Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

The Edible Seaweed Gelidium amansii Promotes Structural Plasticity of Hippocampal Neurons and Improves Scopolamine-induced Learning and Memory Impairment in Mice

Author(s): Md. Mohibbullah, Michael Yordan Pringgo Wicaksono, Md. Abdul Hannan, Raju Dash, Maria Dyah Nur Meinita, Jae-Suk Choi, Yong-Ki Hong and Il Soo Moon*

Volume 22, Issue 9, 2023

Published on: 03 October, 2022

Page: [1391 - 1402] Pages: 12

DOI: 10.2174/1871527321666220909142158

open access plus

Abstract

Background: Gelidium amansii has been gaining profound interest in East Asian countries due to its enormous commercial value for agar production and its extensive pharmacological properties. Previous studies have shown that the ethanol extract of Gelidium amansii (GAE) has promising neurotrophic effects in in vitro conditions.

Objectives: The present study aimed to investigate the protective effects of GAE against scopolamineinduced cognitive deficits and its modulatory effects on hippocampal plasticity in mice.

Methods: For memory-related behavioral studies, the passive avoidance test and radial arm maze paradigm were conducted. The brain slices of the hippocampus CA1 neurons of experimental mice were then prepared to perform Golgi staining for analyzing spine density and its characteristic shape and immunohistochemistry for assessing the expression of different pre- and postsynaptic proteins.

Results: Following oral administration of GAE (0.5 mg/g body weight), mice with memory deficits exhibited a significant increase in the latency time on the passive avoidance test and a decrease in the number of working and reference memory errors and latency time on the radial arm maze test. Microscopic observations of Golgi-impregnated tissue sections and immunohistochemistry of hippocampal slices showed that neurons from GAE-treated mice displayed higher spine density and spine dynamics, increased synaptic contact, and the recruitment of memory-associated proteins, such as N-methyl-Daspartate receptors (NR2A and NR2B) and postsynaptic density-95 (PSD-95) when compared with the control group.

Conclusion: With these memory-protective functions and a modulatory role in underlying memoryrelated events, GAE could be a potential functional food and a promising source of pharmacological agents for the prevention and treatment of memory-related brain disorders.

Keywords: Gelidium amansii, cognition, spine dynamics, synaptogenesis, GluN2A, PSD-95.

« Previous
Graphical Abstract

[1]
Lieberwirth C, Pan Y, Liu Y, Zhang Z, Wang Z. Hippocampal adult neurogenesis: Its regulation and potential role in spatial learning and memory. Brain Res 2016; 1644: 127-40.
[http://dx.doi.org/10.1016/j.brainres.2016.05.015] [PMID: 27174001]
[2]
Angeloni C, Vauzour D. Natural products and neuroprotection. Int J Mol Sci 2019; 20(22): 5570.
[http://dx.doi.org/10.3390/ijms20225570] [PMID: 31703472]
[3]
Bagyinszky E, Giau VV, An SA. Transcriptomics in Alzheimer’s disease: Aspects and challenges. Int J Mol Sci 2020; 21(10): 3517.
[http://dx.doi.org/10.3390/ijms21103517] [PMID: 32429229]
[4]
Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 2006; 368(9533): 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[5]
Šišková Z, Justus D, Kaneko H, et al. Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of Alzheimer’s disease. Neuron 2014; 84(5): 1023-33.
[http://dx.doi.org/10.1016/j.neuron.2014.10.024] [PMID: 25456500]
[6]
Pinton S, Sampaio TB, Savall AS, Gutierrez MEZ. Neurotrophic factors in Alzheimer’s and Parkinson’s diseases: Implications for pathogenesis and therapy. Neural Regen Res 2017; 12(4): 549-57.
[http://dx.doi.org/10.4103/1673-5374.205084] [PMID: 28553325]
[7]
Mitre M, Mariga A, Chao MV. Neurotrophin signalling: Novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 2017; 131(1): 13-23.
[http://dx.doi.org/10.1042/CS20160044] [PMID: 27908981]
[8]
Samarakoon KW, Elvitigala DAS, Lakmal HHC, Kim YM, Jeon YJ. Future prospects and health benefits of functional ingredients from marine bio-resources: A review. Fish Aquatic Sci 2014; 17(3): 275-90.
[http://dx.doi.org/10.5657/FAS.2014.0275]
[9]
Seo MJ, Lee OH, Choi HS, Lee BY. Extract from edible red seaweed (Gelidium amansii) inhibits lipid accumulation and ROS production during differentiation in 3T3-L1 cells. Prev Nutr Food Sci 2012; 17(2): 129-35.
[http://dx.doi.org/10.3746/pnf.2012.17.2.129] [PMID: 24471074]
[10]
Lee Y, Oh H, Lee M. Anti-inflammatory effects of Agar free-Gelidium amansii (GA) extracts in high-fat diet-induced obese mice. Nutr Res Pract 2018; 12(6): 479-85.
[http://dx.doi.org/10.4162/nrp.2018.12.6.479] [PMID: 30515275]
[11]
Yang TH, Yao HT, Chiang MT. Red algae (Gelidium amansii) reduces adiposity via activation of lipolysis in rats with diabetes induced by streptozotocin-nicotinamide. Yao Wu Shi Pin Fen Xi 2015; 23(4): 758-65.
[PMID: 28911493]
[12]
Nagalingam M, Rajeshkumar S, Panneerselvam A, Lakshmi T. Antibacterial and Antifungal potential of acetone, ethanol and methanolic extract of marine red algae Gelidium amansii. Int J Res Pharm 2019; 10(2): 1013-8.
[http://dx.doi.org/10.26452/ijrps.v10i2.374]
[13]
Hannan MA, Sohag AAM, Dash R, et al. Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine 2020; 69: 153201.
[http://dx.doi.org/10.1016/j.phymed.2020.153201] [PMID: 32276177]
[14]
Meinita MDN, Harwanto D, Tirtawijaya G, et al. Fucosterol of marine macroalgae: Bioactivity, safety and toxicity on organism. Mar Drugs 2021; 19(10): 545.
[http://dx.doi.org/10.3390/md19100545] [PMID: 34677444]
[15]
Hannan MA, Kang JY, Hong YK, et al. The marine alga Gelidium amansii promotes the development and complexity of neuronal cytoarchitecture. Phytother Res 2013; 27(1): 21-9.
[http://dx.doi.org/10.1002/ptr.4684] [PMID: 22438103]
[16]
Hannan MA, Mohibbullah M, Hong YK, Nam JH, Moon IS. Gelidium amansii promotes dendritic spine morphology and synaptogenesis, and modulates NMDA receptor-mediated postsynaptic current. In Vitro Cell Dev Biol Anim 2014; 50(5): 445-52.
[http://dx.doi.org/10.1007/s11626-013-9721-2] [PMID: 24399252]
[17]
Hannan MA, Mohibbullah M, Hong YK, Moon IS. Moon ISJJomf. Proteomic analysis of the neurotrophic effect of Gelidium amansii in primary cultured neurons. J Med Food 2017; 20(3): 279-87.
[http://dx.doi.org/10.1089/jmf.2016.3848] [PMID: 28256936]
[18]
Hannan MA, Haque MN, Mohibbullah M, Dash R, Hong YK, Moon IS. Gelidium amansii attenuates hypoxia/reoxygenation-induced oxidative injury in primary hippocampal neurons through suppressing GluN2B expression. Antioxidants 2020; 9(3): 223.
[http://dx.doi.org/10.3390/antiox9030223] [PMID: 32182924]
[19]
Mohibbullah M, Choi JS, Bhuiyan MMH, et al. The red alga Gracilariopsis chorda and its active constituent arachidonic acid promote spine dynamics via dendritic filopodia and potentiate functional synaptic plasticity in hippocampal neurons. J Med Food 2018; 21(5): 481-8.
[http://dx.doi.org/10.1089/jmf.2017.4026] [PMID: 29498567]
[20]
Hannan MA, Dash R, Haque MN, et al. Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances. Mar Drugs 2020; 18(7): 347.
[http://dx.doi.org/10.3390/md18070347] [PMID: 32630301]
[21]
Enomoto T, Ishibashi T, Tokuda K, Ishiyama T, Toma S, Ito A. Lurasidone reverses MK-801-induced impairment of learning and memory in the Morris water maze and radial-arm maze tests in rats. Behav Brain Res 2008; 186(2): 197-207.
[http://dx.doi.org/10.1016/j.bbr.2007.08.012] [PMID: 17881065]
[22]
Sholl DA. Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 1953; 87(4): 387-406.
[PMID: 13117757]
[23]
(a) Paxinos GF, Franklin KB. The Mouse Brain in Stereotaxic Coordinates: Compact. Amsterdam, Boston: Elsevier Academic Press 2014.;
b) Pazos A, Cortes R, Palacios JM. Thyrotropin-releasing hormone receptor binding sites: Autoradiographic distribution in the rat and guinea pig brain. J Neurochem 2004; 45: 1448-63.
[24]
Zheng F, Cui D, Zhang L, et al. The volume of hippocampal subfields in relation to decline of memory recall across the adult lifespan. Front Aging Neurosci 2018; 10: 320.
[http://dx.doi.org/10.3389/fnagi.2018.00320] [PMID: 30364081]
[25]
Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H. Structure-stability-function relationships of dendritic spines. Trends Neurosci 2003; 26(7): 360-8.
[http://dx.doi.org/10.1016/S0166-2236(03)00162-0] [PMID: 12850432]
[26]
De Vincenti AP, Ríos AS, Paratcha G, Ledda F. Mechanisms that modulate and diversify BDNF functions: Implications for hippocampal synaptic plasticity. Front Cell Neurosci 2019; 13: 135.
[http://dx.doi.org/10.3389/fncel.2019.00135] [PMID: 31024262]
[27]
Rolls ET. The storage and recall of memories in the hippocampo-cortical system. Cell Tissue Res 2018; 373(3): 577-604.
[http://dx.doi.org/10.1007/s00441-017-2744-3] [PMID: 29218403]
[28]
Gorski JA, Zeiler SR, Tamowski S, Jones KR. Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J Neurosci 2003; 23(17): 6856-65.
[http://dx.doi.org/10.1523/JNEUROSCI.23-17-06856.2003] [PMID: 12890780]
[29]
Choi JY, Mohibbullah M, Park IS, Moon IS, Hong YK. An ethanol extract from the phaeophyte Undaria pinnatifida improves learning and memory impairment and dendritic spine morphology in hippocampal neurons. J Appl Phycol 2018; 30(1): 129-36.
[http://dx.doi.org/10.1007/s10811-017-1116-4]
[30]
Tronel S, Fabre A, Charrier V, Oliet SHR, Gage FH, Abrous DN. Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons. Proc Natl Acad Sci USA 2010; 107(17): 7963-8.
[http://dx.doi.org/10.1073/pnas.0914613107] [PMID: 20375283]
[31]
Bailey CH, Kandel ER. Structural changes accompanying memory storage. Annu Rev Physiol 1993; 55(1): 397-426.
[http://dx.doi.org/10.1146/annurev.ph.55.030193.002145] [PMID: 8466181]
[32]
Bourne JN, Harris KM. Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus 2011; 21(4): 354-73.
[http://dx.doi.org/10.1002/hipo.20768] [PMID: 20101601]
[33]
Koleske AJ. Molecular mechanisms of dendrite stability. Nat Rev Neurosci 2013; 14(8): 536-50.
[http://dx.doi.org/10.1038/nrn3486] [PMID: 23839597]
[34]
Lazcano Z, Solis O, Bringas ME, et al. Unilateral injection of Aβ25-35 in the hippocampus reduces the number of dendritic spines in hyperglycemic rats. Synapse 2014; 68(12): 585-94.
[http://dx.doi.org/10.1002/syn.21770] [PMID: 25049192]
[35]
Matsuzaki M, Honkura N, Ellis-Davies GCR, Kasai H. Structural basis of long-term potentiation in single dendritic spines. Nature 2004; 429(6993): 761-6.
[http://dx.doi.org/10.1038/nature02617] [PMID: 15190253]
[36]
Citri A, Malenka RC. Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology 2008; 33(1): 18-41.
[http://dx.doi.org/10.1038/sj.npp.1301559] [PMID: 17728696]
[37]
Vicario-Abejón C, Owens D, McKay R, Segal M. Role of neurotrophins in central synapse formation and stabilization. Nat Rev Neurosci 2002; 3(12): 965-74.
[http://dx.doi.org/10.1038/nrn988] [PMID: 12461553]
[38]
Ling W, Chang L, Song Y, et al. Immunolocalization of NR1, NR2A, and PSD-95 in rat hippocampal subregions during postnatal development. Acta Histochem 2012; 114(3): 285-95.
[http://dx.doi.org/10.1016/j.acthis.2011.06.005] [PMID: 21719075]
[39]
Tirtawijaya G, Haque MN, Choi JS, et al. Spinogenesis and synaptogenesis effects of the red seaweed Kappaphycus alvarezii and its isolated cholesterol on hippocampal neuron cultures. Prev Nutr Food Sci 2019; 24(4): 418-25.
[http://dx.doi.org/10.3746/pnf.2019.24.4.418] [PMID: 31915637]
[40]
Oh J, Choi J, Nam TJ. Fucosterol from an edible brown alga Ecklonia stolonifera prevents soluble amyloid beta-induced cognitive dysfunction in aging rats. Mar Drugs 2018; 16(10): 368.
[http://dx.doi.org/10.3390/md16100368] [PMID: 30301140]
[41]
Haque MN, Hannan MA, Dash R, Choi SM, Moon IS. The potential LXRβ agonist stigmasterol protects against hypoxia/reoxygenation injury by modulating mitophagy in primary hippocampal neurons. Phytomedicine 2021; 81: 153415.
[http://dx.doi.org/10.1016/j.phymed.2020.153415] [PMID: 33285471]

© 2024 Bentham Science Publishers | Privacy Policy