Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Systematic Review Article

Responses Triggered by the Immune System in Hypertensive Conditions and Repercussions on Target Organ Damage: A Review

Author(s): Carlos Henrique Nascimento Domingues da Silva*, Idrys Henrique Leite Guedes, Jefferson Carlos Santos de Lima, João Marcelo Duarte Ribeiro Sobrinho and Angela Amancio dos Santos

Volume 19, Issue 2, 2023

Published on: 20 October, 2022

Article ID: e200922208959 Pages: 10

DOI: 10.2174/1573403X18666220920090632

Price: $65

Abstract

Background: Hypertension is a chronic, multifactorial clinical condition characterized by sustained high blood pressure levels. It is often associated with functional-structural alterations of target organs, which include heart, brain, kidneys, and vasculature.

Objective: This study highlights the recent correlation between the immune system and hypertension and its repercussions on target-organ damage.

Methods: The descriptors used for the search of the study were "hypertension", "immunity", and "target organs". The methodology of the study followed the main recommendations of the PRISMA statement.

Results: The damage to the vasculature arises mainly from the migration of T cells and monocytes that become pro-inflammatory in the adventitia, releasing TNF-α, IFN-γ, and IL-17, which induce endothelial damage and hinder vascular relaxation. In the renal context, the inflammatory process associated with hypertension culminates in renal invasion by leukocytes, which contribute to the injury of this organ by mechanisms of intense sympathetic stimulation, activation of the reninangiotensin system, sodium retention, and aggravation of oxidative stress. In the cardiac context, hypertension increases the expression of pro-inflammatory elements, such as B, T, and NK cells, in addition to the secretion of IFN-γ, IL-17, IL-23, and TNF-α from angiotensin II, reactive oxygen species, and aldosterone. This pro-inflammatory action is also involved in brain damage through SphK1. In view of the above, the participation of the immune system in hypertension-induced injuries seems to be unequivocal.

Conclusion: Therefore, understanding the multifactorial mechanisms related to hypertension will certainly allow for more efficient interventions in this condition, preventing target organ damage.

Keywords: Hypertension, Immune system, Immunologic Factors, Target Organs, Heart, Blood Vessels, Kidney, Brain

Graphical Abstract

[1]
Barroso WKS, Rodrigues CIS, Bortolotto LA, et al. Diretrizes brasileiras de hipertensão arterial – 2020. Arq Bras Cardiol 2021; 116(3): 516-658.
[http://dx.doi.org/10.36660/abc.20201238] [PMID: 33909761]
[2]
van der Veen PH, Geerlings MI, Visseren FLJ, et al. Hypertensive target organ damage and longitudinal changes in brain structure and function. Hypertension 2015; 66(6): 1152-8.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06268] [PMID: 26503971]
[3]
Lionakis N, Mendrinos D, Sanidas E, Favatas G, Georgopoulou M. Hypertension in the elderly. World J Cardiol 2012; 4(5): 135-47.
[http://dx.doi.org/10.4330/wjc.v4.i5.135] [PMID: 22655162]
[4]
WHO. W: A global brief on hypertension: Silent killer, global public health crisis. 2013.
[5]
Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. Hypertension 2020; 75(2): 285-92.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.14240] [PMID: 31865786]
[6]
Bromfield S, Muntner P. High blood pressure: The leading global burden of disease risk factor and the need for worldwide prevention programs. Curr Hypertens Rep 2013; 15(3): 134-6.
[http://dx.doi.org/10.1007/s11906-013-0340-9] [PMID: 23536128]
[7]
Sorlie PD, Allison MA, Avilés-Santa ML, et al. Prevalence of hypertension, awareness, treatment, and control in the hispanic community health study/study of latinos. Am J Hypertens 2014; 27(6): 793-800.
[http://dx.doi.org/10.1093/ajh/hpu003] [PMID: 24627442]
[8]
Fiório CE, Cesar CLG, Alves MCGP, Goldbaum M. Prevalência de hipertensão arterial em adultos no município de São Paulo e fatores associados. Rev Bras Epidemiol 2020; 23: e200052.
[http://dx.doi.org/10.1590/1980-549720200052] [PMID: 32520103]
[9]
Correa NB, Faria AP, Junior HM, Modolo R. Não adesão ao tratamento farmacológico anti-hipertensivo como causa de controle inadequado da hipertensão arterial. Rev Bras Hipertens 2016; 23(3): 58-65.
[10]
Brouwers S, Sudano I, Kokubo Y, Sulaica EM. Arterial hypertension. Lancet 2021; 398(10296): 249-61.
[http://dx.doi.org/10.1016/S0140-6736(21)00221-X] [PMID: 34019821]
[11]
Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Kardiol Pol 2019; 77(2): 71-159.
[http://dx.doi.org/10.5603/KP.2019.0018] [PMID: 30816983]
[12]
Kućmierz J, Frąk W, Młynarska E, Franczyk B, Rysz J. Molecular interactions of arterial hypertension in its target organs. Int J Mol Sci 2021; 22(18): 9669.
[http://dx.doi.org/10.3390/ijms22189669] [PMID: 34575833]
[13]
Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol 2019; 19(8): 517-32.
[http://dx.doi.org/10.1038/s41577-019-0160-5] [PMID: 30992524]
[14]
Bisogni V, Cerasari A, Pucci G, Vaudo G. Matrix metalloproteinases and hypertension-mediated organ damage: Current insights. Integr Blood Press Control 2020; 13: 157-69.
[http://dx.doi.org/10.2147/IBPC.S223341] [PMID: 33173330]
[15]
Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. Journal of enzyme inhibition and medicinal chemistry 2016; 31(sup1): 177- 83.
[16]
Mattson DL, Dasinger JH, Abais-Battad JM. Amplification of salt-sensitive hypertension and kidney damage by immune mechanisms. Am J Hypertens 2021; 34(1): 3-14.
[http://dx.doi.org/10.1093/ajh/hpaa124] [PMID: 32725162]
[17]
Galvão TF, Pereira MG. Revisões sistemáticas da literatura: Passos para sua elaboração. Epidemiol Serv Saude 2014; 23(1): 183-4.
[http://dx.doi.org/10.5123/S1679-49742014000100018]
[18]
Sarkis-Onofre R, Catalá-López F, Aromataris E, Lockwood C. How to properly use the PRISMA statement. Syst Rev 2021; 10(1): 117.
[http://dx.doi.org/10.1186/s13643-021-01671-z] [PMID: 33875004]
[19]
Piqueras L, Sanz MJ. Angiotensin II and leukocyte trafficking: New insights for an old vascular mediator. Role of redox-signaling pathways. Free Radic Biol Med 2020; 157: 38-54.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.02.002] [PMID: 32057992]
[20]
Liu X, Zhang Q, Wu H, et al. NIU, K. Blood neutrophil to lymphocyte ratio as a predictor of hypertension. Am J Hypertens 2015; 28(11): 1339-46.
[http://dx.doi.org/10.1093/ajh/hpv034] [PMID: 25824450]
[21]
Wang L, Zhao XC, Cui W, et al. Genetic and pharmacologic inhibition of the chemokine receptor CXCR2 prevents experimental hypertension and vascular dysfunction. Circulation 2016; 134(18): 1353-68.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.020754] [PMID: 27678262]
[22]
Mikolajczyk TP, Guzik TJ. Adaptive immunity in hypertension. Curr Hypertens Rep 2019; 21(9): 68.
[http://dx.doi.org/10.1007/s11906-019-0971-6] [PMID: 31321561]
[23]
Sun XN, Li C, Liu Y, et al. T-cell mineralocorticoid receptor controls blood pressure by regulating interferon-gamma. Circ Res 2017; 120(10): 1584-97.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.310480] [PMID: 28298295]
[24]
Tanase DM, Gosav EM, Radu S, et al. Arterial hypertension and interleukins: Potential therapeutic target or future diagnostic marker? Int J Hypertens 2019; 2019: 1-17.
[http://dx.doi.org/10.1155/2019/3159283] [PMID: 31186952]
[25]
Small HY, Migliarino S, Czesnikiewicz-Guzik M, Guzik TJ. Hypertension: Focus on autoimmunity and oxidative stress. Free Radic Biol Med 2018; 125: 104-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.085] [PMID: 29857140]
[26]
Orejudo M, Rodrigues-Diez RR, Rodrigues-Diez R, et al. Interleukin 17A participates in renal inflammation associated to experimental and human hypertension. Front Pharmacol 2019; 10: 1015.
[http://dx.doi.org/10.3389/fphar.2019.01015] [PMID: 31572188]
[27]
Wen Y, Crowley SD. Renal effects of cytokines in hypertension. Curr Opin Nephrol Hypertens 2018; 27(2): 70-6.
[http://dx.doi.org/10.1097/MNH.0000000000000385] [PMID: 29140820]
[28]
Wang Z, Wang J, Yang P, Song X, Li Y. Elevated Th17 cell proportion, related cytokines and mRNA expression level in patients with hypertension-mediated organ damage: A case control study. BMC Cardiovasc Disord 2022; 22(1): 257.
[http://dx.doi.org/10.1186/s12872-022-02698-3] [PMID: 35676631]
[29]
Saleh MA, Norlander AE, Madhur MS. Inhibition of interleukin-17A, but not interleukin-17F, signaling lowers blood pressure, and reduces end-organ inflammation in angiotensin II–induced hypertension. JACC Basic Transl Sci 2016; 1(7): 606-16.
[http://dx.doi.org/10.1016/j.jacbts.2016.07.009] [PMID: 28280792]
[30]
Norlander AE, Saleh MA, Kamat NV, et al. Interleukin-17A regulates renal sodium transporters and renal injury in angiotensin II–induced hypertension. Hypertension 2016; 68(1): 167-74.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07493] [PMID: 27141060]
[31]
Norlander AE, Saleh MA, Pandey AK, et al. A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI Insight 2017; 2(13): e92801.
[http://dx.doi.org/10.1172/jci.insight.92801] [PMID: 28679951]
[32]
Van Beusecum JP, Moreno H, Harrison DG. Innate immunity and clinical hypertension. J Hum Hypertens 2022; 36(6): 503-9.
[PMID: 34689174]
[33]
Harrison DG, Coffman TM, Wilcox CS. Pathophysiology of hypertension. Circ Res 2021; 128(7): 847-63.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.318082] [PMID: 33793328]
[34]
Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med 2018; 215(1): 21-33.
[http://dx.doi.org/10.1084/jem.20171773] [PMID: 29247045]
[35]
Crowley SD, Rudemiller NP. Immunologic effects of the renin-angiotensin system. J Am Soc Nephrol 2017; 28(5): 1350-61.
[http://dx.doi.org/10.1681/ASN.2016101066] [PMID: 28151411]
[36]
Wenzel UO, Bode M, Kurts C, Ehmke H. Salt, inflammation, IL‐17 and hypertension. Br J Pharmacol 2019; 176(12): 1853-63.
[http://dx.doi.org/10.1111/bph.14359] [PMID: 29767465]
[37]
Lai CL, Xing JP, Liu XH, et al. Relationships of inflammatory factors and risk factors with different target organ damage in essential hypertension patients. Chin Med J (Engl) 2017; 130(11): 1296-302.
[http://dx.doi.org/10.4103/0366-6999.206343] [PMID: 28524828]
[38]
Lu X, Crowley SD. Inflammation in salt-sensitive hypertension and renal damage. Curr Hypertens Rep 2018; 20(12): 103.
[http://dx.doi.org/10.1007/s11906-018-0903-x] [PMID: 30377822]
[39]
Du YN, Tang XF, Xu L, Chen WD, Gao PJ, Han WQ. SGK1-FoxO1 signaling pathway mediates Th17/Treg imbalance and target organ inflammation in angiotensin II-induced hypertension. Front Physiol 2018; 9: 1581.
[http://dx.doi.org/10.3389/fphys.2018.01581] [PMID: 30524295]
[40]
Justin Rucker A, Crowley SD. The role of macrophages in hypertension and its complications. Pflugers Arch 2017; 469(3-4): 419-30.
[http://dx.doi.org/10.1007/s00424-017-1950-x] [PMID: 28251313]
[41]
Wenzel P. Monocytes as immune targets in arterial hypertension. Br J Pharmacol 2019; 176(12): 1966-77.
[http://dx.doi.org/10.1111/bph.14389] [PMID: 29885051]
[42]
Touyz RM, Rios FJ, Alves-Lopes R, Neves KB, Camargo LL, Montezano AC. Oxidative stress: A unifying paradigm in hypertension. Can J Cardiol 2020; 36(5): 659-70.
[http://dx.doi.org/10.1016/j.cjca.2020.02.081] [PMID: 32389339]
[43]
Cai W, Zhang Z, Huang Y, Sun H, Qiu L. Vaccarin alleviates hypertension and nephropathy in renovascular hypertensive rats. Exp Ther Med 2018; 15(1): 924-32.
[PMID: 29399101]
[44]
Wu J, Saleh MA, Kirabo A, et al. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 2015; 126(1): 50-67.
[http://dx.doi.org/10.1172/JCI80761] [PMID: 26595812]
[45]
Fehrenbach DJ, Abais-Battad JM, Dasinger JH, Lund H, Mattson DL. Salt-sensitive increase in macrophages in the kidneys of Dahl SS rats. Am J Physiol Renal Physiol 2019; 317(2): F361-74.
[http://dx.doi.org/10.1152/ajprenal.00096.2019] [PMID: 31215801]
[46]
Bomfim GF, Cau SBA, Bruno AS, Fedoce AG, Carneiro FS. Hypertension: A new treatment for an old disease? Targeting the immune system. Br J Pharmacol 2019; 176(12): 2028-48.
[http://dx.doi.org/10.1111/bph.14436] [PMID: 29969833]
[47]
Ferreira NS, Tostes RC, Paradis P, Schiffrin EL. Aldosterone, inflammation, immune system, and hypertension. Am J Hypertens 2021; 34(1): 15-27.
[http://dx.doi.org/10.1093/ajh/hpaa137] [PMID: 32820797]
[48]
Don-Doncow N, Vanherle L, Zhang Y, Meissner A. T-cell accumulation in the hypertensive brain: A role for sphingosine-1-phosphate-mediated chemotaxis. Int J Mol Sci 2019; 20(3): 537.
[http://dx.doi.org/10.3390/ijms20030537] [PMID: 30695999]
[49]
Su R, Huang Y, Zhang D, Xiao G, Wei L. SRDFM: Siamese response deep factorization machine to improve anti-cancer drug recommendation. Brief Bioinform 2022; 23(2): bbab534.
[http://dx.doi.org/10.1093/bib/bbab534] [PMID: 35043144]
[50]
Wang X, Song X. New medical image fusion approach with coding based on SCD in wireless sensor network. J Electr Eng Technol 2015; 10(6): 2384-92. [J
[http://dx.doi.org/10.5370/JEET.2015.10.6.2384]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy