.2012.06.002]
[15]
Cai, N.; Larese-Casanova, P. J. Environ. Chem. Eng., 2016, 4(3), 2941-2951.
[http://dx.doi.org/10.1016/j.jece.2016.06.004]
[16]
Shang, S.S.; Gao, S. ChemCatChem, 2019, 11(16), 3730-3744.
[http://dx.doi.org/10.1002/cctc.201900336]
[17]
Pimpang, P.; Sumang, R.; Choopun, S. Warasan khana witthayasat maha witthayalai chiang mai, 2018, 45, 2005.
[18]
Matsoso, B.J.; Ranganathan, K.; Mutuma, B.K.; Lerotholi, T.; Jones, G.; Coville, N.J. RSC Advances, 2016, 6(108), 106914-106920.
[http://dx.doi.org/10.1039/C6RA24094A]
[19]
Jurewicz, K.; Babeł, K.; Źiółkowski, A.; Wachowska, H. Electrochim. Acta, 2003, 48(11), 1491-1498.
[http://dx.doi.org/10.1016/S0013-4686(03)00035-5]
[20]
Deng, Y.; Xie, Y.; Zou, K.; Ji, X. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(4), 1144-1173.
[http://dx.doi.org/10.1039/C5TA08620E]
[21]
Pang, Y.; Luo, K.; Tang, L.; Li, X.; Yu, J.; Guo, J.; Liu, Y.; Zhang, Z.; Yue, R.; Li, L. Environ. Sci. Pollut. Res. Int., 2019, 26(32), 32764-32776.
[http://dx.doi.org/10.1007/s11356-019-06403-4] [PMID: 31512124]
[22]
Lu, A.H.; Salabas, E.L.; Schüth, F. Angew. Chem. Int. Ed., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866]
[23]
Zhang, M.; Liu, Y-H.; Shang, Z-R.; Hu, H-C.; Zhang, Z-H. Catal. Commun., 2017, 88, 39-44.
[http://dx.doi.org/10.1016/j.catcom.2016.09.028]
[24]
Fujita, S.I.; Yoshida, H.; Arai, M.C. J. Med. Chem., 2017, 3, 31.
[25]
Mohsin, N.A.; Ahmad, M. Turk. J. Chem., 2018, 42(5), 1191-1216.
[http://dx.doi.org/10.3906/kim-1709-4]
[26]
Zhou, Y.; Gregor, V.E.; Ayida, B.K.; Winters, G.C.; Sun, Z.; Murphy, D.; Haley, G.; Bailey, D.; Froelich, J.M.; Fish, S.; Webber, S.E.; Hermann, T.; Wall, D. Bioorg. Med. Chem. Lett., 2007, 17(5), 1206-1210.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.024] [PMID: 17188860]
[27]
León, L.G.; Carballo, R.M.; Vega-Hernández, M.C.; Martín, V.S.; Padrón, J.I.; Padrón, J.M. Bioorg. Med. Chem. Lett., 2007, 17(10), 2681-2684.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.010] [PMID: 17376681]
[28]
Dai, L.; Jacob, M.R.; Khan, S.I.; Khan, I.A.; Clark, A.M.; Li, X.C. J. Nat. Prod., 2011, 74(9), 2023-2026.
[http://dx.doi.org/10.1021/np200644s] [PMID: 21905650]
[29]
Messer, W.S., Jr; Abuh, Y.F.; Liu, Y.; Periyasamy, S.; Ngur, D.O.; Edgar, M.A.N.; El-Assadi, A.A.; Sbeih, S.; Dunbar, P.G.; Roknich, S.; Rho, T.; Fang, Z.; Ojo, B.; Zhang, H.; Huzl, J.J., III; Nagy, P.I. J. Med. Chem., 1997, 40(8), 1230-1246.
[http://dx.doi.org/10.1021/jm960467d] [PMID: 9111297]
[30]
Aeluri, R.; Alla, M.; Bommena, V.R.; Murthy, R.; Jain, N. Asian J. Org. Chem., 2012, 1(1), 71-79.
[http://dx.doi.org/10.1002/ajoc.201200010]
[31]
Aeluri, R. Eur. J. Med. Chem., 2015, 106, 26-33.
[32]
Aniket, P.; Sarkate, A.; Jaiprakash, N.; Sangshetti, B.; Nanasaheb, B.; Sangshetti, B. Chil. Chem. Soc., 2015, 2832.
[33]
Baumann, M.; Baxendale, I.R. Beilstein J. Org. Chem., 2013, 9, 2265-2319.
[http://dx.doi.org/10.3762/bjoc.9.265] [PMID: 24204439]
[34]
Wang, H.J.; Mo, L.P.; Zhang, Z.H. ACS Comb. Sci., 2011, 13(2), 181-185.
[http://dx.doi.org/10.1021/co100055x] [PMID: 21395344]
[35]
Babaei, E.; Mirjalili, B.B.F. Res. Chem. Intermed., 2018, 44(5), 3493-3505.
[http://dx.doi.org/10.1007/s11164-018-3320-5]
[36]
Ramesh, R.; Maheswari, S.; Arivazhagan, M.; Malecki, J.G.; Lalitha, A. Tetrahedron Lett., 2017, 58(40), 3905-3909.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.074]
[37]
Gupta, A.; Kaur, R.; Singh, D.; Kapoor, K.K. Tetrahedron Lett., 2017, 58(26), 2583-2587.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.067]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy