Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Perspective

Small-molecule Modulators Targeting SHP2 for Cancer Therapy

Author(s): Dazhao Mi, Yuzhan Li and Yihua Chen*

Volume 23, Issue 5, 2023

Published on: 14 October, 2022

Page: [498 - 504] Pages: 7

DOI: 10.2174/1871520622666220921093052

Abstract

Background: SHP2 is a protein tyrosine phosphatase that is extensively involved in several signaling pathways related to cancer occurrence, and thus SHP2 has been proposed as an attractive target for cancer treatment.

Methods: After a brief introduction of SHP2, we provided a short overview of the structure, function and regulation mechanism of SHP2 in cancer occurrence. Then, this perspective focused on the current therapeutic strategies targeting SHP2, including SHP2 PTP inhibitors, SHP2 allosteric inhibitors and SHP2-targeting PROTACs, and discussed the benefits and defects of these strategies. Finally, the opportunities and challenges were presented.

Results: SHP2 regulated RAS-ERK, PI3K-AKT, JAK-STAT and PD-1/PD-L1 signaling pathways involved in the pathogenesis of cancer via conformations conversion. Current therapeutic strategies targeting SHP2, especially SHP2 allosteric inhibitors, hold significant potency and have broad application prospects for cancer therapy.

Conclusion: In summary, SHP2 is a promising therapeutic target, and strategies targeting SHP2 offer an alternative program for cancer patients.

Keywords: SHP2, phosphatase, cancer treatment, SHP2 PTP inhibitors, SHP2 allosteric inhibitors, PROTACs.

[1]
Attwood, M.M.; Fabbro, D.; Sokolov, A.V.; Knapp, S.; Schiöth, H.B. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat. Rev. Drug Discov., 2021, 20(11), 839-861.
[http://dx.doi.org/10.1038/s41573-021-00252-y] [PMID: 34354255]
[2]
Frankson, R.; Yu, Z.H.; Bai, Y.; Li, Q.; Zhang, R.Y.; Zhang, Z.Y. Therapeutic targeting of oncogenic tyrosine phosphatases. Cancer Res., 2017, 77(21), 5701-5705.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1510] [PMID: 28855209]
[3]
Zhao, M.; Guo, W.; Wu, Y.; Yang, C.; Zhong, L.; Deng, G.; Zhu, Y.; Liu, W.; Gu, Y.; Lu, Y.; Kong, L.; Meng, X.; Xu, Q.; Sun, Y. SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade. Acta Pharm. Sin. B, 2019, 9(2), 304-315.
[http://dx.doi.org/10.1016/j.apsb.2018.08.009] [PMID: 30972278]
[4]
Song, Y.; Wang, S.; Zhao, M.; Yang, X.; Yu, B. Strategies targeting protein tyrosine phosphatase SHP2 for cancer therapy. J. Med. Chem., 2022, 65(4), 3066-3079.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02008] [PMID: 35157464]
[5]
Song, Y.; Zhao, M.; Zhang, H.; Yu, B. Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol. Ther., 2022, 230, 107966.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107966] [PMID: 34403682]
[6]
Pathak, M.K.; Yi, T. Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines. J. Immunol., 2001, 167(6), 3391-3397.
[http://dx.doi.org/10.4049/jimmunol.167.6.3391] [PMID: 11544330]
[7]
Liu, W.; Yu, B.; Xu, G.; Xu, W.R.; Loh, M.L.; Tang, L.D.; Qu, C.K. Identification of cryptotanshinone as an inhibitor of oncogenic protein tyrosine phosphatase SHP2 (PTPN11). J. Med. Chem., 2013, 56(18), 7212-7221.
[http://dx.doi.org/10.1021/jm400474r] [PMID: 23957426]
[8]
Hellmuth, K.; Grosskopf, S.; Lum, C.T.; Würtele, M.; Röder, N.; von Kries, J.P.; Rosario, M.; Rademann, J.; Birchmeier, W. Specific inhibitors of the protein tyrosine phosphatase SHP2 identified by high-throughput docking. Proc. Natl. Acad. Sci. USA, 2008, 105(20), 7275-7280.
[http://dx.doi.org/10.1073/pnas.0710468105] [PMID: 18480264]
[9]
Grosskopf, S.; Eckert, C.; Arkona, C.; Radetzki, S.; Böhm, K.; Heinemann, U.; Wolber, G.; von Kries, J.P.; Birchmeier, W.; Rademann, J. Selective inhibitors of the protein tyrosine phosphatase SHP2 block cellular motility and growth of cancer cells in vitro and in vivo. ChemMedChem, 2015, 10(5), 815-826.
[http://dx.doi.org/10.1002/cmdc.201500015] [PMID: 25877780]
[10]
Zhang, X.; He, Y.; Liu, S.; Yu, Z.; Jiang, Z.X.; Yang, Z.; Dong, Y.; Nabinger, S.C.; Wu, L.; Gunawan, A.M.; Wang, L.; Chan, R.J.; Zhang, Z.Y. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). J. Med. Chem., 2010, 53(6), 2482-2493.
[http://dx.doi.org/10.1021/jm901645u] [PMID: 20170098]
[11]
Zeng, L.F.; Zhang, R.Y.; Yu, Z.H.; Li, S.; Wu, L.; Gunawan, A.M.; Lane, B.S.; Mali, R.S.; Li, X.; Chan, R.J.; Kapur, R.; Wells, C.D.; Zhang, Z.Y. Therapeutic potential of targeting the oncogenic SHP2 phosphatase. J. Med. Chem., 2014, 57(15), 6594-6609.
[http://dx.doi.org/10.1021/jm5006176] [PMID: 25003231]
[12]
Scott, L.M.; Lawrence, H.R.; Sebti, S.M.; Lawrence, N.J.; Wu, J. Targeting protein tyrosine phosphatases for anticancer drug discovery. Curr. Pharm. Des., 2010, 16(16), 1843-1862.
[http://dx.doi.org/10.2174/138161210791209027] [PMID: 20337577]
[13]
Chen, Y.N.P.; LaMarche, M.J.; Chan, H.M.; Fekkes, P.; Garcia-Fortanet, J.; Acker, M.G.; Antonakos, B.; Chen, C.H.T.; Chen, Z.; Cooke, V.G.; Dobson, J.R.; Deng, Z.; Fei, F.; Firestone, B.; Fodor, M.; Fridrich, C.; Gao, H.; Grunenfelder, D.; Hao, H.X.; Jacob, J.; Ho, S.; Hsiao, K.; Kang, Z.B.; Karki, R.; Kato, M.; Larrow, J.; La Bonte, L.R.; Lenoir, F.; Liu, G.; Liu, S.; Majumdar, D.; Meyer, M.J.; Palermo, M.; Perez, L.; Pu, M.; Price, E.; Quinn, C.; Shakya, S.; Shultz, M.D.; Slisz, J.; Venkatesan, K.; Wang, P.; Warmuth, M.; Williams, S.; Yang, G.; Yuan, J.; Zhang, J.H.; Zhu, P.; Ramsey, T.; Keen, N.J.; Sellers, W.R.; Stams, T.; Fortin, P.D. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature, 2016, 535(7610), 148-152.
[http://dx.doi.org/10.1038/nature18621] [PMID: 27362227]
[14]
Garcia Fortanet, J.; Chen, C.H.T.; Chen, Y.N.P.; Chen, Z.; Deng, Z.; Firestone, B.; Fekkes, P.; Fodor, M.; Fortin, P.D.; Fridrich, C.; Grunenfelder, D.; Ho, S.; Kang, Z.B.; Karki, R.; Kato, M.; Keen, N.; LaBonte, L.R.; Larrow, J.; Lenoir, F.; Liu, G.; Liu, S.; Lombardo, F.; Majumdar, D.; Meyer, M.J.; Palermo, M.; Perez, L.; Pu, M.; Ramsey, T.; Sellers, W.R.; Shultz, M.D.; Stams, T.; Towler, C.; Wang, P.; Williams, S.L.; Zhang, J.H.; LaMarche, M.J. Allosteric inhibition of SHP2: Identification of a potent, selective, and orally efficacious phosphatase inhibitor. J. Med. Chem., 2016, 59(17), 7773-7782.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00680] [PMID: 27347692]
[15]
LaMarche, M.J.; Acker, M.; Argintaru, A.; Bauer, D.; Boisclair, J.; Chan, H.; Chen, C.H.T.; Chen, Y.N.; Chen, Z.; Deng, Z.; Dore, M.; Dunstan, D.; Fan, J.; Fekkes, P.; Firestone, B.; Fodor, M.; Garcia-Fortanet, J.; Fortin, P.D.; Fridrich, C.; Giraldes, J.; Glick, M.; Grunenfelder, D.; Hao, H.X.; Hentemann, M.; Ho, S.; Jouk, A.; Kang, Z.B.; Karki, R.; Kato, M.; Keen, N.; Koenig, R.; LaBonte, L.R.; Larrow, J.; Liu, G.; Liu, S.; Majumdar, D.; Mathieu, S.; Meyer, M.J.; Mohseni, M.; Ntaganda, R.; Palermo, M.; Perez, L.; Pu, M.; Ramsey, T.; Reilly, J.; Sarver, P.; Sellers, W.R.; Sendzik, M.; Shultz, M.D.; Slisz, J.; Slocum, K.; Smith, T.; Spence, S.; Stams, T.; Straub, C.; Tamez, V., Jr; Toure, B.B.; Towler, C.; Wang, P.; Wang, H.; Williams, S.L.; Yang, F.; Yu, B.; Zhang, J.H.; Zhu, S. Identification of TNO155, an allosteric SHP2 inhibitor for the treatment of cancer. J. Med. Chem., 2020, 63(22), 13578-13594.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01170] [PMID: 32910655]
[16]
Bagdanoff, J.T.; Chen, Z.; Acker, M.; Chen, Y.N.; Chan, H.; Dore, M.; Firestone, B.; Fodor, M.; Fortanet, J.; Hentemann, M.; Kato, M.; Koenig, R.; LaBonte, L.R.; Liu, S.; Mohseni, M.; Ntaganda, R.; Sarver, P.; Smith, T.; Sendzik, M.; Stams, T.; Spence, S.; Towler, C.; Wang, H.; Wang, P.; Williams, S.L.; LaMarche, M.J. Optimization of fused bicyclic allosteric SHP2 inhibitors. J. Med. Chem., 2019, 62(4), 1781-1792.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01725] [PMID: 30688462]
[17]
Sarver, P.; Acker, M.; Bagdanoff, J.T.; Chen, Z.; Chen, Y.N.; Chan, H.; Firestone, B.; Fodor, M.; Fortanet, J.; Hao, H.; Hentemann, M.; Kato, M.; Koenig, R.; LaBonte, L.R.; Liu, G.; Liu, S.; Liu, C.; McNeill, E.; Mohseni, M.; Sendzik, M.; Stams, T.; Spence, S.; Tamez, V.; Tichkule, R.; Towler, C.; Wang, H.; Wang, P.; Williams, S.L.; Yu, B.; LaMarche, M.J. 6-Amino-3-methylpyrimidinones as potent, selective, and orally efficacious SHP2 inhibitors. J. Med. Chem., 2019, 62(4), 1793-1802.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01726] [PMID: 30688459]
[18]
Xie, J.; Si, X.; Gu, S.; Wang, M.; Shen, J.; Li, H.; Shen, J.; Li, D.; Fang, Y.; Liu, C.; Zhu, J. Allosteric inhibitors of SHP2 with therapeutic potential for cancer treatment. J. Med. Chem., 2017, 60(24), 10205-10219.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01520] [PMID: 29155585]
[19]
Nichols, R.J.; Haderk, F.; Stahlhut, C.; Schulze, C.J.; Hemmati, G.; Wildes, D.; Tzitzilonis, C.; Mordec, K.; Marquez, A.; Romero, J.; Hsieh, T.; Zaman, A.; Olivas, V.; McCoach, C.; Blakely, C.M.; Wang, Z.; Kiss, G.; Koltun, E.S.; Gill, A.L.; Singh, M.; Goldsmith, M.A.; Smith, J.A.M.; Bivona, T.G. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nat. Cell Biol., 2018, 20(9), 1064-1073.
[http://dx.doi.org/10.1038/s41556-018-0169-1] [PMID: 30104724]
[20]
Sun, Y.; Meyers, B.A.; Czako, B.; Leonard, P.; Mseeh, F.; Harris, A.L.; Wu, Q.; Johnson, S.; Parker, C.A.; Cross, J.B.; Di Francesco, M.E.; Bivona, B.J.; Bristow, C.A.; Burke, J.P.; Carrillo, C.C.; Carroll, C.L.; Chang, Q.; Feng, N.; Gao, G.; Gera, S.; Giuliani, V.; Huang, J.K.; Jiang, Y.; Kang, Z.; Kovacs, J.J.; Liu, C.Y.; Lopez, A.M.; Ma, X.; Mandal, P.K.; McAfoos, T.; Miller, M.A.; Mullinax, R.A.; Peoples, M.; Ramamoorthy, V.; Seth, S.; Spencer, N.D.; Suzuki, E.; Williams, C.C.; Yu, S.S.; Zuniga, A.M.; Draetta, G.F.; Marszalek, J.R.; Heffernan, T.P.; Kohl, N.E.; Jones, P. Allosteric SHP2 inhibitor, IACS-13909, overcomes EGFR-dependent and EGFR-independent resistance mechanisms toward osimertinib. Cancer Res., 2020, 80(21), 4840-4853.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-1634] [PMID: 32928921]
[21]
Czako, B.; Sun, Y.; McAfoos, T.; Cross, J.B.; Leonard, P.G.; Burke, J.P.; Carroll, C.L.; Feng, N.; Harris, A.L.; Jiang, Y.; Kang, Z.; Kovacs, J.J.; Mandal, P.; Meyers, B.A.; Mseeh, F.; Parker, C.A.; Yu, S.S.; Williams, C.C.; Wu, Q.; Di Francesco, M.E.; Draetta, G.; Heffernan, T.; Marszalek, J.R.; Kohl, N.E.; Jones, P. Discovery of 6-[(3 S, 4 S)-4-Amino-3-methyl-2-oxa-8-azaspiro[4.5]decan-8-yl]-3-(2,3-dichlorophenyl)-2-methyl-3,4-dihydropyrimidin-4-one (IACS-15414), a Potent and Orally Bioavailable SHP2 Inhibitor. J. Med. Chem., 2021, 64(20), 15141-15169.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01132] [PMID: 34643390]
[22]
Békés, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov., 2022, 21(3), 181-200.
[http://dx.doi.org/10.1038/s41573-021-00371-6] [PMID: 35042991]
[23]
Wang, M.; Lu, J.; Wang, M.; Yang, C.Y.; Wang, S. Discovery of SHP2-D26 as a first, potent, and effective PROTAC degrader of SHP2 protein. J. Med. Chem., 2020, 63(14), 7510-7528.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00471] [PMID: 32437146]
[24]
Yang, X.; Wang, Z.; Pei, Y.; Song, N.; Xu, L.; Feng, B.; Wang, H.; Luo, X.; Hu, X.; Qiu, X.; Feng, H.; Yang, Y.; Zhou, Y.; Li, J.; Zhou, B. Discovery of thalidomide-based PROTAC small molecules as the highly efficient SHP2 degraders. Eur. J. Med. Chem., 2021, 218, 113341.
[http://dx.doi.org/10.1016/j.ejmech.2021.113341] [PMID: 33780898]
[25]
Zheng, M.; Liu, Y.; Wu, C.; Yang, K.; Wang, Q.; Zhou, Y.; Chen, L.; Li, H. Novel PROTACs for degradation of SHP2 protein. Bioorg. Chem., 2021, 110, 104788.
[http://dx.doi.org/10.1016/j.bioorg.2021.104788] [PMID: 33706076]
[26]
Vemulapalli, V.; Donovan, K.A.; Seegar, T.C.M.; Rogers, J.M.; Bae, M.; Lumpkin, R.J.; Cao, R.; Henke, M.T.; Ray, S.S.; Fischer, E.S.; Cuny, G.D.; Blacklow, S.C. Targeted degradation of the oncogenic phosphatase SHP2. Biochemistry, 2021, 60(34), 2593-2609.
[http://dx.doi.org/10.1021/acs.biochem.1c00377] [PMID: 34411482]
[27]
Mainardi, S.; Mulero-Sánchez, A.; Prahallad, A.; Germano, G.; Bosma, A.; Krimpenfort, P.; Lieftink, C.; Steinberg, J.D.; de Wit, N.; Gonçalves-Ribeiro, S.; Nadal, E.; Bardelli, A.; Villanueva, A.; Bernards, R. SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo. Nat. Med., 2018, 24(7), 961-967.
[http://dx.doi.org/10.1038/s41591-018-0023-9] [PMID: 29808006]
[28]
Ruess, D.A.; Heynen, G.J.; Ciecielski, K.J.; Ai, J.; Berninger, A.; Kabacaoglu, D.; Görgülü, K.; Dantes, Z.; Wörmann, S.M.; Diakopoulos, K.N.; Karpathaki, A.F.; Kowalska, M.; Kaya-Aksoy, E.; Song, L.; van der Laan, E.A.Z.; López-Alberca, M.P.; Nazaré, M.; Reichert, M.; Saur, D.; Erkan, M.M.; Hopt, U.T.; Sainz, B., Jr; Birchmeier, W.; Schmid, R.M.; Lesina, M.; Algül, H. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat. Med., 2018, 24(7), 954-960.
[http://dx.doi.org/10.1038/s41591-018-0024-8] [PMID: 29808009]
[29]
Wong, G.S.; Zhou, J.; Liu, J.B.; Wu, Z.; Xu, X.; Li, T.; Xu, D.; Schumacher, S.E.; Puschhof, J.; McFarland, J.; Zou, C.; Dulak, A.; Henderson, L.; Xu, P.; O’Day, E.; Rendak, R.; Liao, W.; Cecchi, F.; Hembrough, T.; Schwartz, S.; Szeto, C.; Rustgi, A.K.; Wong, K.K.; Diehl, J.A.; Jensen, K.; Graziano, F.; Ruzzo, A.; Fereshetian, S.; Mertins, P.; Carr, S.A.; Beroukhim, R.; Nakamura, K.; Oki, E.; Watanabe, M.; Baba, H.; Imamura, Y.; Catenacci, D.; Bass, A.J. Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat. Med., 2018, 24(7), 968-977.
[http://dx.doi.org/10.1038/s41591-018-0022-x] [PMID: 29808010]
[30]
Fedele, C.; Ran, H.; Diskin, B.; Wei, W.; Jen, J.; Geer, M.J.; Araki, K.; Ozerdem, U.; Simeone, D.M.; Miller, G.; Neel, B.G.; Tang, K.H. SHP2 inhibition prevents adaptive resistance to MEK inhibitors in multiple cancer models. Cancer Discov., 2018, 8(10), 1237-1249.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0444] [PMID: 30045908]
[31]
LaRochelle, J.R.; Fodor, M.; Vemulapalli, V.; Mohseni, M.; Wang, P.; Stams, T.; LaMarche, M.J.; Chopra, R.; Acker, M.G.; Blacklow, S.C. Structural reorganization of SHP2 by oncogenic mutations and implications for oncoprotein resistance to allosteric inhibition. Nat. Commun., 2018, 9(1), 4508.
[http://dx.doi.org/10.1038/s41467-018-06823-9] [PMID: 30375388]
[32]
Wu, X.; Xu, G.; Li, X.; Xu, W.; Li, Q.; Liu, W.; Kirby, K.A.; Loh, M.L.; Li, J.; Sarafianos, S.G.; Qu, C.K. Small molecule inhibitor that stabilizes the autoinhibited conformation of the oncogenic tyrosine phosphatase SHP2. J. Med. Chem., 2019, 62(3), 1125-1137.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00513] [PMID: 30457860]

© 2024 Bentham Science Publishers | Privacy Policy