Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

The Glucose-Regulated Protein78 (GRP78) in the Unfolded Protein Response (UPR) Pathway: A Potential Therapeutic Target for Breast Cancer

Author(s): Maryam Mohammad Sadeghipour, Seyedeh Atekeh Torabizadeh and Mojgan Noroozi Karimabad*

Volume 23, Issue 5, 2023

Published on: 22 September, 2022

Page: [505 - 524] Pages: 20

DOI: 10.2174/1871520622666220823094350

Price: $65

Abstract

Amongst all types of cancers, breast cancer is recognized as the most common cancer and a principal cause of morbidity and mortality in women. Endoplasmic reticulum (ER) stress pathways are primarily activated in cancer cells and activate a signaling network called the unfolded protein response (UPR). Many tumors, by activating the UPR pathway, allow them to adapt and grow under stressful conditions. UPR is usually inactive in non-tumor cells, while it is active in tumor cells, so it is appropriate to develop new breast cancer therapies. A protein that regulates UPR is 78 KDa Glucose-Regulated Protein (GRP78). Usually, the GRP78 level in the cell is relatively low but increases significantly under stresses that affect the ER and calcium homeostasis, and increases resistance to chemotherapy. GRP78 drug suppressors could provide promising anticancer therapeutics. Therefore, understanding the molecular mechanism of GRP78 in cancer and identifying drugs that target GRP78 is essential for the treatment of breast cancer. In this review, we investigate the role of GRP78 in the pathogenesis of breast cancer.

Keywords: GRP78, mechanism, UPR pathway, breast cancer, anticancer, chemotherapy.

Graphical Abstract

[1]
Karimabad, M.N.; Mahmoodi, M.; Jafarzadeh, A.; Darekordi, A.; Hajizadeh, M.R.; Hassanshahi, G. Molecular targets, anti-cancer properties and potency of synthetic indole-3-carbinol derivatives. Mini Rev. Med. Chem., 2019, 19(7), 540-554.
[http://dx.doi.org/10.2174/1389557518666181116120145] [PMID: 30444199]
[2]
Rezai, M.; Mahmoodi, M.; Kaeidi, A.; Karimabad, M.N.; Khoshdel, A.; Hajizadeh, M.R. Effect of crocin carotenoid on BDNF and CREB gene expression in brain ventral tegmental area of morphine treated rats. Asian Pac. J. Trop. Biomed., 2018, 8(8), 387-393.
[http://dx.doi.org/10.4103/2221-1691.239426]
[3]
Moosavi, S.R.; Khorramdelazad, H.; Amin, M.; Fatahpoor, S.; Moogooei, M.; Karimabad, M.N.; Paghale, M.J.; Vakilian, A.; Hassanshahi, G. The SDF-1 3'A genetic variation is correlated with elevated intra-tumor tissue and circulating concentration of CXCL12 in glial tumors: A study on Iranian anaplastic astrocytoma and glioblastoma multiforme patients. J. Mol. Neurosci., 2013, 50(2), 298-304.
[http://dx.doi.org/10.1007/s12031-013-9954-2] [PMID: 23335032]
[4]
Sheikhrezaei, Z.; Heydari, P.; Farsinezhad, A.; Fatemi, A.; Khanamani Falahati-Pour, S.; Darakhshan, S.; Noroozi Karimabad, M.; Darekordi, A.; Khorramdelazad, H.; Hassanshahi, G. A new indole derivative decreased SALL4 gene expression in acute promyelocytic leukemia cell line (NB4). Iran. Biomed. J., 2018, 22(2), 99-106.
[PMID: 28800701]
[5]
Karimabad, M.N.; Mahmoodi, M.; Jafarzadeh, A.; Darehkordi, A.; Hajizadeh, M.R.; Khorramdelazad, H.; Sayadi, A.R.; Rahmani, F.; Hassanshahi, G. Evaluating of OCT-4 and NANOG was differentially regulated by a new derivative indole in leukemia cell line. Immunol. Lett., 2017, 190, 7-14.
[http://dx.doi.org/10.1016/j.imlet.2017.06.012] [PMID: 28690187]
[6]
Akbarpoor, V.; Karimabad, M.N.; Mahmoodi, M.; Mirzaei, M.R. The saffron effects on expression pattern of critical self-renewal genes in adenocarcinoma tumor cell line (AGS). Gene Rep., 2020, 19, 100629.
[http://dx.doi.org/10.1016/j.genrep.2020.100629]
[7]
Nelson, N.J. Migrant studies aid the search for factors linked to breast cancer risk. J. Natl. Cancer Inst., 2006, 98(7), 436-438.
[http://dx.doi.org/10.1093/jnci/djj147] [PMID: 16595777]
[8]
Dobroff, A.S.; D’Angelo, S.; Eckhardt, B.L.; Ferrara, F.; Staquicini, D.I.; Cardó-Vila, M.; Staquicini, F.I.; Nunes, D.N.; Kim, K.; Driessen, W.H.P.; Hajitou, A.; Lomo, L.C.; Barry, M.; Krishnamurthy, S.; Sahin, A.; Woodward, W.A.; Prossnitz, E.R.; Anderson, R.L.; Dias-Neto, E.; Brown-Glaberman, U.A.; Royce, M.E.; Ueno, N.T.; Cristofanilli, M.; Hortobagyi, G.N.; Marchiò, S.; Gelovani, J.G.; Sidman, R.L.; Arap, W.; Pasqualini, R. Towards a transcriptome-based theranostic platform for unfavorable breast cancer phenotypes. Proc. Natl. Acad. Sci. USA, 2016, 113(45), 12780-12785.
[http://dx.doi.org/10.1073/pnas.1615288113] [PMID: 27791177]
[9]
Harbeck, N.; Gnant, M. Breast cancer. Lancet, 2017, 389(10074), 1134-1150.
[http://dx.doi.org/10.1016/S0140-6736(16)31891-8] [PMID: 27865536]
[10]
Nini, A.; Hoffmann, M.J.; Lampignano, R.; Große Siemer, R.; van Dalum, G.; Szarvas, T.; Cotarelo, C.L.; Schulz, W.A.; Niederacher, D.; Neubauer, H.; Stoecklein, N.H.; Niegisch, G. Evaluation of HER2 expression in urothelial carcinoma cells as a biomarker for circulating tumor cells. Cytometry B Clin. Cytom., 2020, 98(4), 355-367.
[http://dx.doi.org/10.1002/cyto.b.21877] [PMID: 32212383]
[11]
Nagini, S. Breast cancer: Current molecular therapeutic targets and new players. Anticancer. Agents Med. Chem., 2017, 17(2), 152-163.
[http://dx.doi.org/10.2174/1871520616666160502122724] [PMID: 27137076]
[12]
Corazzari, M.; Gagliardi, M.; Fimia, G.M.; Piacentini, M. Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate. Front. Oncol., 2017, 7, 78.
[http://dx.doi.org/10.3389/fonc.2017.00078] [PMID: 28491820]
[13]
Šereš, M.; Pavlíková, L. Boháčová, V.; Kyca, T.; Borovská, I.; Lakatoš, B.; Breier, A.; Sulová, Z. Overexpression of GRP78/BiP in P-glycoprotein-positive L1210 cells is responsible for altered response of cells to tunicamycin as a stressor of the endoplasmic reticulum. Cells, 2020, 9(4), 890.
[http://dx.doi.org/10.3390/cells9040890] [PMID: 32268491]
[14]
Bailly, C.; Waring, M.J. Pharmacological effectors of GRP78 chaperone in cancers. Biochem. Pharmacol., 2019, 163, 269-278.
[http://dx.doi.org/10.1016/j.bcp.2019.02.038] [PMID: 30831072]
[15]
Adams, C.J.; Kopp, M.C.; Larburu, N.; Nowak, P.R.; Ali, M.M.U. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front. Mol. Biosci., 2019, 6, 11.
[http://dx.doi.org/10.3389/fmolb.2019.00011] [PMID: 30931312]
[16]
Lin, J.H.; Walter, P.; Yen, T.S. Endoplasmic reticulum stress in disease pathogenesis. Annu. Rev. Pathol., 2008, 3(1), 399-425.
[http://dx.doi.org/10.1146/annurev.pathmechdis.3.121806.151434] [PMID: 18039139]
[17]
Lebeaupin, C.; Yong, J.; Kaufman, R.J. The impact of the ER unfolded protein response on cancer initiation and progression: Therapeutic implications. Adv. Exp. Med. Biol., 2020, 1243, 113-131.
[http://dx.doi.org/10.1007/978-3-030-40204-4_8] [PMID: 32297215]
[18]
Torabizadeh, S.A.; Rezaeifar, M.; Jomehzadeh, A.; Nabizadeh Haghighi, F.; Ansari, M. Radioprotective potential of sulindac sulfide to prevent DNA damage due to ionizing radiation. Drug Des. Devel. Ther., 2019, 13, 4127-4134.
[http://dx.doi.org/10.2147/DDDT.S218022] [PMID: 31827319]
[19]
McGrath, E.P.; Logue, S.E.; Mnich, K.; Deegan, S.; Jäger, R.; Gorman, A.M.; Samali, A. The unfolded protein response in breast cancer. Cancers (Basel), 2018, 10(10), E344.
[http://dx.doi.org/10.3390/cancers10100344] [PMID: 30248920]
[20]
Sisinni, L.; Pietrafesa, M.; Lepore, S.; Maddalena, F.; Condelli, V.; Esposito, F.; Landriscina, M. Endoplasmic reticulum stress and unfolded protein response in breast cancer: The balance between apoptosis and autophagy and its role in drug resistance. Int. J. Mol. Sci., 2019, 20(4), E857.
[http://dx.doi.org/10.3390/ijms20040857] [PMID: 30781465]
[21]
Alqaraghuli, H.G.J.; Kashanian, S.; Rafipour, R. A review on targeting nanoparticles for breast cancer. Curr. Pharm. Biotechnol., 2019, 20(13), 1087-1107.
[http://dx.doi.org/10.2174/1389201020666190731130001] [PMID: 31364513]
[22]
Cerezo, M.; Rocchi, S. New anti-cancer molecules targeting HSPA5/BIP to induce endoplasmic reticulum stress, autophagy and apoptosis. Autophagy, 2017, 13(1), 216-217.
[http://dx.doi.org/10.1080/15548627.2016.1246107] [PMID: 27791469]
[23]
Zhang, L.H.; Zhang, X. Roles of GRP78 in physiology and cancer. J. Cell. Biochem., 2010, 110(6), 1299-1305.
[http://dx.doi.org/10.1002/jcb.22679] [PMID: 20506407]
[24]
Luo, S.; Mao, C.; Lee, B.; Lee, A.S. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol. Cell. Biol., 2006, 26(15), 5688-5697.
[http://dx.doi.org/10.1128/MCB.00779-06] [PMID: 16847323]
[25]
Casas, C. GRP78 at the centre of the stage in cancer and neuroprotection. Front. Neurosci., 2017, 11, 177.
[http://dx.doi.org/10.3389/fnins.2017.00177] [PMID: 28424579]
[26]
Lee, A.S. Glucose-regulated proteins in cancer: Molecular mechanisms and therapeutic potential. Nat. Rev. Cancer, 2014, 14(4), 263-276.
[http://dx.doi.org/10.1038/nrc3701] [PMID: 24658275]
[27]
Ray, R. Escherichia coli subtilase cleaves cell surface GRP78 preventing COOH-terminal domain signaling.In: Cell Surface GRP78, a New Paradigm in Signal Transduction Biology; Pizzo, S.V., Ed.; Academic Press, 2018, pp. 111-126.
[http://dx.doi.org/10.1016/B978-0-12-812351-5.00007-6]
[28]
Hayakawa, Y.; Yoshida, T.; Kimata, S.; Shin-Ya, K. Dunaimycin C3, a new GRP78 downregulator from Streptomyces sp. RAN389. J. Antibiot. (Tokyo), 2021, 74(1), 76-79.
[http://dx.doi.org/10.1038/s41429-020-0356-8] [PMID: 32737427]
[29]
Viswanath, A.N.I.; Lim, J.W.; Seo, S.H.; Lee, J.Y.; Lim, S.M.; Pae, A.N. GRP78-targeted in-silico virtual screening of novel anticancer agents. Chem. Biol. Drug Des., 2018, 92(2), 1555-1566.
[http://dx.doi.org/10.1111/cbdd.13322] [PMID: 29718569]
[30]
Hayakawa, Y.; Yaguchi, R.; Akimoto, M.; Kimata, S.; Shin-Ya, K. Neocurromycin A, a new GRP78 downregulator from Streptomyces sp. RAI364. J. Antibiot. (Tokyo), 2020, 73(11), 790-793.
[http://dx.doi.org/10.1038/s41429-020-0339-9] [PMID: 32572166]
[31]
Capriglione, F.; Maiuolo, J.; Celano, M.; Damante, G.; Russo, D.; Bulotta, S.; Maggisano, V. Quercetin protects human thyroid cells against cadmium toxicity. Int. J. Mol. Sci., 2021, 22(13), 6849.
[http://dx.doi.org/10.3390/ijms22136849] [PMID: 34202188]
[32]
Hazari, Y.M.; Habib, M.; Bashir, S.; Bashir, A.; Hilal, N.; Irfan, S.; Ul Haq, E.; Fazili, K.M. Natural osmolytes alleviate GRP78 and ATF-4 levels: Corroboration for potential modulators of unfolded protein response. Life Sci., 2016, 146, 148-153.
[http://dx.doi.org/10.1016/j.lfs.2016.01.002] [PMID: 26792058]
[33]
Wang, Q.; Wang, T.; Wang, Y.; Wang, W.; Wang, Y.; Hu, X.; Shao, S.; Zhang, J.; Suo, Z. VP-16 resistance in the NCI-H460 human lung cancer cell line is significantly associated with glucose-regulated protein78 (GRP78) induction. Anticancer Res., 2007, 27(4B), 2359-2364.
[PMID: 17695526]
[34]
Li, C.; Zhang, B.; Lv, W.; Lai, C.; Chen, Z.; Wang, R.; Long, X.; Feng, X. Triptolide inhibits cell growth and GRP78 protein expression but induces cell apoptosis in original and radioresistant NPC cells. Oncotarget, 2016, 7(31), 49588-49596.
[http://dx.doi.org/10.18632/oncotarget.10412] [PMID: 27391061]
[35]
La, X.; Zhang, L.; Li, Z.; Li, H.; Yang, Y. (-)-Epigallocatechin gallate (EGCG) enhances the sensitivity of colorectal cancer cells to 5-FU by inhibiting GRP78/NF-κB/miR-155-5p/MDR1 pathway. J. Agric. Food Chem., 2019, 67(9), 2510-2518.
[http://dx.doi.org/10.1021/acs.jafc.8b06665] [PMID: 30741544]
[36]
Choo, S.J.; Park, H.R.; Ryoo, I.J.; Kim, J.P.; Yun, B.S.; Kim, C.J.; Shin-ya, K.; Yoo, I.D. Deoxyverrucosidin, a novel GRP78/BiP down-regulator, produced by Penicillium sp. J. Antibiot. (Tokyo), 2005, 58(3), 210-213.
[http://dx.doi.org/10.1038/ja.2005.26] [PMID: 15895531]
[37]
Sakai, T.; Matsuo, Y.; Okuda, K.; Hirota, K.; Tsuji, M.; Hirayama, T.; Nagasawa, H. Development of antitumor biguanides targeting energy metabolism and stress responses in the tumor microenvironment. Sci. Rep., 2021, 11(1), 4852.
[http://dx.doi.org/10.1038/s41598-021-83708-w] [PMID: 33649449]
[38]
Hwang, J.H.; Kim, J.Y.; Cha, M.R.; Ryoo, I.J.; Choo, S.J.; Cho, S.M.; Tsukumo, Y.; Tomida, A.; Shin-Ya, K.; Hwang, Y.I.; Yoo, I.D.; Park, H.R. Etoposide-resistant HT-29 human colon carcinoma cells during glucose deprivation are sensitive to piericidin A, a GRP78 down-regulator. J. Cell. Physiol., 2008, 215(1), 243-250.
[http://dx.doi.org/10.1002/jcp.21308] [PMID: 17941090]
[39]
Park, H.R.; Ryoo, I.J.; Choo, S.J.; Hwang, J.H.; Kim, J.Y.; Cha, M.R.; Shin-Ya, K.; Yoo, I.D. Glucose-deprived HT-29 human colon carcinoma cells are sensitive to verrucosidin as a GRP78 down-regulator. Toxicology, 2007, 229(3), 253-261.
[http://dx.doi.org/10.1016/j.tox.2006.11.049] [PMID: 17161515]
[40]
Nayak, D.; Amin, H.; Rah, B.; Ur Rasool, R.; Sharma, D.; Gupta, A.P.; Kushwaha, M.; Mukherjee, D.; Goswami, A. A therapeutically relevant, 3,3′-diindolylmethane derivative NGD16 attenuates angiogenesis by targeting glucose regulated protein, 78kDa (GRP78). Chem. Biol. Interact., 2015, 232, 58-67.
[http://dx.doi.org/10.1016/j.cbi.2015.03.008] [PMID: 25794856]
[41]
Zhao, P.; Ueda, J.Y.; Kozone, I.; Chijiwa, S.; Takagi, M.; Kudo, F.; Nishiyama, M.; Shin-ya, K.; Kuzuyama, T. New glycosylated derivatives of versipelostatin, the GRP78/Bip molecular chaperone down-regulator, from Streptomyces versipellis 4083-SVS6. Org. Biomol. Chem., 2009, 7(7), 1454-1460.
[http://dx.doi.org/10.1039/b817312e] [PMID: 19300832]
[42]
Belfi, C.A.; Chatterjee, S.; Gosky, D.M.; Berger, S.J.; Berger, N.A. Increased sensitivity of human colon cancer cells to DNA cross-linking agents after GRP78 up-regulation. Biochem. Biophys. Res. Commun., 1999, 257(2), 361-368.
[http://dx.doi.org/10.1006/bbrc.1999.0472] [PMID: 10198218]
[43]
Tang, R.; Kimishima, A.; Setiawan, A.; Arai, M. Secalonic acid D as a selective cytotoxic substance on the cancer cells adapted to nutrient starvation. J. Nat. Med., 2020, 74(2), 495-500.
[http://dx.doi.org/10.1007/s11418-020-01390-0] [PMID: 32002808]
[44]
Yoon, S.B.; Park, H.R. Arctigenin inhibits etoposide resistance in HT-29 colon cancer cells during microenvironmental stress. J. Microbiol. Biotechnol., 2019, 29(4), 571-576.
[http://dx.doi.org/10.4014/jmb.1901.01061] [PMID: 30955254]
[45]
Ueda, J.Y.; Nagai, A.; Izumikawa, M.; Chijiwa, S.; Takagi, M.; Shin-ya, K. A novel antimycin-like compound, JBIR-06, from Streptomyces sp. ML55. J. Antibiot. (Tokyo), 2008, 61(4), 241-244.
[http://dx.doi.org/10.1038/ja.2008.35] [PMID: 18503204]
[46]
Yu, L.; Wang, Q.; Yeung, K.W.; Fong, W.P.; Lo, P.C. A biotinylated and endoplasmic reticulum-targeted glutathione-responsive Zinc(II) phthalocyanine for targeted photodynamic therapy. Chem. Asian J., 2018, 13(22), 3509-3517.
[http://dx.doi.org/10.1002/asia.201800852] [PMID: 29956487]
[47]
Li, P.; Ying, J.; Chang, Q.; Zhu, W.; Yang, G.; Xu, T.; Yi, H.; Pan, R.; Zhang, E.; Zeng, X.; Yan, C.; Bao, Q.; Li, S. Effects of phycoerythrin from Gracilaria lemaneiformis in proliferation and apoptosis of SW480 cells. Oncol. Rep., 2016, 36(6), 3536-3544.
[http://dx.doi.org/10.3892/or.2016.5162] [PMID: 27748904]
[48]
Kwak, A.W.; Cho, S.S.; Yoon, G.; Oh, H.N.; Lee, M.H.; Chae, J.I.; Shim, J.H.; Licochalcone, H. Licochalcone H synthesized by modifying structure of licochalcone C extracted from Glycyrrhiza inflata induces apoptosis of esophageal squamous cell carcinoma cells. Cell Biochem. Biophys., 2020, 78(1), 65-76.
[http://dx.doi.org/10.1007/s12013-019-00892-3] [PMID: 31707583]
[49]
Kwak, A.W.; Choi, J.S.; Liu, K.; Lee, M.H.; Jeon, Y.J.; Cho, S.S.; Yoon, G.; Oh, H.N.; Chae, J.I.; Shim, J.H. Licochalcone C induces cell cycle G1 arrest and apoptosis in human esophageal squamous carcinoma cells by activation of the ROS/MAPK signaling pathway. J. Chemother., 2020, 32(3), 132-143.
[http://dx.doi.org/10.1080/1120009X.2020.1721175] [PMID: 32009586]
[50]
Hendershot, L.M.; Valentine, V.A.; Lee, A.S.; Morris, S.W.; Shapiro, D.N. Localization of the gene encoding human BiP/GRP78, the endoplasmic reticulum cognate of the HSP70 family, to chromosome 9q34. Genomics, 1994, 20(2), 281-284.
[http://dx.doi.org/10.1006/geno.1994.1166] [PMID: 8020977]
[51]
Brocchieri, L.; Conway de Macario, E.; Macario, A.J. hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol. Biol., 2008, 8(1), 19.
[http://dx.doi.org/10.1186/1471-2148-8-19] [PMID: 18215318]
[52]
Ibrahim, I.M.; Abdelmalek, D.H.; Elfiky, A.A. GRP78: A cell’s response to stress. Life Sci., 2019, 226, 156-163.
[http://dx.doi.org/10.1016/j.lfs.2019.04.022] [PMID: 30978349]
[53]
Bartoszewska, S.; Collawn, J.F. Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cell. Mol. Biol. Lett., 2020, 25(1), 18.
[http://dx.doi.org/10.1186/s11658-020-00212-1] [PMID: 32190062]
[54]
Pakos-Zebrucka, K.; Koryga, I.; Mnich, K.; Ljujic, M.; Samali, A.; Gorman, A.M. The integrated stress response. EMBO Rep., 2016, 17(10), 1374-1395.
[http://dx.doi.org/10.15252/embr.201642195] [PMID: 27629041]
[55]
Hetz, C.; Mollereau, B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat. Rev. Neurosci., 2014, 15(4), 233-249.
[http://dx.doi.org/10.1038/nrn3689] [PMID: 24619348]
[56]
Dadey, D.Y.A.; Kapoor, V.; Khudanyan, A.; Thotala, D.; Hallahan, D.E. PERK regulates glioblastoma sensitivity to ER stress although promoting radiation resistance. Mol. Cancer Res., 2018, 16(10), 1447-1453.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0224] [PMID: 29991528]
[57]
Bruch, J.; Xu, H.; Rösler, T.W.; De Andrade, A.; Kuhn, P.H.; Lichtenthaler, S.F.; Arzberger, T.; Winklhofer, K.F.; Müller, U.; Höglinger, G.U. PERK activation mitigates tau pathology in vitro and in vivo. EMBO Mol. Med., 2017, 9(3), 371-384.
[http://dx.doi.org/10.15252/emmm.201606664] [PMID: 28148553]
[58]
Raiter, A.; Lipovetzki, J.; Lubin, I.; Yerushalmi, R. GRP78 expression in peripheral blood mononuclear cells is a new predictive marker for the benefit of taxanes in breast cancer neoadjuvant treatment. BMC Cancer, 2020, 20(1), 333.
[http://dx.doi.org/10.1186/s12885-020-06835-z] [PMID: 32306920]
[59]
Oakes, S.A. Endoplasmic reticulum stress signaling in cancer cells. Am. J. Pathol., 2020, 190(5), 934-946.
[http://dx.doi.org/10.1016/j.ajpath.2020.01.010] [PMID: 32112719]
[60]
Barua, D.; Gupta, A.; Gupta, S. Targeting the IRE1-XBP1 axis to overcome endocrine resistance in breast cancer: Opportunities and challenges. Cancer Lett., 2020, 486, 29-37.
[http://dx.doi.org/10.1016/j.canlet.2020.05.020] [PMID: 32446861]
[61]
Hetz, C. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol., 2012, 13(2), 89-102.
[http://dx.doi.org/10.1038/nrm3270] [PMID: 22251901]
[62]
Nardone, A.; De Angelis, C.; Trivedi, M.V.; Osborne, C.K.; Schiff, R. The changing role of ER in endocrine resistance. Breast, 2015, 24(Suppl. 2), S60-S66.
[http://dx.doi.org/10.1016/j.breast.2015.07.015] [PMID: 26271713]
[63]
Chen, L.; Li, Q.; She, T.; Li, H.; Yue, Y.; Gao, S.; Yan, T.; Liu, S.; Ma, J.; Wang, Y. IRE1α-XBP1 signaling pathway, a potential therapeutic target in multiple myeloma. Leuk. Res., 2016, 49, 7-12.
[http://dx.doi.org/10.1016/j.leukres.2016.07.006] [PMID: 27518808]
[64]
Jin, Y.; Saatcioglu, F. Targeting the unfolded protein response in hormone-regulated cancers. Trends Cancer, 2020, 6(2), 160-171.
[http://dx.doi.org/10.1016/j.trecan.2019.12.001] [PMID: 32061305]
[65]
Logue, S.E.; McGrath, E.P.; Cleary, P.; Greene, S.; Mnich, K.; Almanza, A.; Chevet, E.; Dwyer, R.M.; Oommen, A.; Legembre, P.; Godey, F.; Madden, E.C.; Leuzzi, B.; Obacz, J.; Zeng, Q.; Patterson, J.B.; Jäger, R.; Gorman, A.M.; Samali, A. Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nat. Commun., 2018, 9(1), 3267.
[http://dx.doi.org/10.1038/s41467-018-05763-8] [PMID: 30111846]
[66]
Vo, D.H.; Hartig, R.; Weinert, S.; Haybaeck, J.; Nass, N. G-Protein-Coupled Estrogen Receptor (GPER)-specific agonist G1 induces ER stress leading to cell death in MCF-7 cells. Biomolecules, 2019, 9(9), 503.
[http://dx.doi.org/10.3390/biom9090503] [PMID: 31540491]
[67]
Lhomond, S.; Avril, T.; Dejeans, N.; Voutetakis, K.; Doultsinos, D.; McMahon, M.; Pineau, R.; Obacz, J.; Papadodima, O.; Jouan, F.; Bourien, H.; Logotheti, M.; Jégou, G.; Pallares-Lupon, N.; Schmit, K.; Le Reste, P.J.; Etcheverry, A.; Mosser, J.; Barroso, K.; Vauléon, E.; Maurel, M.; Samali, A.; Patterson, J.B.; Pluquet, O.; Hetz, C.; Quillien, V.; Chatziioannou, A.; Chevet, E. Dual IRE1 RNase functions dictate glioblastoma development. EMBO Mol. Med., 2018, 10(3), e7929.
[http://dx.doi.org/10.15252/emmm.201707929] [PMID: 29311133]
[68]
Gong, J.; Wang, X.Z.; Wang, T.; Chen, J.J.; Xie, X.Y.; Hu, H.; Yu, F.; Liu, H.L.; Jiang, X.Y.; Fan, H.D. Molecular signal networks and regulating mechanisms of the unfolded protein response. J. Zhejiang Univ. Sci. B, 2017, 18(1), 1-14.
[http://dx.doi.org/10.1631/jzus.B1600043] [PMID: 28070992]
[69]
Yang, C.; Zhang, Z.; Zou, Y.; Gao, G.; Liu, L.; Xu, H.; Liu, F. Expression of glucose-regulated protein 78 as prognostic biomarkers for triple-negative breast cancer. Histol. Histopathol., 2019, 18185.
[PMID: 31745967]
[70]
Dauer, P.; Sharma, N.S.; Gupta, V.K.; Durden, B.; Hadad, R.; Banerjee, S.; Dudeja, V.; Saluja, A.; Banerjee, S. ER stress sensor, glucose regulatory protein 78 (GRP78) regulates redox status in pancreatic cancer thereby maintaining “stemness”. Cell Death Dis., 2019, 10(2), 132.
[http://dx.doi.org/10.1038/s41419-019-1408-5] [PMID: 30755605]
[71]
Chern, Y.J.; Wong, J.C.T.; Cheng, G.S.W.; Yu, A.; Yin, Y.; Schaeffer, D.F.; Kennecke, H.F.; Morin, G.; Tai, I.T. The interaction between SPARC and GRP78 interferes with ER stress signaling and potentiates apoptosis via PERK/eIF2α and IRE1α/XBP-1 in colorectal cancer. Cell Death Dis., 2019, 10(7), 504.
[http://dx.doi.org/10.1038/s41419-019-1687-x] [PMID: 31243264]
[72]
Li, J.; Lee, A.S. Stress induction of GRP78/BiP and its role in cancer. Curr. Mol. Med., 2006, 6(1), 45-54.
[http://dx.doi.org/10.2174/156652406775574523] [PMID: 16472112]
[73]
Fu, Y.; Li, J.; Lee, A.S. GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res., 2007, 67(8), 3734-3740.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4594] [PMID: 17440086]
[74]
Hori, O.; Matsumoto, M.; Kuwabara, K.; Maeda, Y.; Ueda, H.; Ohtsuki, T.; Kinoshita, T.; Ogawa, S.; Stern, D.M.; Kamada, T. Exposure of astrocytes to hypoxia/reoxygenation enhances expression of glucose-regulated protein 78 facilitating astrocyte release of the neuroprotective cytokine interleukin 6. J. Neurochem., 1996, 66(3), 973-979.
[http://dx.doi.org/10.1046/j.1471-4159.1996.66030973.x] [PMID: 8769856]
[75]
Gifford, J.B.; Hill, R. GRP78 influences chemoresistance and prognosis in cancer. Curr. Drug Targets, 2018, 19(6), 701-708.
[http://dx.doi.org/10.2174/1389450118666170615100918] [PMID: 28641518]
[76]
Wang, M.; Wey, S.; Zhang, Y.; Ye, R.; Lee, A.S. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid. Redox Signal., 2009, 11(9), 2307-2316.
[http://dx.doi.org/10.1089/ars.2009.2485] [PMID: 19309259]
[77]
Pizzo, S.V. An historical perspective: Cell surface GRP78, a new paradigm in signal transduction biology.In: Cell Surface GRP78, a New Paradigm in Signal Transduction Biology; Elsevier, 2018, pp. 1-7.
[http://dx.doi.org/10.1016/B978-0-12-812351-5.00001-5]
[78]
Gebremariam, T.; Liu, M.; Luo, G.; Bruno, V.; Phan, Q.T.; Waring, A.J.; Edwards, J.E., Jr; Filler, S.G.; Yeaman, M.R.; Ibrahim, A.S. CotH3 mediates fungal invasion of host cells during mucormycosis. J. Clin. Invest., 2014, 124(1), 237-250.
[http://dx.doi.org/10.1172/JCI71349] [PMID: 24355926]
[79]
Reid, S.P.; Shurtleff, A.C.; Costantino, J.A.; Tritsch, S.R.; Retterer, C.; Spurgers, K.B.; Bavari, S. HSPA5 is an essential host factor for Ebola virus infection. Antiviral Res., 2014, 109, 171-174.
[http://dx.doi.org/10.1016/j.antiviral.2014.07.004] [PMID: 25017472]
[80]
Chen, H.H.; Chen, C.C.; Lin, Y.S.; Chang, P.C.; Lu, Z.Y.; Lin, C.F.; Chen, C-L.; Chang, C.P. AR-12 suppresses dengue virus replication by down-regulation of PI3K/AKT and GRP78. Antiviral Res., 2017, 142, 158-168.
[http://dx.doi.org/10.1016/j.antiviral.2017.02.015] [PMID: 28238876]
[81]
Tsai, Y.L.; Lee, A.S. Cell surface GRP78: Anchoring and translocation mechanisms and therapeutic potential in cancer.In: Cell Surface GRP78, a New Paradigm in Signal Transduction Biology; Pizzo, S.V., Ed.; Academic Press, 2018, pp. 41-62.
[http://dx.doi.org/10.1016/B978-0-12-812351-5.00003-9]
[82]
Gopal, U.; Pizzo, S.V. The endoplasmic reticulum chaperone GRP78 also functions as a cell surface signaling receptor.In: Cell Surface GRP78, a New Paradigm in Signal Transduction Biology; Elsevier, 2018, pp. 9-40.
[http://dx.doi.org/10.1016/B978-0-12-812351-5.00002-7]
[83]
Ha, D.P.; Van Krieken, R.; Carlos, A.J.; Lee, A.S. The stress-inducible molecular chaperone GRP78 as potential therapeutic target for coronavirus infection. J. Infect. Dis., 2020, 81(3), 452-482.
[http://dx.doi.org/10.1016/j.jinf.2020.06.017] [PMID: 32535155]
[84]
Ibrahim, I.M.; Abdelmalek, D.H.; Elshahat, M.E.; Elfiky, A.A. COVID-19 spike-host cell receptor GRP78 binding site prediction. J. Infect. Dis., 2020, 80(5), 554-562.
[http://dx.doi.org/10.1016/j.jinf.2020.02.026] [PMID: 32169481]
[85]
Shin, J.; Toyoda, S.; Nishitani, S.; Fukuhara, A.; Kita, S.; Otsuki, M.; Shimomura, I. Possible involvement of adipose tissue in patients with older age, obesity, and diabetes with SARS-CoV-2 infection (COVID-19) via GRP78 (BIP/HSPA5): Significance of hyperinsulinemia management in COVID-19. Diabetes, 2021, 70(12), 2745-2755.
[http://dx.doi.org/10.2337/db20-1094] [PMID: 34615619]
[86]
Carlos, A.J.; Ha, D.P.; Yeh, D.W.; Van Krieken, R.; Tseng, C.C.; Zhang, P.; Gill, P.; Machida, K.; Lee, A.S. The chaperone GRP78 is a host auxiliary factor for SARS-CoV-2 and GRP78 depleting antibody blocks viral entry and infection. J. Biol. Chem., 2021, 296, 100759.
[http://dx.doi.org/10.1016/j.jbc.2021.100759] [PMID: 33965375]
[87]
Sato, M.; Yao, V.J.; Arap, W.; Pasqualini, R. GRP78 signaling hub a receptor for targeted tumor therapy. Adv. Genet., 2010, 69, 97-114.
[http://dx.doi.org/10.1016/S0065-2660(10)69006-2] [PMID: 20807604]
[88]
Pandey, V.K.; Mathur, A.; Kakkar, P. Emerging role of Unfolded Protein Response (UPR) mediated proteotoxic apoptosis in diabetes. Life Sci., 2019, 216, 246-258.
[http://dx.doi.org/10.1016/j.lfs.2018.11.041] [PMID: 30471281]
[89]
Zhu, G.; Lee, A.S. Role of the unfolded protein response, GRP78 and GRP94 in organ homeostasis. J. Cell. Physiol., 2015, 230(7), 1413-1420.
[http://dx.doi.org/10.1002/jcp.24923] [PMID: 25546813]
[90]
Spike, B.T.; Kelber, J.A.; Booker, E.; Kalathur, M.; Rodewald, R.; Lipianskaya, J.; La, J.; He, M.; Wright, T.; Klemke, R.; Wahl, G.M.; Gray, P.C. CRIPTO/GRP78 signaling maintains fetal and adult mammary stem cells ex vivo. Stem Cell Reports, 2014, 2(4), 427-439.
[http://dx.doi.org/10.1016/j.stemcr.2014.02.010] [PMID: 24749068]
[91]
Tsai, Y.L.; Ha, D.P.; Zhao, H.; Carlos, A.J.; Wei, S.; Pun, T.K.; Wu, K.; Zandi, E.; Kelly, K.; Lee, A.S. Endoplasmic reticulum stress activates SRC, relocating chaperones to the cell surface where GRP78/CD109 blocks TGF-β signaling. Proc. Natl. Acad. Sci. USA, 2018, 115(18), E4245-E4254.
[http://dx.doi.org/10.1073/pnas.1714866115] [PMID: 29654145]
[92]
Liu, R.; Li, X.; Gao, W.; Zhou, Y.; Wey, S.; Mitra, S.K.; Krasnoperov, V.; Dong, D.; Liu, S.; Li, D.; Zhu, G.; Louie, S.; Conti, P.S.; Li, Z.; Lee, A.S.; Gill, P.S. Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signaling, tumor growth, and metastasis. Clin. Cancer Res., 2013, 19(24), 6802-6811.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1106] [PMID: 24048331]
[93]
Yin, Y.; Chen, C.; Chen, J.; Zhan, R.; Zhang, Q.; Xu, X.; Li, D.; Li, M. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR. Cell. Signal., 2017, 35, 154-162.
[http://dx.doi.org/10.1016/j.cellsig.2017.04.003] [PMID: 28389416]
[94]
Ogawa, H.; Kaira, K.; Takahashi, K.; Shimizu, A.; Altan, B.; Yoshinari, D.; Asao, T.; Oyama, T. Prognostic role of BiP/GRP78 expression as ER stress in patients with gastric adenocarcinoma. Cancer Biomark., 2017, 20(3), 273-281.
[http://dx.doi.org/10.3233/CBM-170062] [PMID: 28854502]
[95]
Teng, Y.; Ai, Z.; Wang, Y.; Wang, J.; Luo, L. Proteomic identification of PKM2 and HSPA5 as potential biomarkers for predicting high-risk endometrial carcinoma. J. Obstet. Gynaecol. Res., 2013, 39(1), 317-325.
[http://dx.doi.org/10.1111/j.1447-0756.2012.01970.x] [PMID: 22889453]
[96]
Wang, Q.; He, Z.; Zhang, J.; Wang, Y.; Wang, T.; Tong, S.; Wang, L.; Wang, S.; Chen, Y. Overexpression of endoplasmic reticulum molecular chaperone GRP94 and GRP78 in human lung cancer tissues and its significance. Cancer Detect. Prev., 2005, 29(6), 544-551.
[http://dx.doi.org/10.1016/j.cdp.2005.09.010] [PMID: 16297569]
[97]
Zoni, E.; Chen, L.; Karkampouna, S.; Granchi, Z.; Verhoef, E.I.; La Manna, F.; Kelber, J.; Pelger, R.C.M.; Henry, M.D.; Snaar-Jagalska, E.; van Leenders, G.J.L.H.; Beimers, L.; Kloen, P.; Gray, P.C.; van der Pluijm, G.; Kruithof-de Julio, M. CRIPTO and its signaling partner GRP78 drive the metastatic phenotype in human osteotropic prostate cancer. Oncogene, 2017, 36(33), 4739-4749.
[http://dx.doi.org/10.1038/onc.2017.87] [PMID: 28394345]
[98]
López-Muñoz, E.; Corres-Molina, M.; García-Hernández, N. Correlation of the protein expression of GRP78 and BIK/NBK with prognostic markers in patients with breast cancer and neoadjuvant chemotherapy. J. Obstet. Gynaecol., 2020, 40(3), 419-426.
[http://dx.doi.org/10.1080/01443615.2019.1652886] [PMID: 31635499]
[99]
Tan, J.; Li, Z.; Lee, P.L.; Guan, P.; Aau, M.Y.; Lee, S.T.; Feng, M.; Lim, C.Z.; Lee, E.Y.J.; Wee, Z.N.; Lim, Y.C.; Karuturi, R.K.; Yu, Q. PDK1 signaling toward PLK1-MYC activation confers oncogenic transformation, tumor-initiating cell activation, and resistance to mTOR-targeted therapy. Cancer Discov., 2013, 3(10), 1156-1171.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0595] [PMID: 23887393]
[100]
Gopal, U.; Gonzalez-Gronow, M.; Pizzo, S.V. Activated α2-macroglobulin regulates transcriptional activation of c-MYC target genes through cell surface GRP78 protein. J. Biol. Chem., 2016, 291(20), 10904-10915.
[http://dx.doi.org/10.1074/jbc.M115.708131] [PMID: 27002159]
[101]
Miao, Y.R.; Eckhardt, B.L.; Cao, Y.; Pasqualini, R.; Argani, P.; Arap, W.; Ramsay, R.G.; Anderson, R.L. Inhibition of established micrometastases by targeted drug delivery via cell surface-associated GRP78. Clin. Cancer Res., 2013, 19(8), 2107-2116.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2991] [PMID: 23470966]
[102]
Cook, K.L.; Soto-Pantoja, D.R.; Clarke, P.A.; Cruz, M.I.; Zwart, A.; Wärri, A.; Hilakivi-Clarke, L.; Roberts, D.D.; Clarke, R. Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer. Cancer Res., 2016, 76(19), 5657-5670.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2616] [PMID: 27698188]
[103]
Zheng, Y.; Liu, P.; Wang, N.; Wang, S.; Yang, B.; Li, M.; Chen, J.; Situ, H.; Xie, M.; Lin, Y.; Wang, Z. Betulinic acid suppresses breast cancer metastasis by targeting GRP78-mediated glycolysis and ER stress apoptotic pathway. Oxid. Med. Cell. Longev., 2019, 2019, 8781690.
[http://dx.doi.org/10.1155/2019/8781690] [PMID: 31531187]
[104]
Roller, C.; Maddalo, D. The molecular chaperone GRP78/BiP in the development of chemoresistance: Mechanism and possible treatment. Front. Pharmacol., 2013, 4, 10.
[http://dx.doi.org/10.3389/fphar.2013.00010] [PMID: 23403503]
[105]
Pujari, R.; Jose, J.; Bhavnani, V.; Kumar, N.; Shastry, P.; Pal, J. K. Tamoxifen-induced cytotoxicity in breast cancer cells is mediated by glucose-regulated protein 78 (GRP78) via AKT (Thr308) regulation. Int. J. Biochem. Cell Biol., 2016, 77, (Pt A), 57-67.
[106]
Misra, U.K.; Mowery, Y.; Kaczowka, S.; Pizzo, S.V. Ligation of cancer cell surface GRP78 with antibodies directed against its COOH-terminal domain up-regulates p53 activity and promotes apoptosis. Mol. Cancer Ther., 2009, 8(5), 1350-1362.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0990] [PMID: 19417154]
[107]
Zhang, Y.; Tseng, C.C.; Tsai, Y.L.; Fu, X.; Schiff, R.; Lee, A.S. Cancer cells resistant to therapy promote cell surface relocalization of GRP78 which complexes with PI3K and enhances PI(3,4,5)P3 production. PLoS One, 2013, 8(11), e80071.
[http://dx.doi.org/10.1371/journal.pone.0080071] [PMID: 24244613]
[108]
Tseng, C.C.; Zhang, P.; Lee, A.S. The COOH-terminal proline-rich region of GRP78 is a key regulator of its cell surface expression and viability of tamoxifen-resistant breast cancer cells. Neoplasia, 2019, 21(8), 837-848.
[http://dx.doi.org/10.1016/j.neo.2019.05.008] [PMID: 31306849]
[109]
Tseng, C.C.; Stanciauskas, R.; Zhang, P.; Woo, D.; Wu, K.; Kelly, K.; Gill, P.S.; Yu, M.; Pinaud, F.; Lee, A.S. GRP78 regulates CD44v membrane homeostasis and cell spreading in tamoxifen-resistant breast cancer. Life Sci. Alliance, 2019, 2(4), e201900377.
[http://dx.doi.org/10.26508/lsa.201900377] [PMID: 31416894]
[110]
Yao, X.; Liu, H.; Zhang, X.; Zhang, L.; Li, X.; Wang, C.; Sun, S. Cell surface GRP78 accelerated breast cancer cell proliferation and migration by activating STAT3. PLoS One, 2015, 10(5), e0125634.
[http://dx.doi.org/10.1371/journal.pone.0125634] [PMID: 25973748]
[111]
Lager, T.W.; Conner, C.; Keating, C.R.; Warshaw, J.N.; Panopoulos, A.D. Cell surface GRP78 and Dermcidin cooperate to regulate breast cancer cell migration through Wnt signaling. Oncogene, 2021, 40(23), 4050-4059.
[http://dx.doi.org/10.1038/s41388-021-01821-6] [PMID: 33981001]
[112]
Tang, H.; Peng, F.; Huang, X.; Xie, X.; Chen, B.; Shen, J.; Gao, F.; You, J.; Xie, X.; Chen, J. Neoisoliquiritigenin inhibits tumor progression by targeting GRP78-β- catenin signaling in breast cancer. Curr. Cancer Drug Targets, 2018, 18(4), 390-399.
[http://dx.doi.org/10.2174/1568009617666170914155355] [PMID: 28914191]
[113]
Misra, U.K.; Pizzo, S.V. Ligation of cell surface GRP78 with antibody directed against the COOH-terminal domain of GRP78 suppresses Ras/MAPK and PI 3-kinase/AKT signaling while promoting caspase activation in human prostate cancer cells. Cancer Biol. Ther., 2010, 9(2), 142-152.
[http://dx.doi.org/10.4161/cbt.9.2.10422] [PMID: 20368692]
[114]
Kelber, J.A.; Panopoulos, A.D.; Shani, G.; Booker, E.C.; Belmonte, J.C.; Vale, W.W.; Gray, P.C. Blockade of Cripto binding to cell surface GRP78 inhibits oncogenic Cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene, 2009, 28(24), 2324-2336.
[http://dx.doi.org/10.1038/onc.2009.97] [PMID: 19421146]
[115]
Misra, U.K.; Pizzo, S.V. Receptor-recognized α₂-macroglobulin binds to cell surface-associated GRP78 and activates mTORC1 and mTORC2 signaling in prostate cancer cells. PLoS One, 2012, 7(12), e51735.
[http://dx.doi.org/10.1371/journal.pone.0051735] [PMID: 23272152]
[116]
Gray, P.C.; Vale, W. Cripto/GRP78 modulation of the TGF-β pathway in development and oncogenesis. FEBS Lett., 2012, 586(14), 1836-1845.
[http://dx.doi.org/10.1016/j.febslet.2012.01.051] [PMID: 22306319]
[117]
Reeves, P.M.; Abbaslou, M.A.; Kools, F.R.W.; Vutipongsatorn, K.; Tong, X.; Gavegnano, C.; Schinazi, R.F.; Poznansky, M.C. Ruxolitinib sensitizes ovarian cancer to reduced dose Taxol, limits tumor growth and improves survival in immune competent mice. Oncotarget, 2017, 8(55), 94040-94053.
[http://dx.doi.org/10.18632/oncotarget.21541] [PMID: 29212208]
[118]
Hu, H.; Wang, C.; Jin, Y.; Meng, Q.; Liu, Q.; Liu, Z.; Liu, K.; Liu, X.; Sun, H. Catalpol inhibits homocysteine-induced oxidation and inflammation via inhibiting Nox4/NF-κB and GRP78/PERK pathways in human aorta endothelial cells. Inflammation, 2019, 42(1), 64-80.
[http://dx.doi.org/10.1007/s10753-018-0873-9] [PMID: 30315526]
[119]
Kureel, J.; John, A.A.; Raghuvanshi, A.; Awasthi, P.; Goel, A.; Singh, D. Identification of GRP78 as a molecular target of medicarpin in osteoblast cells by proteomics. Mol. Cell. Biochem., 2016, 418(1-2), 71-80.
[http://dx.doi.org/10.1007/s11010-016-2734-x] [PMID: 27316719]
[120]
Yang, J.; Chen, H.; Wang, Q.; Deng, S.; Huang, M.; Ma, X.; Song, P.; Du, J.; Huang, Y.; Wen, Y.; Ren, Y.; Yang, X. Inhibitory effect of kurarinone on growth of human non-small cell lung cancer: An experimental study both in vitro and in vivo studies. Front. Pharmacol., 2018, 9, 252.
[http://dx.doi.org/10.3389/fphar.2018.00252] [PMID: 29628889]
[121]
Abdullah, A.; Ravanan, P. Kaempferol mitigates endoplasmic reticulum stress induced cell death by targeting caspase 3/7. Sci. Rep., 2018, 8(1), 2189.
[http://dx.doi.org/10.1038/s41598-018-20499-7] [PMID: 29391535]
[122]
Bader, S. Targeting Cell Surface GRP78 for Specific Nanoparticle Mediated Drug Delivery to Breast Cancer Thesis: La Trobe University Australia, 2020.
[123]
Nami, B.; Ghasemi-Dizgah, A.; Vaseghi, A. Overexpression of molecular chaperons GRP78 and GRP94 in CD44(hi)/CD24(lo) breast cancer stem cells. Bioimpacts, 2016, 6(2), 105-110.
[http://dx.doi.org/10.15171/bi.2016.15] [PMID: 27525228]
[124]
Xie, J.; Tao, Z.H.; Zhao, J.; Li, T.; Wu, Z.H.; Zhang, J.F.; Zhang, J.; Hu, X.C. Glucose regulated protein 78 (GRP78) inhibits apoptosis and attentinutes chemosensitivity of gemcitabine in breast cancer cell via AKT/mitochondrial apoptotic pathway. Biochem. Biophys. Res. Commun., 2016, 474(3), 612-619.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.002] [PMID: 27012209]
[125]
Grkovic, S.; O’Reilly, V.C.; Han, S.; Hong, M.; Baxter, R.C.; Firth, S.M. IGFBP-3 binds GRP78, stimulates autophagy and promotes the survival of breast cancer cells exposed to adverse microenvironments. Oncogene, 2013, 32(19), 2412-2420.
[http://dx.doi.org/10.1038/onc.2012.264] [PMID: 22751133]
[126]
Wu, J.; Liu, P.; Tang, H.; Shuang, Z.; Qiu, Q.; Zhang, L.; Song, C.; Liu, L.; Xie, X.; Xiao, X. FOXP2 promotes tumor proliferation and metastasis by targeting GRP78 in triple-negative breast cancer. Curr. Cancer Drug Targets, 2018, 18(4), 382-389.
[http://dx.doi.org/10.2174/1568009618666180131115356] [PMID: 29484998]
[127]
López-Muñoz, E.; Hernández-Zarco, A.; García-Hernández, N.; Alvarado-Cabrero, I.; Zarco-Espinosa, G.; Salamanca-Gómez, F.; Arenas-Aranda, D. BIK/NBK gene as potential marker of prognostic and therapeutic target in breast cancer patients. Clin. Transl. Oncol., 2012, 14(8), 586-591.
[http://dx.doi.org/10.1007/s12094-012-0845-8] [PMID: 22855140]
[128]
Ramesh, P.; Medema, J.P. BCL-2 family deregulation in colorectal cancer: Potential for BH3 mimetics in therapy. Proteins, 2020, 18(22), 23.
[129]
Kuang, X.Y.; Jiang, H.S.; Li, K.; Zheng, Y.Z.; Liu, Y.R.; Qiao, F.; Li, S.; Hu, X.; Shao, Z.M. The phosphorylation-specific association of STMN1 with GRP78 promotes breast cancer metastasis. Cancer Lett., 2016, 377(1), 87-96.
[http://dx.doi.org/10.1016/j.canlet.2016.04.035] [PMID: 27130664]
[130]
Chang, Y.W.; Tseng, C.F.; Wang, M.Y.; Chang, W.C.; Lee, C.C.; Chen, L.T.; Hung, M.C.; Su, J.L. Correction: Deacetylation of HSPA5 by HDAC6 leads to GP78-mediated HSPA5 ubiquitination at K447 and suppresses metastasis of breast cancer. Oncogene, 2020, 39(4), 946-949.
[http://dx.doi.org/10.1038/s41388-019-0981-5] [PMID: 31537904]
[131]
Zhang, L.; Wang, S. Wangtao; Wang, Y.; Wang, J.; Jiang, L.; Li, S.; Hu, X.; Wang, Q. Upregulation of GRP78 and GRP94 and its function in chemotherapy resistance to VP-16 in human lung cancer cell line SK-MES-1. Cancer Invest., 2009, 27(4), 453-458.
[http://dx.doi.org/10.1080/07357900802527239] [PMID: 19212831]
[132]
Flocke, L.S.; Trondl, R.; Jakupec, M.A.; Keppler, B.K. Molecular mode of action of NKP-1339 - a clinically investigated ruthenium-based drug - involves ER- and ROS-related effects in colon carcinoma cell lines. Invest. New Drugs, 2016, 34(3), 261-268.
[http://dx.doi.org/10.1007/s10637-016-0337-8] [PMID: 26988975]
[133]
Gifford, J.B.; Huang, W.; Zeleniak, A.E.; Hindoyan, A.; Wu, H.; Donahue, T.R.; Hill, R. Expression of GRP78, master regulator of the unfolded protein response, increases chemoresistance in pancreatic ductal adenocarcinoma. Mol. Cancer Ther., 2016, 15(5), 1043-1052.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0774] [PMID: 26939701]
[134]
Kosakowska-Cholody, T.; Lin, J.; Srideshikan, S.M.; Scheffer, L.; Tarasova, N.I.; Acharya, J.K. HKH40A downregulates GRP78/BiP expression in cancer cells. Cell Death Dis., 2014, 5(5), e1240-e1240.
[http://dx.doi.org/10.1038/cddis.2014.203] [PMID: 24853418]
[135]
Sun, C.; Han, C.; Jiang, Y.; Han, N.; Zhang, M.; Li, G.; Qiao, Q. Inhibition of GRP78 abrogates radioresistance in oropharyngeal carcinoma cells after EGFR inhibition by cetuximab. PLoS One, 2017, 12(12), e0188932.
[http://dx.doi.org/10.1371/journal.pone.0188932] [PMID: 29232380]
[136]
Xi, J.; Chen, Y.; Huang, S.; Cui, F.; Wang, X. Suppression of GRP78 sensitizes human colorectal cancer cells to oxaliplatin by downregulation of CD24. Oncol. Lett., 2018, 15(6), 9861-9867.
[http://dx.doi.org/10.3892/ol.2018.8549] [PMID: 29805687]
[137]
Xu, W.; Liu, L.; Brown, N.J.; Christian, S.; Hornby, D. Quantum dot-conjugated anti-GRP78 scFv inhibits cancer growth in mice. Molecules, 2012, 17(1), 796-808.
[http://dx.doi.org/10.3390/molecules17010796] [PMID: 22249409]
[138]
Cai, Y.; Zheng, Y.; Gu, J.; Wang, S.; Wang, N.; Yang, B.; Zhang, F.; Wang, D.; Fu, W.; Wang, Z. Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78. Cell Death Dis., 2018, 9(6), 636.
[http://dx.doi.org/10.1038/s41419-018-0669-8] [PMID: 29802332]
[139]
Hou, Z.S.; Ulloa-Aguirre, A.; Tao, Y.X. Pharmacoperone drugs: Targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders. Expert Rev. Clin. Pharmacol., 2018, 11(6), 611-624.
[http://dx.doi.org/10.1080/17512433.2018.1480367] [PMID: 29851355]
[140]
Chen, Y.; Murillo-Solano, C.; Kirkpatrick, M.G.; Antoshchenko, T.; Park, H.W.; Pizarro, J.C. Repurposing drugs to target the malaria parasite unfolding protein response. Sci. Rep., 2018, 8(1), 10333.
[http://dx.doi.org/10.1038/s41598-018-28608-2] [PMID: 29985421]
[141]
Lewy, T.G.; Grabowski, J.M.; Bloom, M.E. BiP: Master regulator of the unfolded protein response and crucial factor in flavivirus biology. Yale J. Biol. Med., 2017, 90(2), 291-300.
[PMID: 28656015]
[142]
Kharenko, O.A.; Polichuk, D.; Nelson, K.M.; Abrams, S.R.; Loewen, M.C. Identification and characterization of interactions between abscisic acid and human heat shock protein 70 family members. J. Biochem., 2013, 154(4), 383-391.
[http://dx.doi.org/10.1093/jb/mvt067] [PMID: 23975754]
[143]
Cheng, C.; Dong, W. Aloe-emodin induces endoplasmic reticulum stress-dependent apoptosis in colorectal cancer cells. Med. Sci. Monit., 2018, 24, 6331-6339.
[http://dx.doi.org/10.12659/MSM.908400] [PMID: 30199885]
[144]
Zhou, Y.; Shu, F.; Liang, X.; Chang, H.; Shi, L.; Peng, X.; Zhu, J.; Mi, M. Ampelopsin induces cell growth inhibition and apoptosis in breast cancer cells through ROS generation and endoplasmic reticulum stress pathway. PLoS One, 2014, 9(2), e89021.
[http://dx.doi.org/10.1371/journal.pone.0089021] [PMID: 24551210]
[145]
Zhao, Q.; Zhang, X.; Cai, H.; Zhang, P.; Kong, D.; Ge, X.; Du, M.; Liang, R.; Dong, W. Anticancer effects of plant derived Anacardic acid on human breast cancer MDA-MB-231 cells. Am. J. Transl. Res., 2018, 10(8), 2424-2434.
[PMID: 30210681]
[146]
Jiang, J.M.; Wang, L.; Gu, H.F.; Wu, K.; Xiao, F.; Chen, Y.; Guo, R.M.; Tang, X.Q. Arecoline induces neurotoxicity to PC12 cells: Involvement in ER stress and disturbance of endogenous H2S generation. Neurochem. Res., 2016, 41(8), 2140-2148.
[http://dx.doi.org/10.1007/s11064-016-1929-6] [PMID: 27255601]
[147]
Namba, T.; Kodama, R. Avarol induces apoptosis in pancreatic ductal adenocarcinoma cells by activating PERK-eIF2α-CHOP signaling. Mar. Drugs, 2015, 13(4), 2376-2389.
[http://dx.doi.org/10.3390/md13042376] [PMID: 25894488]
[148]
Yang, H.; Fan, S.; An, Y.; Wang, X.; Pan, Y.; Xiaokaiti, Y.; Duan, J.; Li, X.; Tie, L.; Ye, M.; Li, X. Bisdemethoxycurcumin exerts pro-apoptotic effects in human pancreatic adenocarcinoma cells through mitochondrial dysfunction and a GRP78-dependent pathway. Oncotarget, 2016, 7(50), 83641-83656.
[http://dx.doi.org/10.18632/oncotarget.13272] [PMID: 27845899]
[149]
Yang, T.Y.; Wu, M.L.; Chang, C.I.; Liu, C.I.; Cheng, T.C.; Wu, Y.J. Bornyl cis-4-hydroxycinnamate suppresses cell metastasis of melanoma through FAK/PI3K/Akt/mTOR and MAPK signaling pathways and inhibition of the epithelial-to-mesenchymal transition. Int. J. Mol. Sci., 2018, 19(8), 2152.
[http://dx.doi.org/10.3390/ijms19082152] [PMID: 30042328]
[150]
Su, E.Y.; Chu, Y.L.; Chueh, F.S.; Ma, Y.S.; Peng, S.F.; Huang, W.W.; Liao, C.L.; Huang, A.C.; Chung, J.G. Bufalin induces apoptotic cell death in human nasopharyngeal carcinoma cells through mitochondrial ROS and TRAIL pathways. Am. J. Chin. Med., 2019, 47(1), 237-257.
[http://dx.doi.org/10.1142/S0192415X19500125] [PMID: 30612454]
[151]
Liu, F.; Duan, C.; Zhang, J.; Li, X. Cantharidin-induced LO2 cell autophagy and apoptosis via endoplasmic reticulum stress pathway in vitro. J. Appl. Toxicol., 2020, 40(12), 1622-1635.
[http://dx.doi.org/10.1002/jat.4022] [PMID: 32638414]
[152]
Sun, X.; Huo, X.; Luo, T.; Li, M.; Yin, Y.; Jiang, Y. The anticancer flavonoid chrysin induces the unfolded protein response in hepatoma cells. J. Cell. Mol. Med., 2011, 15(11), 2389-2398.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01244.x] [PMID: 21199322]
[153]
Shin, D.H.; Leem, D.G.; Shin, J.S.; Kim, J.I.; Kim, K.T.; Choi, S.Y.; Lee, M.H.; Choi, J.H.; Lee, K.T. Compound K induced apoptosis via endoplasmic reticulum Ca2+ release through ryanodine receptor in human lung cancer cells. J. Ginseng Res., 2018, 42(2), 165-174.
[http://dx.doi.org/10.1016/j.jgr.2017.01.015] [PMID: 29719463]
[154]
Venkatesan, T.; Jeong, M.J.; Choi, Y.W.; Park, E.J.; El-Desouky, S.K.; Kim, Y.K. Deoxyrhapontigenin, a natural stilbene derivative isolated from Rheum undulatum L. induces endoplasmic reticulum stress-mediated apoptosis in human breast cancer cells. Integr. Cancer Ther., 2016, 15(4), NP44-NP52.
[http://dx.doi.org/10.1177/1534735416636958] [PMID: 27151591]
[155]
Ma, W.W.; Zhao, L.; Yuan, L.H.; Yu, H.L.; Wang, H.; Gong, X.Y.; Wei, F.; Xiao, R. Elaidic acid induces cell apoptosis through induction of ROS accumulation and endoplasmic reticulum stress in SH SY5Y cells. Mol. Med. Rep., 2017, 16(6), 9337-9346.
[http://dx.doi.org/10.3892/mmr.2017.7830] [PMID: 29152653]
[156]
Zhao, J.; Li, Y.; Gao, J.; De, Y. Hesperidin inhibits ovarian cancer cell viability through endoplasmic reticulum stress signaling pathways. Oncol. Lett., 2017, 14(5), 5569-5574.
[http://dx.doi.org/10.3892/ol.2017.6873] [PMID: 29142606]
[157]
Elghoroury, E.A.; Abdelghaffar, E.E.; Nasr, S.A.; Hussein, M.A.; Nazim, W.S. Evaluation of homocystein and micro RNA as diagnostic markers for hepatocellular carcinoma in virus hepatitis C Egyptian patients. Biomed. Pharmacol. J., 2020, 13(3), 1145-1155.
[http://dx.doi.org/10.13005/bpj/1982]
[158]
Wang, F.Y.; Jia, J.; Song, H.H.; Jia, C.M.; Chen, C.B.; Ma, J. Icariin protects vascular endothelial cells from oxidative stress through inhibiting endoplasmic reticulum stress. J. Integr. Med., 2019, 17(3), 205-212.
[http://dx.doi.org/10.1016/j.joim.2019.01.011] [PMID: 30890424]
[159]
Florean, C.; Schnekenburger, M.; Lee, J.Y.; Kim, K.R.; Mazumder, A.; Song, S.; Kim, J.M.; Grandjenette, C.; Kim, J.G.; Yoon, A.Y.; Dicato, M.; Kim, K.W.; Christov, C.; Han, B.W.; Proksch, P.; Diederich, M. Discovery and characterization of Isofistularin-3, a marine brominated alkaloid, as a new DNA demethylating agent inducing cell cycle arrest and sensitization to TRAIL in cancer cells. Oncotarget, 2016, 7(17), 24027-24049.
[http://dx.doi.org/10.18632/oncotarget.8210] [PMID: 27006469]
[160]
Hu, L.W.; Yen, J.H.; Shen, Y.T.; Wu, K.Y.; Wu, M.J. Luteolin modulates 6-hydroxydopamine-induced transcriptional changes of stress response pathways in PC12 cells. PLoS One, 2014, 9(5), e97880.
[http://dx.doi.org/10.1371/journal.pone.0097880] [PMID: 24846311]
[161]
Zhang, T.W.; Xing, L.; Tang, J.L.; Lu, J.X.; Liu, C.X. Marchantin M induces apoptosis of prostate cancer cells through endoplasmic reticulum stress. Med. Sci. Monit., 2015, 21, 3570-3576.
[http://dx.doi.org/10.12659/MSM.894476] [PMID: 26581488]
[162]
Zhou, L.; Jiang, L.; Xu, M.; Liu, Q.; Gao, N.; Li, P.; Liu, E.H. Miltirone exhibits antileukemic activity by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction pathways. Sci. Rep., 2016, 6(1), 20585.
[http://dx.doi.org/10.1038/srep20585] [PMID: 26848099]
[163]
Yamagishi, N.; Yamamoto, Y.; Noda, C.; Hatayama, T. Naringenin inhibits the aggregation of expanded polyglutamine tract-containing protein through the induction of endoplasmic reticulum chaperone GRP78. Biol. Pharm. Bull., 2012, 35(10), 1836-1840.
[http://dx.doi.org/10.1248/bpb.b12-00451] [PMID: 23037174]
[164]
He, J.; Du, L.; Bao, M.; Zhang, B.; Qian, H.; Zhou, Q.; Cao, Z. Oroxin A inhibits breast cancer cell growth by inducing robust endoplasmic reticulum stress and senescence. Anticancer Drugs, 2016, 27(3), 204-215.
[http://dx.doi.org/10.1097/CAD.0000000000000318] [PMID: 26599214]
[165]
Yang, L.; Guan, G.; Lei, L.; Lv, Q.; Liu, S.; Zhan, X.; Jiang, Z.; Gu, X. Palmitic acid induces human osteoblast-like Saos-2 cell apoptosis via endoplasmic reticulum stress and autophagy. Cell Stress Chaperones, 2018, 23(6), 1283-1294.
[http://dx.doi.org/10.1007/s12192-018-0936-8] [PMID: 30194633]
[166]
Lin, C.L.; Lee, C.H.; Chen, C.M.; Cheng, C.W.; Chen, P.N.; Ying, T.H.; Hsieh, Y.H. Protodioscin induces apoptosis through ROS-mediated endoplasmic reticulum stress via the JNK/p38 activation pathways in human cervical cancer cells. Cell. Physiol. Biochem., 2018, 46(1), 322-334.
[http://dx.doi.org/10.1159/000488433] [PMID: 29590661]
[167]
Kim, K.J.; Chei, S.; Choi, S.Y.; Lee, O.H.; Lee, B.Y. Pterostilbene activates the GRP78-elF2α-ATF3 cascade of ER stress and subsequently induces apoptosis in human colon cancer cells. J. Funct. Foods, 2016, 26, 539-547.
[http://dx.doi.org/10.1016/j.jff.2016.08.027]
[168]
Min, S.Y.; Ha, D.S.; Ha, T.S. Puromycin aminonucleoside triggers apoptosis in podocytes by inducing endoplasmic reticulum stress. Kidney Res. Clin. Pract., 2018, 37(3), 210-221.
[http://dx.doi.org/10.23876/j.krcp.2018.37.3.210] [PMID: 30254845]
[169]
Chen, Y.J.; Su, J.H.; Tsao, C.Y.; Hung, C.T.; Chao, H.H.; Lin, J.J.; Liao, M.H.; Yang, Z.Y.; Huang, H.H.; Tsai, F.J.; Weng, S.H.; Wu, Y.J. Sinulariolide induced hepatocellular carcinoma apoptosis through activation of mitochondrial-related apoptotic and PERK/eIF2α/ATF4/CHOP pathway. Molecules, 2013, 18(9), 10146-10161.
[http://dx.doi.org/10.3390/molecules180910146] [PMID: 23973991]
[170]
Chen, L.Y.; Chiang, A.S.; Hung, J.J.; Hung, H.I.; Lai, Y.K. Thapsigargin-induced grp78 expression is mediated by the increase of cytosolic free calcium in 9L rat brain tumor cells. J. Cell. Biochem., 2000, 78(3), 404-416.
[http://dx.doi.org/10.1002/1097-4644(20000901)78:3<404:AID-JCB6>3.0.CO;2-8] [PMID: 10861839]
[171]
Farghaly, M.E.; Khowailed, A.A.; Aboulhoda, B.E.; Rashed, L.A.; Gaber, S.S.; Ashour, H. Thymoquinone potentiated the anticancer effect of cisplatin on hepatic tumorigenesis by modulating tissue oxidative stress and endoplasmic GRP78/CHOP signaling. Nutr. Cancer, 2022, 74(1), 278-287.
[http://dx.doi.org/10.1080/01635581.2021.1879880] [PMID: 33533291]
[172]
An, J.; Zhang, X.; Jia, K.; Zhang, C.; Zhu, L.; Cheng, M.; Li, F.; Zhao, S.; Hao, J. Trichostatin A increases BDNF protein expression by improving XBP-1s/ATF6/GRP78 axis in Schwann cells of diabetic peripheral neuropathy. Biomed. Pharmacother., 2021, 133, 111062.
[http://dx.doi.org/10.1016/j.biopha.2020.111062] [PMID: 33378965]
[173]
Kim, H.; Moon, J.Y.; Burapan, S.; Han, J.; Cho, S.K. Induction of ER stress-mediated apoptosis by the major component 5, 7, 4′-trimethoxyflavone isolated from kaempferia parviflora tea infusion. Nutr. Cancer, 2018, 70(6), 984-996.
[http://dx.doi.org/10.1080/01635581.2018.1491607] [PMID: 30273054]
[174]
Zhao, G.; Kang, J.; Xu, G.; Wei, J.; Wang, X.; Jing, X.; Zhang, L.; Yang, A.; Wang, K.; Wang, J.; Wang, L.; Hou, J.; Liu, Q.; Jiao, K.; Gao, B. Tunicamycin promotes metastasis through upregulating endoplasmic reticulum stress induced GRP78 expression in thyroid carcinoma. Cell Biosci., 2020, 10(1), 115.
[http://dx.doi.org/10.1186/s13578-020-00478-0] [PMID: 33014334]
[175]
Lust, S.; Vanhoecke, B.; V.A.N., Gele M.; Boelens, J.; VAN Melckebeke, H.; Kaileh, M.; Vanden Berghe, W.; Haegeman, G.; Philippé, J.; Bracke, M.; Offner, F. Xanthohumol activates the proapoptotic arm of the unfolded protein response in chronic lymphocytic leukemia. Anticancer Res., 2009, 29(10), 3797-3805.
[PMID: 19846911]
[176]
Lin, P.; Chen, F.; Sun, J.; Zhou, J.; Wang, X.; Wang, N.; Li, X.; Zhang, Z.; Wang, A.; Jin, Y. Mycotoxin zearalenone induces apoptosis in mouse Leydig cells via an endoplasmic reticulum stress-dependent signalling pathway. Reprod. Toxicol., 2015, 52, 71-77.
[http://dx.doi.org/10.1016/j.reprotox.2015.02.007] [PMID: 25720297]
[177]
Li, L.J.; Li, X.; Ferrario, A.; Rucker, N.; Liu, E.S.; Wong, S.; Gomer, C.J.; Lee, A.S. Establishment of a Chinese hamster ovary cell line that expresses grp78 antisense transcripts and suppresses A23187 induction of both GRP78 and GRP94. J. Cell. Physiol., 1992, 153(3), 575-582.
[http://dx.doi.org/10.1002/jcp.1041530319] [PMID: 1332981]
[178]
Zhang, G.; Bi, H.; Gao, J.; Lu, X.; Zheng, Y. Inhibition of autophagy and enhancement of endoplasmic reticulum stress increase sensitivity of osteosarcoma Saos-2 cells to cannabinoid receptor agonist WIN55,212-2. Cell Biochem. Funct., 2016, 34(5), 351-358.
[http://dx.doi.org/10.1002/cbf.3194] [PMID: 27309350]
[179]
Her, N.G.; Kesari, S.; Nurmemmedov, E. Thrombospondin-1 counteracts the p97 inhibitor CB-5083 in colon carcinoma cells. Cell Cycle, 2020, 19(13), 1590-1601.
[http://dx.doi.org/10.1080/15384101.2020.1754584] [PMID: 32423265]
[180]
Faria, G.; Cardoso, C.R.; Larson, R.E.; Silva, J.S.; Rossi, M.A. Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress. Toxicol. Appl. Pharmacol., 2009, 234(2), 256-265.
[http://dx.doi.org/10.1016/j.taap.2008.10.012] [PMID: 19027770]
[181]
Reyna, L.; Flores-Martín, J.; Ridano, M.E.; Panzetta-Dutari, G.M.; Genti-Raimondi, S. Chlorpyrifos induces endoplasmic reticulum stress in JEG-3 cells. Toxicol. In Vitro, 2017, 40, 88-93.
[http://dx.doi.org/10.1016/j.tiv.2016.12.008] [PMID: 27993609]
[182]
Zhang, J.; Liang, Y.; Lin, Y.; Liu, Y. YouYou; Yin, W. IRE1α-TRAF2-ASK1 pathway is involved in CSTMP-induced apoptosis and ER stress in human non-small cell lung cancer A549 cells. Biomed. Pharmacother., 2016, 82, 281-289.
[http://dx.doi.org/10.1016/j.biopha.2016.04.050] [PMID: 27470364]
[183]
Chang, Y.J.; Huang, Y.P.; Li, Z. -.L.; Chen, C.H. GRP78 knockdown enhances apoptosis via the down-regulation of oxidative stress and Akt pathway after epirubicin treatment in colon cancer DLD-1 cells. PLoS One, 2012, 7(4), e35123.
[http://dx.doi.org/10.1371/journal.pone.0035123] [PMID: 22529978]
[184]
Tscheschner, H.; Meinhardt, E.; Schlegel, P.; Jungmann, A.; Lehmann, L.H.; Müller, O.J.; Most, P.; Katus, H.A.; Raake, P.W. CaMKII activation participates in doxorubicin cardiotoxicity and is attenuated by moderate GRP78 overexpression. PLoS One, 2019, 14(4), e0215992.
[http://dx.doi.org/10.1371/journal.pone.0215992] [PMID: 31034488]
[185]
Wang, L.; Chan, J.Y.; Zhou, X.; Cui, G.; Yan, Z.; Wang, L.; Yan, R.; Di, L.; Wang, Y.; Hoi, M.P.; Shan, L.; Lee, S.M. A novel agent enhances the chemotherapeutic efficacy of doxorubicin in MCF-7 breast cancer cells. Front. Pharmacol., 2016, 7, 249.
[http://dx.doi.org/10.3389/fphar.2016.00249] [PMID: 27559313]
[186]
Zhang, Y.; Zhang, H.; Chen, J.; Zhao, H.; Zeng, X.; Zhang, H.; Qing, C. Antitumor and antiangiogenic effects of GA-13315, a gibberellin derivative. Invest. New Drugs, 2012, 30(1), 8-16.
[http://dx.doi.org/10.1007/s10637-010-9501-8] [PMID: 20711631]
[187]
Um, H.J.; Bae, J.H.; Park, J.W.; Suh, H.; Jeong, N.Y.; Yoo, Y.H.; Kwon, T.K. Differential effects of resveratrol and novel resveratrol derivative, HS-1793, on endoplasmic reticulum stress-mediated apoptosis and Akt inactivation. Int. J. Oncol., 2010, 36(4), 1007-1013.
[PMID: 20198347]
[188]
Zhang, L.; Hapon, M.B.; Goyeneche, A.A.; Srinivasan, R.; Gamarra-Luques, C.D.; Callegari, E.A.; Drappeau, D.D.; Terpstra, E.J.; Pan, B.; Knapp, J.R.; Chien, J.; Wang, X.; Eyster, K.M.; Telleria, C.M. Mifepristone increases mRNA translation rate, triggers the unfolded protein response, increases autophagic flux, and kills ovarian cancer cells in combination with proteasome or lysosome inhibitors. Mol. Oncol., 2016, 10(7), 1099-1117.
[http://dx.doi.org/10.1016/j.molonc.2016.05.001] [PMID: 27233943]
[189]
Wu, M.H.; Lee, C.Y.; Huang, T.J.; Huang, K.Y.; Tang, C.H.; Liu, S.H.; Kuo, K.L.; Kuan, F.C.; Lin, W.C.; Shi, C.S. MLN4924, a protein neddylation inhibitor, suppresses the growth of human chondrosarcoma through inhibiting cell proliferation and inducing endoplasmic reticulum stress-related apoptosis. Int. J. Mol. Sci., 2018, 20(1), 72.
[http://dx.doi.org/10.3390/ijms20010072] [PMID: 30586948]
[190]
Guan, M.; Su, L.; Yuan, Y.C.; Li, H.; Chow, W.A. Nelfinavir and nelfinavir analogs block site-2 protease cleavage to inhibit castration-resistant prostate cancer. Sci. Rep., 2015, 5(1), 9698.
[http://dx.doi.org/10.1038/srep09698] [PMID: 25880275]
[191]
Kusunoki, T.; Shimoke, K.; Komatsubara, S.; Kishi, S.; Ikeuchi, T. p-Nonylphenol induces endoplasmic reticulum stress-mediated apoptosis in neuronally differentiated PC12 cells. Neurosci. Lett., 2008, 431(3), 256-261.
[http://dx.doi.org/10.1016/j.neulet.2007.11.058] [PMID: 18162324]
[192]
Wang, L.; Fu, P.; Zhao, Y.; Wang, G.; Yu, R.; Wang, X.; Tang, Z.; Imperato-McGinley, J.; Zhu, Y.S. Dissociation of NSC606985 induces atypical ER-stress and cell death in prostate cancer cells. Int. J. Oncol., 2016, 49(2), 529-538.
[http://dx.doi.org/10.3892/ijo.2016.3555] [PMID: 27277821]
[193]
Ramakrishnan, V.; Gomez, M.; Prasad, V.; Kimlinger, T.; Painuly, U.; Mukhopadhyay, B.; Haug, J.; Bi, L.; Rajkumar, S.V.; Kumar, S. Smac mimetic LCL161 overcomes protective ER stress induced by obatoclax, synergistically causing cell death in multiple myeloma. Oncotarget, 2016, 7(35), 56253-56265.
[http://dx.doi.org/10.18632/oncotarget.11028] [PMID: 27494845]
[194]
Chen, K.D.; Lai, M.T.; Cho, J.H.; Chen, L.Y.; Lai, Y.K. Activation of p38 mitogen-activated protein kinase and mitochondrial Ca2+-mediated oxidative stress are essential for the enhanced expression of grp78 induced by the protein phosphatase inhibitors okadaic acid and calyculin A. J. Cell. Biochem., 2000, 76(4), 585-595.
[http://dx.doi.org/10.1002/(SICI)1097-4644(20000315)76:4<585:AID-JCB7>3.0.CO;2-U] [PMID: 10653978]
[195]
Kim, E.C.; Toyono, T.; Berlinicke, C.A.; Zack, D.J.; Jurkunas, U.; Usui, T.; Jun, A.S. Screening and characterization of drugs that protect corneal endothelial cells against unfolded protein response and oxidative stress. Invest. Ophthalmol. Vis. Sci., 2017, 58(2), 892-900.
[http://dx.doi.org/10.1167/iovs.16-20147] [PMID: 28159976]
[196]
Hung, W.Y.; Chang, J.H.; Cheng, Y.; Cheng, G.Z.; Huang, H.C.; Hsiao, M.; Chung, C.L.; Lee, W.J.; Chien, M.H. Autophagosome accumulation-mediated ATP energy deprivation induced by penfluridol triggers nonapoptotic cell death of lung cancer via activating unfolded protein response. Cell Death Dis., 2019, 10(8), 538.
[http://dx.doi.org/10.1038/s41419-019-1785-9] [PMID: 31308361]
[197]
Chae, M. K.; Park, S. G.; Song, S.-O.; Kang, E. S.; Cha, B. S.; Lee, H. C.; Lee, B.-W. Pentoxifylline attenuates methionine-and choline- deficient-diet-induced steatohepatitis by suppressing TNF-α expression and endoplasmic reticulum stress. Int. J. Exp. Diabetes Res., 2012, 2012
[198]
Lien, J.-C.; Huang, C.-C.; Lu, T.-J.; Tseng, C.-H.; Sung, P.-J.; Lee, H.-Z.; Bao, B.-Y.; Kuo, Y.-H.; Lu, T.-L. Naphthoquinone derivative PPE8 induces endoplasmic reticulum stress in p53 null H1299 cells. Oxid. Med. Cell. Longev., 2015, 2015
[http://dx.doi.org/10.1155/2015/453679]
[199]
Ambrose, A.J.; Santos, E.A.; Jimenez, P.C.; Rocha, D.D.; Wilke, D.V.; Beuzer, P.; Axelrod, J.; Kumar Kanduluru, A.; Fuchs, P.L.; Cang, H.; Costa-Lotufo, L.V.; Chapman, E.; La Clair, J.J. Ritterostatin GN 1N, a cephalostatin-ritterazine bis-steroidal pyrazine hybrid, selectively targets GRP78. ChemBioChem, 2017, 18(6), 506-510.
[http://dx.doi.org/10.1002/cbic.201600669] [PMID: 28074539]
[200]
Kawiak, A.; Domachowska, A.; Jaworska, A.; Lojkowska, E. Plumbagin sensitizes breast cancer cells to tamoxifen-induced cell death through GRP78 inhibition and Bik upregulation. Sci. Rep., 2017, 7(1), 43781.
[http://dx.doi.org/10.1038/srep43781] [PMID: 28287102]
[201]
Hayakawa, Y.; Saito, J.; Izawa, M.; Shin-ya, K. Actinopyrone D, a new downregulator of the molecular chaperone GRP78 from Streptomyces sp. J. Antibiot. (Tokyo), 2014, 67(12), 831-834.
[http://dx.doi.org/10.1038/ja.2014.76] [PMID: 24938168]
[202]
Sun, S.; Wang, X.; Wang, C.; Nawaz, A.; Wei, W.; Li, J.; Wang, L.; Yu, D.H. Arctigenin suppresses unfolded protein response and sensitizes glucose deprivation-mediated cytotoxicity of cancer cells. Planta Med., 2011, 77(2), 141-145.
[http://dx.doi.org/10.1055/s-0030-1250179] [PMID: 20717870]
[203]
Wang, Z.S.; Xiong, F.; Xie, X.H.; Chen, D.; Pan, J.H.; Cheng, L. Astragaloside IV attenuates proteinuria in streptozotocin-induced diabetic nephropathy via the inhibition of endoplasmic reticulum stress. BMC Nephrol., 2015, 16(1), 44.
[http://dx.doi.org/10.1186/s12882-015-0031-7] [PMID: 25886386]
[204]
Sharma, S.H.; Rajamanickam, V.; Nagarajan, S. Antiproliferative effect of p-Coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chem. Biol. Interact., 2018, 291, 16-28.
[http://dx.doi.org/10.1016/j.cbi.2018.06.001] [PMID: 29879413]
[205]
Hayakawa, Y.; Akimoto, M.; Ishikawa, A.; Izawa, M.; Shin-ya, K. Curromycin A as a GRP78 downregulator and a new cyclic dipeptide from Streptomyces sp. J. Antibiot. (Tokyo), 2016, 69(3), 187-188.
[http://dx.doi.org/10.1038/ja.2015.115] [PMID: 26601685]
[206]
Chen, S.; Zhao, Y.; Zhang, Y.; Zhang, D. Fucoidan induces cancer cell apoptosis by modulating the endoplasmic reticulum stress cascades. PLoS One, 2014, 9(9), e108157.
[http://dx.doi.org/10.1371/journal.pone.0108157] [PMID: 25232957]
[207]
Hayakawa, Y.; Hattori, Y.; Kawasaki, T.; Kanoh, K.; Adachi, K.; Shizuri, Y.; Shin-Ya, K. Efrapeptin J, a new down-regulator of the molecular chaperone GRP78 from a marine Tolypocladium sp. J. Antibiot. (Tokyo), 2008, 61(6), 365-371.
[http://dx.doi.org/10.1038/ja.2008.51] [PMID: 18667784]
[208]
Martinotti, S.; Ranzato, E.; Burlando, B. (-)- Epigallocatechin-3-gallate induces GRP78 accumulation in the ER and shifts mesothelioma constitutive UPR into proapoptotic ER stress. J. Cell. Physiol., 2018, 233(10), 7082-7090.
[http://dx.doi.org/10.1002/jcp.26631] [PMID: 29744892]
[209]
Zhao, Q.; Zhong, J.; Bi, Y.; Liu, Y.; Liu, Y.; Guo, J.; Pan, L.; Tan, Y.; Yu, X. Gambogenic acid induces Noxa-mediated apoptosis in colorectal cancer through ROS-dependent activation of IRE1α/JNK. Phytomedicine, 2020, 78, 153306.
[http://dx.doi.org/10.1016/j.phymed.2020.153306] [PMID: 32854039]
[210]
Yang, Y.M.; Yang, Y.; Dai, W.W.; Li, X.M.; Ma, J.Q.; Tang, L.P. Genistein-induced apoptosis is mediated by endoplasmic reticulum stress in cervical cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(15), 3292-3296.
[PMID: 27467006]
[211]
Wu, L.X.; Xu, Y.Y.; Yang, Z.J.; Feng, Q. Hydroxytyrosol and olive leaf extract exert cardioprotective effects by inhibiting GRP78 and CHOP expression. J. Biomed. Res., 2018, 32(5), 371-379.
[PMID: 29760296]
[212]
Wang, N.; Wang, Z.; Peng, C.; You, J.; Shen, J.; Han, S.; Chen, J. Dietary compound isoliquiritigenin targets GRP78 to chemosensitize breast cancer stem cells via β-catenin/ABCG2 signaling. Carcinogenesis, 2014, 35(11), 2544-2554.
[http://dx.doi.org/10.1093/carcin/bgu187] [PMID: 25194164]
[213]
Liu, Y.; Zhao, N.; Li, C.; Chang, Q.; Liu, X.; Liao, Y.; Pan, R. Longistyline C acts antidepressant in vivo and neuroprotection in vitro against glutamate-induced cytotoxicity by regulating NMDAR/NR2B-ERK pathway in PC12 cells. PLoS One, 2017, 12(9), e0183702.
[http://dx.doi.org/10.1371/journal.pone.0183702] [PMID: 28873095]
[214]
Yang, B.; Xu, Y.; Hu, Y.; Luo, Y.; Lu, X.; Tsui, C.K.; Lu, L.; Liang, X. Madecassic Acid protects against hypoxia-induced oxidative stress in retinal microvascular endothelial cells via ROS-mediated endoplasmic reticulum stress. Biomed. Pharmacother., 2016, 84, 845-852.
[http://dx.doi.org/10.1016/j.biopha.2016.10.015] [PMID: 27728894]
[215]
Yang, P.; Fu, S.; Cao, Z.; Liao, H.; Huo, Z.; Pan, Y.; Zhang, G.; Gao, A.; Zhou, Q. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy. Toxicol. Appl. Pharmacol., 2015, 288(2), 269-279.
[http://dx.doi.org/10.1016/j.taap.2015.07.026] [PMID: 26253462]
[216]
Garcia-Prieto, C.; Riaz Ahmed, K.B.; Chen, Z.; Zhou, Y.; Hammoudi, N.; Kang, Y.; Lou, C.; Mei, Y.; Jin, Z.; Huang, P. Effective killing of leukemia cells by the natural product OSW-1 through disruption of cellular calcium homeostasis. J. Biol. Chem., 2013, 288(5), 3240-3250.
[http://dx.doi.org/10.1074/jbc.M112.384776] [PMID: 23250754]
[217]
Asling, J.; Morrison, J.; Mutsaers, A.J. Targeting HSP70 and GRP78 in canine osteosarcoma cells in combination with doxorubicin chemotherapy. Cell Stress Chaperones, 2016, 21(6), 1065-1076.
[http://dx.doi.org/10.1007/s12192-016-0730-4] [PMID: 27631331]
[218]
Seo, J.Y.; Pandey, R.P.; Lee, J.; Sohng, J.K.; Namkung, W.; Park, Y.I. Quercetin 3-O-xyloside ameliorates acute pancreatitis in vitro via the reduction of ER stress and enhancement of apoptosis. Phytomedicine, 2019, 55, 40-49.
[http://dx.doi.org/10.1016/j.phymed.2018.07.011] [PMID: 30668442]
[219]
Machihara, K.; Tanaka, H.; Hayashi, Y.; Murakami, I.; Namba, T. Questiomycin A stimulates sorafenib-induced cell death via suppression of glucose-regulated protein 78. Biochem. Biophys. Res. Commun., 2017, 492(1), 33-40.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.042] [PMID: 28811106]
[220]
Brenjian, S.; Moini, A.; Yamini, N.; Kashani, L.; Faridmojtahedi, M.; Bahramrezaie, M.; Khodarahmian, M.; Amidi, F. Resveratrol treatment in patients with polycystic ovary syndrome decreased pro-inflammatory and endoplasmic reticulum stress markers. Am. J. Reprod. Immunol., 2020, 83(1), e13186.
[http://dx.doi.org/10.1111/aji.13186] [PMID: 31483910]
[221]
Tao, S.; Chen, L.; Song, J.; Zhu, N.; Song, X.; Shi, R.; Ge, G.; Zhang, Y. Tanshinone IIA ameliorates diabetic cardiomyopathy by inhibiting Grp78 and CHOP expression in STZ-induced diabetes rats. Exp. Ther. Med., 2019, 18(1), 729-734.
[http://dx.doi.org/10.3892/etm.2019.7580] [PMID: 31258708]
[222]
Yu, Y.; Xing, N.; Xu, X.; Zhu, Y.; Wang, S.; Sun, G.; Sun, X. Tournefolic acid B, derived from Clinopodium chinense (Benth.) Kuntze, protects against myocardial ischemia/reperfusion injury by inhibiting endoplasmic reticulum stress-regulated apoptosis via PI3K/AKT pathways. Phytomedicine, 2019, 52, 178-186.
[http://dx.doi.org/10.1016/j.phymed.2018.09.168] [PMID: 30599897]
[223]
Tabata, Y.; Takano, K.; Ito, T.; Iinuma, M.; Yoshimoto, T.; Miura, H.; Kitao, Y.; Ogawa, S.; Hori, O. Vaticanol B, a resveratrol tetramer, regulates endoplasmic reticulum stress and inflammation. Am. J. Physiol. Cell Physiol., 2007, 293(1), C411-C418.
[http://dx.doi.org/10.1152/ajpcell.00095.2007] [PMID: 17475668]
[224]
Lev, A.; Lulla, A.R.; Wagner, J.; Ralff, M.D.; Kiehl, J.B.; Zhou, Y.; Benes, C.H.; Prabhu, V.V.; Oster, W.; Astsaturov, I.; Dicker, D.T.; El-Deiry, W.S. Anti-pancreatic cancer activity of ONC212 involves the unfolded protein response (UPR) and is reduced by IGF1-R and GRP78/BIP. Oncotarget, 2017, 8(47), 81776-81793.
[http://dx.doi.org/10.18632/oncotarget.20819] [PMID: 29137221]
[225]
Philip, R.; Mathias, M.; Kumari, S.N.; Gowda, D.K.; Shetty, J.K. Evalation of relationship between markers of liver function and the onset of type 2 diabetes. J. health Allied Sci. NU, 2014, 4(2), 90.
[226]
Liu, B.; Ji, J.; Feng, Q.; Luo, X.; Yan, X.; Ni, Y.; He, Y.; Mao, Z.; Liu, J. Monosialoganglioside protects against bupivacaine-induced neurotoxicity caused by endoplasmic reticulum stress in rats. Drug Des. Devel. Ther., 2019, 13, 707-718.
[http://dx.doi.org/10.2147/DDDT.S192225] [PMID: 30858700]
[227]
Yerlikaya, A. Erdoğan, E.; Okur, E.; Yerlikaya, Ş.; Savran, B. A novel combination treatment for breast cancer cells involving BAPTA-AM and proteasome inhibitor bortezomib. Oncol. Lett., 2016, 12(1), 323-330.
[http://dx.doi.org/10.3892/ol.2016.4597] [PMID: 27347145]
[228]
Buontempo, F.; Orsini, E.; Lonetti, A.; Cappellini, A.; Chiarini, F.; Evangelisti, C.; Evangelisti, C.; Melchionda, F.; Pession, A.; Bertaina, A.; Locatelli, F.; Bertacchini, J.; Neri, L.M.; McCubrey, J.A.; Martelli, A.M. Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: Turning off the prosurvival ER chaperone BIP/Grp78 and turning on the pro-apoptotic NF-κB. Oncotarget, 2016, 7(2), 1323-1340.
[http://dx.doi.org/10.18632/oncotarget.6361] [PMID: 26593250]
[229]
Yang, Y.F.; Wang, H.; Song, N.; Jiang, Y.H.; Zhang, J.; Meng, X.W.; Feng, X.M.; Liu, H.; Peng, K.; Ji, F.H. Dexmedetomidine attenuates ischemia/reperfusion-induced myocardial inflammation and apoptosis through inhibiting endoplasmic reticulum stress signaling. J. Inflamm. Res., 2021, 14, 1217-1233.
[http://dx.doi.org/10.2147/JIR.S292263] [PMID: 33833544]
[230]
Kardosh, A.; Golden, E.B.; Pyrko, P.; Uddin, J.; Hofman, F.M.; Chen, T.C.; Louie, S.G.; Petasis, N.A.; Schönthal, A.H. Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res., 2008, 68(3), 843-851.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5555] [PMID: 18245486]
[231]
Lin, Y.; Zhang, X.; Xiao, W.; Li, B.; Wang, J.; Jin, L.; Lian, J.; Zhou, L.; Liu, J. Endoplasmic reticulum stress is involved in DFMO attenuating isoproterenol-induced cardiac hypertrophy in rats. Cell. Physiol. Biochem., 2016, 38(4), 1553-1562.
[http://dx.doi.org/10.1159/000443096] [PMID: 27074051]
[232]
Saito, S.; Furuno, A.; Sakurai, J.; Park, H.R.; Shin-ya, K.; Tomida, A. Compound C prevents the unfolded protein response during glucose deprivation through a mechanism independent of AMPK and BMP signaling. PLoS One, 2012, 7(9), e45845.
[http://dx.doi.org/10.1371/journal.pone.0045845] [PMID: 23029271]
[233]
Riaz Ahmed, K.B.; Kanduluru, A.K.; Feng, L.; Fuchs, P.L.; Huang, P. Antitumor agent 25-epi Ritterostatin GN1N induces endoplasmic reticulum stress and autophagy mediated cell death in melanoma cells. Int. J. Oncol., 2017, 50(5), 1482-1490.
[http://dx.doi.org/10.3892/ijo.2017.3944] [PMID: 28393217]
[234]
Wang, J.; Xu, J.; Zhao, X.; Xie, W.; Wang, H.; Kong, H. Fasudil inhibits neutrophil-endothelial cell interactions by regulating the expressions of GRP78 and BMPR2. Exp. Cell Res., 2018, 365(1), 97-105.
[http://dx.doi.org/10.1016/j.yexcr.2018.02.026] [PMID: 29481792]
[235]
Wang, C.; Bai, M.; Wang, X.; Tan, C.; Zhang, D.; Chang, L.; Li, G.; Xie, L.; Su, J.; Wen, Y. Estrogen receptor antagonist fulvestrant inhibits proliferation and promotes apoptosis of prolactinoma cells by regulating the IRE1/XBP1 signaling pathway. Mol. Med. Rep., 2018, 18(4), 4037-4041.
[http://dx.doi.org/10.3892/mmr.2018.9379] [PMID: 30106152]
[236]
Ruggiero, C.; Doghman-Bouguerra, M.; Ronco, C.; Benhida, R.; Rocchi, S.; Lalli, E. The GRP78/BiP inhibitor HA15 synergizes with mitotane action against adrenocortical carcinoma cells through convergent activation of ER stress pathways. Mol. Cell. Endocrinol., 2018, 474, 57-64.
[http://dx.doi.org/10.1016/j.mce.2018.02.010] [PMID: 29474877]
[237]
Burris, H.A.; Bakewell, S.; Bendell, J.C.; Infante, J.; Jones, S.F.; Spigel, D.R.; Weiss, G.J.; Ramanathan, R.K.; Ogden, A.; Von Hoff, D. Safety and activity of IT-139, a ruthenium-based compound, in patients with advanced solid tumours: A first-in-human, open-label, dose-escalation phase I study with expansion cohort. ESMO Open, 2017, 1(6), e000154.
[http://dx.doi.org/10.1136/esmoopen-2016-000154] [PMID: 28848672]
[238]
Rayner, J.O.; Roberts, R.A.; Kim, J.; Poklepovic, A.; Roberts, J.L.; Booth, L.; Dent, P. AR12 (OSU-03012) suppresses GRP78 expression and inhibits SARS-CoV-2 replication. Biochem. Pharmacol., 2020, 182, 114227.
[http://dx.doi.org/10.1016/j.bcp.2020.114227] [PMID: 32966814]
[239]
Mhaidat, N.M.; Al-Balas, Q.A.; Alzoubi, K.H.; AlEjielat, R.F. Potassium-3-beta-hydroxy-20-oxopregn-5-en-17-alpha-yl sulfate: A novel inhibitor of 78 kDa glucose-regulated protein. OncoTargets Ther., 2016, 9, 627-634.
[http://dx.doi.org/10.2147/OTT.S97328] [PMID: 26893572]
[240]
Tavallai, M.; Booth, L.; Roberts, J.L.; Poklepovic, A.; Dent, P. Rationally repurposing ruxolitinib (Jakafi®) as a solid tumor therapeutic. Front. Oncol., 2016, 6, 142.
[http://dx.doi.org/10.3389/fonc.2016.00142] [PMID: 27379204]
[241]
Purushothaman, B.; Arumugam, P.; Ju, H.; Kulsi, G.; Samson, A.A.S.; Song, J.M. Novel ruthenium(II) triazine complex [Ru(bdpta)(tpy)]2+ co-targeting drug resistant GRP78 and subcellular organelles in cancer stem cells. Eur. J. Med. Chem., 2018, 156, 747-759.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.048] [PMID: 30048924]
[242]
Kokubun, H.; Jin, H.; Komita, M.; Aoe, T. Conflicting actions of inhalational anesthetics, neurotoxicity and neuroprotection, mediated by the unfolded protein response. Int. J. Mol. Sci., 2020, 21(2), E450.
[http://dx.doi.org/10.3390/ijms21020450] [PMID: 31936788]
[243]
Yang, P.M.; Lin, Y.T.; Shun, C.T.; Lin, S.H.; Wei, T.T.; Chuang, S.H.; Wu, M.S.; Chen, C.C. Zebularine inhibits tumorigenesis and stemness of colorectal cancer via p53-dependent endoplasmic reticulum stress. Sci. Rep., 2013, 3(1), 3219.
[http://dx.doi.org/10.1038/srep03219] [PMID: 24225777]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy