Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Selective Inhibition of Soluble TNF using XPro1595 Improves Hippocampal Pathology to Promote Improved Neurological Recovery Following Traumatic Brain Injury in Mice

Author(s): Katelyn Larson, Melissa Damon, Rajasa Randhi, Nancy Nixon-Lee and Kirsty J. Dixon*

Volume 22, Issue 9, 2023

Published on: 20 August, 2022

Page: [1378 - 1390] Pages: 13

DOI: 10.2174/1871527321666220610104908

open access plus

Abstract

Aims: To determine the efficacy of XPro1595 to improve pathophysiological and functional outcomes in a mouse model of traumatic brain injury (TBI).

Background: Symptoms associated with TBI can be debilitating, and treatment without off-target side effects remains a challenge. This study aimed to investigate the efficacy of selectively inhibiting the soluble form of TNF (solTNF) using the biologic XPro1595 in a mouse model of TBI.

Objectives: Use XPro1595 to determine whether injury-induced solTNF promotes hippocampal inflammation and dendritic plasticity and associated functional impairments.

Methods: Mild-to-moderate traumatic brain injury (CCI model) was induced in adult male C57Bl/6J WT and Thy1-YFPH mice, with XPro1595 (10 mg/kg, S.C.) or vehicle being administered in a clinically relevant window (60 minutes post-injury). The animals were assessed for differences in neurological function, and hippocampal tissue was analyzed for inflammation and glial reactivity, as well as neuronal degeneration and plasticity.

Results: We report that unilateral CCI over the right parietal cortex in mice promoted deficits in learning and memory, depressive-like behavior, and neuropathic pain. Using immunohistochemical and Western blotting techniques, we observed the cortical injury promoted a set of expected pathophysiology’s within the hippocampus consistent with the observed neurological outcomes, including glial reactivity, enhanced neuronal dendritic degeneration (dendritic beading), and reduced synaptic plasticity (spine density and PSD-95 expression) within the DG and CA1 region of the hippocampus, that were prevented in mice treated with XPro1595.

Conclusion: Overall, we observed that selectively inhibiting solTNF using XPro1595 improved the pathophysiological and neurological sequelae of brain-injured mice, which provides support for its use in patients with TBI.

Keywords: TBI, inflammation, TNF, TNFR1, glial reactivity, synaptic plasticity.

Graphical Abstract

[1]
McGinn MJ, Povlishock JT. Pathophysiology of traumatic brain injury. Neurosurg Clin N Am 2016; 27(4): 397-407.
[http://dx.doi.org/10.1016/j.nec.2016.06.002] [PMID: 27637392]
[2]
Dixon KJ. Pathophysiology of traumatic brain injury. Phys Med Rehabil Clin N Am 2017; 28(2): 215-25.
[http://dx.doi.org/10.1016/j.pmr.2016.12.001] [PMID: 28390509]
[3]
Shively S, Scher AI, Perl DP, Diaz-Arrastia R. Dementia resulting from traumatic brain injury: What is the pathology? Arch Neurol 2012; 69(10): 1245-51.
[http://dx.doi.org/10.1001/archneurol.2011.3747] [PMID: 22776913]
[4]
Luo C, Jiang J, Lu Y, Zhu C. Spatial and temporal profile of apoptosis following lateral fluid percussion brain injury. Chin J Traumatol 2002; 5(1): 24-7.
[PMID: 11835752]
[5]
Raghupathi R. Cell death mechanisms following traumatic brain injury. Brain Pathol 2004; 14(2): 215-22.
[http://dx.doi.org/10.1111/j.1750-3639.2004.tb00056.x] [PMID: 15193035]
[6]
O’Connor CA, Cernak I, Vink R. The temporal profile of edema formation differs between male and female rats following diffuse traumatic brain injury. Acta Neurochir Suppl (Wien) 2006; 96: 121-4.
[http://dx.doi.org/10.1007/3-211-30714-1_27] [PMID: 16671438]
[7]
Lotocki G, de Rivero Vaccari JP, Perez ER, et al. Alterations in blood-brain barrier permeability to large and small molecules and leukocyte accumulation after traumatic brain injury: Effects of post-traumatic hypothermia. J Neurotrauma 2009; 26(7): 1123-34.
[http://dx.doi.org/10.1089/neu.2008.0802] [PMID: 19558276]
[8]
Morganti-Kossman MC, Lenzlinger PM, Hans V, et al. Production of cytokines following brain injury: Beneficial and deleterious for the damaged tissue. Mol Psychiatry 1997; 2(2): 133-6.
[http://dx.doi.org/10.1038/sj.mp.4000227] [PMID: 9106236]
[9]
Ghirnikar RS, Lee YL, Eng LF. Inflammation in traumatic brain injury: Role of cytokines and chemokines. Neurochem Res 1998; 23(3): 329-40.
[http://dx.doi.org/10.1023/A:1022453332560] [PMID: 9482245]
[10]
Lossinsky AS, Shivers RR. Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions.Review Histol Histopathol 2004; 19(2): 535-64.
[PMID: 15024715]
[11]
Taupin P. Adult neurogenesis, neuroinflammation and therapeutic potential of adult neural stem cells. Int J Med Sci 2008; 5(3): 127-32.
[http://dx.doi.org/10.7150/ijms.5.127] [PMID: 18566676]
[12]
Ekmark-Lewén S, Lewén A, Israelsson C, et al. Vimentin and GFAP responses in astrocytes after contusion trauma to the murine brain. Restor Neurol Neurosci 2010; 28(3): 311-21.
[http://dx.doi.org/10.3233/RNN-2010-0529] [PMID: 20479526]
[13]
Homsi S, Piaggio T, Croci N, et al. Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: A twelve-week follow-up study. J Neurotrauma 2010; 27(5): 911-21.
[http://dx.doi.org/10.1089/neu.2009.1223] [PMID: 20166806]
[14]
Yang SH, Gangidine M, Pritts TA, Goodman MD, Lentsch AB. Interleukin 6 mediates neuroinflammation and motor coordination deficits after mild traumatic brain injury and brief hypoxia in mice. Shock 2013; 40(6): 471-5.
[http://dx.doi.org/10.1097/SHK.0000000000000037] [PMID: 24088994]
[15]
Lotocki G, Alonso OF, Dietrich WD, Keane RW. Tumor necrosis factor receptor 1 and its signaling intermediates are recruited to lipid rafts in the traumatized brain. J Neurosci 2004; 24(49): 11010-6.
[http://dx.doi.org/10.1523/JNEUROSCI.3823-04.2004] [PMID: 15590916]
[16]
Murray KN, Parry-Jones AR, Allan SM. Interleukin-1 and acute brain injury. Front Cell Neurosci 2015; 9: 18.
[http://dx.doi.org/10.3389/fncel.2015.00018] [PMID: 25705177]
[17]
He P, Liu Q, Wu J, Shen Y. Genetic deletion of TNF receptor suppresses excitatory synaptic transmission via reducing AMPA receptor synaptic localization in cortical neurons. FASEB J 2012; 26(1): 334-45.
[http://dx.doi.org/10.1096/fj.11-192716] [PMID: 21982949]
[18]
Albensi BC, Mattson MP. Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 2000; 35(2): 151-9.
[http://dx.doi.org/10.1002/(SICI)1098-2396(200002)35:2<151:AID-SYN8>3.0.CO;2-P] [PMID: 10611641]
[19]
Liu Y, Zhou LJ, Wang J, et al. TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci 2017; 37(4): 871-81.
[http://dx.doi.org/10.1523/JNEUROSCI.2235-16.2016] [PMID: 28123022]
[20]
Dellarole A, Morton P, Brambilla R, et al. Neuropathic pain-induced depressive-like behavior and hippocampal neurogenesis and plasticity are dependent on TNFR1 signaling. Brain Behav Immun 2014; 41: 65-81.
[http://dx.doi.org/10.1016/j.bbi.2014.04.003] [PMID: 24938671]
[21]
Mutso AA, Petre B, Huang L, et al. Reorganization of hippocampal functional connectivity with transition to chronic back pain. J Neurophysiol 2014; 111(5): 1065-76.
[http://dx.doi.org/10.1152/jn.00611.2013] [PMID: 24335219]
[22]
Cardoso-Cruz H, Lima D, Galhardo V. Impaired spatial memory performance in a rat model of neuropathic pain is associated with reduced hippocampus-prefrontal cortex connectivity. J Neurosci 2013; 33(6): 2465-80.
[http://dx.doi.org/10.1523/JNEUROSCI.5197-12.2013] [PMID: 23392675]
[23]
Chang Y, Yan LH, Zhang FK, et al. Spatiotemporal characteristics of pain-associated neuronal activities in primary somatosensory cortex induced by peripheral persistent nociception. Neurosci Lett 2008; 448(1): 134-8.
[http://dx.doi.org/10.1016/j.neulet.2008.08.090] [PMID: 18805459]
[24]
Nakamura H, Katayama Y, Kawakami Y. Hippocampal CA1/subiculum-prefrontal cortical pathways induce plastic changes of nociceptive responses in cingulate and prelimbic areas. BMC Neurosci 2010; 11: 100.
[http://dx.doi.org/10.1186/1471-2202-11-100] [PMID: 20716327]
[25]
Becker D, Deller T, Vlachos A. Tumor necrosis factor (TNF)-receptor 1 and 2 mediate homeostatic synaptic plasticity of denervated mouse dentate granule cells. Sci Rep 2015; 5: 12726.
[http://dx.doi.org/10.1038/srep12726] [PMID: 26246237]
[26]
Hennessy E, Gormley S, Lopez-Rodriguez AB, Murray C, Murray C, Cunningham C. Systemic TNF-α produces acute cognitive dysfunction and exaggerated sickness behavior when superimposed upon progressive neurodegeneration. Brain Behav Immun 2017; 59: 233-44.
[http://dx.doi.org/10.1016/j.bbi.2016.09.011] [PMID: 27633985]
[27]
Postal M, Lapa AT, Sinicato NA, et al. Depressive symptoms are associated with tumor necrosis factor alpha in systemic lupus erythematosus. J Neuroinflammation 2016; 13: 5.
[http://dx.doi.org/10.1186/s12974-015-0471-9] [PMID: 26732584]
[28]
Gerard E, Spengler RN, Bonoiu AC, et al. Chronic constriction injury-induced nociception is relieved by nanomedicine-mediated decrease of rat hippocampal tumor necrosis factor. Pain 2015; 156(7): 1320-33.
[http://dx.doi.org/10.1097/j.pain.0000000000000181] [PMID: 25851457]
[29]
Martuscello RT, Spengler RN, Bonoiu AC, et al. Increasing TNF levels solely in the rat hippocampus produces persistent pain-like symptoms. Pain 2012; 153(9): 1871-82.
[http://dx.doi.org/10.1016/j.pain.2012.05.028] [PMID: 22770843]
[30]
Grau GE, Maennel DN. TNF inhibition and sepsis - sounding a cautionary note. Nat Med 1997; 3(11): 1193-5.
[http://dx.doi.org/10.1038/nm1197-1193] [PMID: 9359687]
[31]
Fisher CJ Jr, Agosti JM, Opal SM, et al. Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. N Engl J Med 1996; 334(26): 1697-702.
[http://dx.doi.org/10.1056/NEJM199606273342603] [PMID: 8637514]
[32]
Qiu P, Cui X, Sun J, Welsh J, Natanson C, Eichacker PQ. Antitumor necrosis factor therapy is associated with improved survival in clinical sepsis trials: A meta-analysis. Crit Care Med 2013; 41(10): 2419-29.
[http://dx.doi.org/10.1097/CCM.0b013e3182982add] [PMID: 23887234]
[33]
Tobinick E, Kim NM, Reyzin G, Rodriguez-Romanacce H, DePuy V. Selective TNF inhibition for chronic stroke and traumatic brain injury: An observational study involving 629 consecutive patients treated with perispinal etanercept. CNS Drugs 2012; 26(12): 1051-70.
[http://dx.doi.org/10.1007/s40263-012-0013-2] [PMID: 23100196]
[34]
Tobinick E, Rodriguez-Romanacce H, Levine A, Ignatowski TA, Spengler RN. Immediate neurological recovery following perispinal etanercept years after brain injury. Clin Drug Investig 2014; 34(5): 361-6.
[http://dx.doi.org/10.1007/s40261-014-0186-1] [PMID: 24647830]
[35]
Baratz R, Tweedie D, Rubovitch V, et al. Tumor necrosis factor-α synthesis inhibitor, 3,6′-dithiothalidomide, reverses behavioral impairments induced by minimal traumatic brain injury in mice. J Neurochem 2011; 118(6): 1032-42.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07377.x] [PMID: 21740439]
[36]
Chio CC, Chang CH, Wang CC, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α. BMC Neurosci 2013; 14: 33.
[http://dx.doi.org/10.1186/1471-2202-14-33] [PMID: 23496862]
[37]
Chio CC, Lin JW, Chang MW, et al. Therapeutic evaluation of etanercept in a model of traumatic brain injury. J Neurochem 2010; 115(4): 921-9.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06969.x] [PMID: 20796174]
[38]
Kwon HJ, Coté TR, Cuffe MS, Kramer JM, Braun MM. Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann Intern Med 2003; 138(10): 807-11.
[http://dx.doi.org/10.7326/0003-4819-138-10-200305200-00008] [PMID: 12755552]
[39]
Thomas SS, Borazan N, Barroso N, et al. Comparative immunogenicity of TNF inhibitors: Impact on clinical efficacy and tolerability in the management of autoimmune diseases. A systematic review and meta-analysis. BioDrugs 2015; 29(4): 241-58.
[http://dx.doi.org/10.1007/s40259-015-0134-5] [PMID: 26280210]
[40]
Maneiro JR, Salgado E, Gomez-Reino JJ. Immunogenicity of monoclonal antibodies against tumor necrosis factor used in chronic immune-mediated inflammatory conditions: Systematic review and meta-analysis. JAMA Intern Med 2013; 173(15): 1416-28.
[http://dx.doi.org/10.1001/jamainternmed.2013.7430] [PMID: 23797343]
[41]
Fischer R, Marsal J, Guttà C, et al. Novel strategies to mimic transmembrane tumor necrosis factor-dependent activation of tumor necrosis factor receptor 2. Sci Rep 2017; 7(1): 6607.
[http://dx.doi.org/10.1038/s41598-017-06993-4] [PMID: 28747780]
[42]
Wajant H, Siegmund D. TNFR1 and TNFR2 in the Control of the Life and Death Balance of Macrophages. Front Cell Dev Biol 2019; 7: 91.
[http://dx.doi.org/10.3389/fcell.2019.00091] [PMID: 31192209]
[43]
Longhi L, Perego C, Ortolano F, et al. Tumor necrosis factor in traumatic brain injury: Effects of genetic deletion of p55 or p75 receptor. J Cereb Blood Flow Metab 2013; 33(8): 1182-9.
[http://dx.doi.org/10.1038/jcbfm.2013.65] [PMID: 23611870]
[44]
Faustman DL, Davis M. TNF receptor 2 and disease: Autoimmunity and regenerative medicine. Front Immunol 2013; 4: 478.
[http://dx.doi.org/10.3389/fimmu.2013.00478] [PMID: 24391650]
[45]
Atretkhany KN, Mufazalov IA, Dunst J, et al. Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc Natl Acad Sci USA 2018; 115(51): 13051-6.
[http://dx.doi.org/10.1073/pnas.1807499115] [PMID: 30498033]
[46]
Yang J, You Z, Kim HH, et al. Genetic analysis of the role of tumor necrosis factor receptors in functional outcome after traumatic brain injury in mice. J Neurotrauma 2010; 27(6): 1037-46.
[http://dx.doi.org/10.1089/neu.2009.1229] [PMID: 20205514]
[47]
Knoblach SM, Fan L, Faden AI. Early neuronal expression of tumor necrosis factor-alpha after experimental brain injury contributes to neurological impairment. J Neuroimmunol 1999; 95(1-2): 115-25.
[http://dx.doi.org/10.1016/S0165-5728(98)00273-2] [PMID: 10229121]
[48]
Brambilla R, Ashbaugh JJ, Magliozzi R, et al. Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination. Brain 2011; 134(Pt 9): 2736-54.
[http://dx.doi.org/10.1093/brain/awr199] [PMID: 21908877]
[49]
Clausen BH, Degn M, Martin NA, et al. Systemically administered anti-TNF therapy ameliorates functional outcomes after focal cerebral ischemia. J Neuroinflammation 2014; 11: 203.
[http://dx.doi.org/10.1186/s12974-014-0203-6] [PMID: 25498129]
[50]
MacPherson KP, Sompol P, Kannarkat GT, et al. Peripheral administration of the soluble TNF inhibitor XPro1595 modifies brain immune cell profiles, decreases beta-amyloid plaque load, and rescues impaired long-term potentiation in 5xFAD mice. Neurobiol Dis 2017; 102: 81-95.
[http://dx.doi.org/10.1016/j.nbd.2017.02.010] [PMID: 28237313]
[51]
Cavanagh C, Tse YC, Nguyen HB, et al. Inhibiting tumor necrosis factor-α before amyloidosis prevents synaptic deficits in an Alzheimer’s disease model. Neurobiol Aging 2016; 47: 41-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.07.009] [PMID: 27552480]
[52]
Sama DM, Mohmmad Abdul H, Furman JL, et al. Inhibition of soluble tumor necrosis factor ameliorates synaptic alterations and Ca2+ dysregulation in aged rats. PLoS One 2012; 7(5): e38170.
[http://dx.doi.org/10.1371/journal.pone.0038170] [PMID: 22666474]
[53]
Karamita M, Barnum C, Möbius W, et al. Therapeutic inhibition of soluble brain TNF promotes remyelination by increasing myelin phagocytosis by microglia. JCI Insight 2017; 2(8): 87455.
[http://dx.doi.org/10.1172/jci.insight.87455] [PMID: 28422748]
[54]
Wang C, Yang J ZH, et al. Tang, XPro1595 reduces the severity of post resuscitation myocardial dysfunction in a rat model of cardiac arrest. Circulation 2018; 138: A321.
[http://dx.doi.org/10.1161/circ.138.suppl_2.321]
[55]
INmuneBioInc INmune Bio Announces Final Phase I Clinical Data for its Soluble TNF Inhibitor, INB03, Demonstrates Efficacy and Safety; INB03 is Advancing to Phase II Trials. 2019. Available from : [https://www.globenewswire.com/news-release/2019/12/17/1961610/0/en/INmune-Bio-Announces-Final-Phase-I-Clinical-Data-for-its-Soluble-TNF-Inhibitor-INB03-Demonstrates-Efficacy-and-Safety-INB03-is-Advancing-to-Phase-II-Trials.html
[56]
INmuneBioInc INmune Bio, Inc. Announces XPro1595 Found to Decrease Neuroinflammation and Neurodegeneration Biomarkers in Patients with Alzheimer’s Disease in Phase 1b. Trial. 2021. Available from : [https://www.globenewswire.com/news-release/2021/01/21/2162007/0/en/INmune-Bio-Inc-Announces-XPro1595-Found-to-Decrease-Neuroinflammation-and-Neurodegeneration-Biomarkers-in-Patients-with-Alzheimer-s-Disease-in-Phase-1b-Trial.html
[57]
Dixon KJ, Mier J, Gajavelli S, et al. EphrinB3 restricts endogenous neural stem cell migration after traumatic brain injury. Stem Cell Res (Amst) 2016; 17(3): 504-13.
[http://dx.doi.org/10.1016/j.scr.2016.09.029] [PMID: 27771498]
[58]
Dixon KJ, Theus MH, Nelersa CM, et al. Endogenous neural stem/progenitor cells stabilize the cortical microenvironment after traumatic brain injury. J Neurotrauma 2015; 32(11): 753-64.
[http://dx.doi.org/10.1089/neu.2014.3390] [PMID: 25290253]
[59]
Zalevsky J, Secher T, Ezhevsky SA, et al. Dominant-negative inhibitors of soluble TNF attenuate experimental arthritis without suppressing innate immunity to infection. J Immunol 2007; 179(3): 1872-83.
[http://dx.doi.org/10.4049/jimmunol.179.3.1872] [PMID: 17641054]
[60]
Elliott MB, Oshinsky ML, Amenta PS, Awe OO, Jallo JI. Nociceptive neuropeptide increases and periorbital allodynia in a model of traumatic brain injury. Headache 2012; 52(6): 966-84.
[http://dx.doi.org/10.1111/j.1526-4610.2012.02160.x] [PMID: 22568499]
[61]
Macolino CM, Daiutolo BV, Albertson BK, Elliott MB. Mechanical allodynia induced by traumatic brain injury is independent of restraint stress. J Neurosci Methods 2014; 226: 139-46.
[http://dx.doi.org/10.1016/j.jneumeth.2014.01.008] [PMID: 24486873]
[62]
Akhondzadeh S. Hippocampal synaptic plasticity and cognition. J Clin Pharm Ther 1999; 24(4): 241-8.
[http://dx.doi.org/10.1046/j.1365-2710.1999.00231.x] [PMID: 10475982]
[63]
Ofek H, Defrin R. The characteristics of chronic central pain after traumatic brain injury. Pain 2007; 131(3): 330-40.
[http://dx.doi.org/10.1016/j.pain.2007.06.015] [PMID: 17689190]
[64]
Sullivan-Singh SJ, Sawyer K, Ehde DM, et al. Comorbidity of pain and depression among persons with traumatic brain injury. Arch Phys Med Rehabil 2014; 95(6): 1100-5.
[http://dx.doi.org/10.1016/j.apmr.2014.02.001] [PMID: 24561058]
[65]
Qiao H, Li MX, Xu C, Chen HB, An SC, Ma XM. Dendritic spines in depression: What we learned from animal models. Neural Plast 2016; 2016: 8056370.
[http://dx.doi.org/10.1155/2016/8056370] [PMID: 26881133]
[66]
Bay E, Kirsch N, Gillespie B. Chronic stress conditions do explain posttraumatic brain injury depression. Res Theory Nurs Pract 2004; 18(2-3): 213-28.
[http://dx.doi.org/10.1891/rtnp.18.2.213.61278] [PMID: 15553348]
[67]
Karson A. Demirtaş T, Bayramgürler D, Balci F, Utkan T. Chronic administration of infliximab (TNF-α inhibitor) decreases depression and anxiety-like behaviour in rat model of chronic mild stress. Basic Clin Pharmacol Toxicol 2013; 112(5): 335-40.
[http://dx.doi.org/10.1111/bcpt.12037] [PMID: 23167806]
[68]
Grandhi R, Tavakoli S, Ortega C, Simmonds MJ. A review of chronic pain and cognitive, mood, and motor dysfunction following mild traumatic brain injury: Complex, comorbid, and/or overlapping conditions? Brain Sci 2017; 7(12): E160.
[http://dx.doi.org/10.3390/brainsci7120160] [PMID: 29211026]
[69]
Nampiaparampil DE. Prevalence of chronic pain after traumatic brain injury: A systematic review. JAMA 2008; 300(6): 711-9.
[http://dx.doi.org/10.1001/jama.300.6.711] [PMID: 18698069]
[70]
Defrin R, Gruener H, Schreiber S, Pick CG. Quantitative somatosensory testing of subjects with chronic post-traumatic headache: Implications on its mechanisms. Eur J Pain 2010; 14(9): 924-31.
[http://dx.doi.org/10.1016/j.ejpain.2010.03.004] [PMID: 20363652]
[71]
Kumar RG, Gao S, Juengst SB, Wagner AK, Fabio A. The effects of post-traumatic depression on cognition, pain, fatigue, and headache after moderate-to-severe traumatic brain injury: A thematic review. Brain Inj 2018; 32(4): 383-94.
[http://dx.doi.org/10.1080/02699052.2018.1427888] [PMID: 29355429]
[72]
Phillips KF, Deshpande LS. Repeated low-dose organophosphate DFP exposure leads to the development of depression and cognitive impairment in a rat model of Gulf War Illness. Neurotoxicology 2016; 52: 127-33.
[http://dx.doi.org/10.1016/j.neuro.2015.11.014] [PMID: 26619911]
[73]
Grzegorski T, Losy J. Cognitive impairment in multiple sclerosis - a review of current knowledge and recent research. Rev Neurosci 2017; 28(8): 845-60.
[http://dx.doi.org/10.1515/revneuro-2017-0011] [PMID: 28787275]
[74]
Kusters R, Kapitein LC, Hoogenraad CC, Storm C. Shape-induced asymmetric diffusion in dendritic spines allows efficient synaptic AMPA receptor trapping. Biophys J 2013; 105(12): 2743-50.
[http://dx.doi.org/10.1016/j.bpj.2013.11.016] [PMID: 24359746]
[75]
Mahmmoud RR, Sase S, Aher YD, et al. Spatial and Working Memory Is Linked to Spine Density and Mushroom Spines. PLoS One 2015; 10(10): e0139739.
[http://dx.doi.org/10.1371/journal.pone.0139739] [PMID: 26469788]
[76]
Leuner B, Gould E. Structural plasticity and hippocampal function. Annu Rev Psychol 2010; 61: 111-40.
[77]
Gao X, Deng P, Xu ZC, Chen J. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus. PLoS One 2011; 6(9): e24566.
[http://dx.doi.org/10.1371/journal.pone.0024566] [PMID: 21931758]
[78]
Fasick V, Spengler RN, Samankan S, Nader ND, Ignatowski TA. The hippocampus and TNF: Common links between chronic pain and depression. Neurosci Biobehav Rev 2015; 53: 139-59.
[http://dx.doi.org/10.1016/j.neubiorev.2015.03.014] [PMID: 25857253]
[79]
Yan BC, Park JH, Ahn JH, Lee JC, Won MH, Kang IJ. Postsynaptic density protein (PSD)-95 expression is markedly decreased in the hippocampal CA1 region after experimental ischemia-reperfusion injury. J Neurol Sci 2013; 330(1-2): 111-6.
[http://dx.doi.org/10.1016/j.jns.2013.04.023] [PMID: 23684672]
[80]
Wakade C, Sukumari-Ramesh S, Laird MD, Dhandapani KM, Vender JR. Delayed reduction in hippocampal postsynaptic density protein-95 expression temporally correlates with cognitive dysfunction following controlled cortical impact in mice. J Neurosurg 2010; 113(6): 1195-201.
[http://dx.doi.org/10.3171/2010.3.JNS091212] [PMID: 20397893]
[81]
Scheff SW, Price DA, Hicks RR, Baldwin SA, Robinson S, Brackney C. Synaptogenesis in the hippocampal CA1 field following traumatic brain injury. J Neurotrauma 2005; 22(7): 719-32.
[http://dx.doi.org/10.1089/neu.2005.22.719] [PMID: 16004576]
[82]
Ansari MA, Roberts KN, Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med 2008; 45(4): 443-52.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.04.038] [PMID: 18501200]
[83]
Ren WJ, Liu Y, Zhou LJ, et al. Peripheral nerve injury leads to working memory deficits and dysfunction of the hippocampus by upregulation of TNF-α in rodents. Neuropsychopharmacology 2011; 36(5): 979-92.
[http://dx.doi.org/10.1038/npp.2010.236] [PMID: 21289602]
[84]
Winston CN, Chellappa D, Wilkins T, et al. Controlled cortical impact results in an extensive loss of dendritic spines that is not mediated by injury-induced amyloid-beta accumulation. J Neurotrauma 2013; 30(23): 1966-72.
[http://dx.doi.org/10.1089/neu.2013.2960] [PMID: 23879560]
[85]
Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature 2006; 440(7087): 1054-9.
[http://dx.doi.org/10.1038/nature04671] [PMID: 16547515]
[86]
Becker D, Zahn N, Deller T, Vlachos A. Tumor necrosis factor alpha maintains denervation-induced homeostatic synaptic plasticity of mouse dentate granule cells. Front Cell Neurosci 2013; 7: 257.
[http://dx.doi.org/10.3389/fncel.2013.00257] [PMID: 24385951]
[87]
Kim JY, Shen S, Dietz K, et al. HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 2010; 13(2): 180-9.
[http://dx.doi.org/10.1038/nn.2471] [PMID: 20037577]
[88]
Greenwood SM, Mizielinska SM, Frenguelli BG, Harvey J, Connolly CN. Mitochondrial dysfunction and dendritic beading during neuronal toxicity. J Biol Chem 2007; 282(36): 26235-44.
[http://dx.doi.org/10.1074/jbc.M704488200] [PMID: 17616519]
[89]
Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol 2013; 4: 18.
[http://dx.doi.org/10.3389/fneur.2013.00018] [PMID: 23459929]
[90]
Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 2011; 1813(5): 878-88.
[http://dx.doi.org/10.1016/j.bbamcr.2011.01.034] [PMID: 21296109]
[91]
Yoburn BC, Billings B, Duttaroy A. Opioid receptor regulation in mice. J Pharmacol Exp Ther 1993; 265(1): 314-20.
[PMID: 8386239]
[92]
Wonnacott S. The paradox of nicotinic acetylcholine receptor upregulation by nicotine. Trends Pharmacol Sci 1990; 11(6): 216-9.
[http://dx.doi.org/10.1016/0165-6147(90)90242-Z] [PMID: 2200178]
[93]
Sword J, Masuda T, Croom D, Kirov SA. Evolution of neuronal and astroglial disruption in the peri-contusional cortex of mice revealed by in vivo two-photon imaging. Brain 2013; 136(Pt 5): 1446-61.
[http://dx.doi.org/10.1093/brain/awt026] [PMID: 23466395]
[94]
Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic histopathological and behavioral outcomes of experimental traumatic brain injury in adult male animals. J Neurotrauma 2015; 32(23): 1861-82.
[http://dx.doi.org/10.1089/neu.2014.3680] [PMID: 25490251]
[95]
Farrell K, Houle JD. Systemic inhibition of soluble tumor necrosis factor with XPro1595 exacerbates a post-spinal cord injury depressive phenotype in female rats. J Neurotrauma 2019; 36(21): 2964-76.
[http://dx.doi.org/10.1089/neu.2019.6438] [PMID: 31064292]
[96]
Del Rivero T, Fischer R, Yang F, Swanson KA, Bethea JR. Tumor necrosis factor receptor 1 inhibition is therapeutic for neuropathic pain in males but not in females. Pain 2019; 160(4): 922-31.
[http://dx.doi.org/10.1097/j.pain.0000000000001470] [PMID: 30586024]
[97]
Monaco C, Nanchahal J, Taylor P, Feldmann M. Anti-TNF therapy: Past, present and future. Int Immunol 2015; 27(1): 55-62.
[http://dx.doi.org/10.1093/intimm/dxu102] [PMID: 25411043]
[98]
Tuttolomondo A, Pecoraro R, Pinto A. Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: A review of the evidence to date. Drug Des Devel Ther 2014; 8: 2221-38.
[http://dx.doi.org/10.2147/DDDT.S67655] [PMID: 25422582]
[99]
Ibrahim WH, Hammoudah M, Akhtar N, Al-Hail H, Deleu D. Central nervous system demyelination associated with etanercept in a 51 years old woman. Libyan J Med 2007; 2(2): 99-102.
[PMID: 21503261]
[100]
Kaltsonoudis E, Zikou AK, Voulgari PV, Konitsiotis S, Argyropoulou MI, Drosos AA. Neurological adverse events in patients receiving anti-TNF therapy: A prospective imaging and electrophysiological study. Arthritis Res Ther 2014; 16(3): R125.
[http://dx.doi.org/10.1186/ar4582] [PMID: 24938855]
[101]
Cheong CU, Chang CP, Chao CM, Cheng BC, Yang CZ, Chio CC. Etanercept attenuates traumatic brain injury in rats by reducing brain TNF- α contents and by stimulating newly formed neurogenesis. Mediators Inflamm 2013; 2013: 620837.
[http://dx.doi.org/10.1155/2013/620837] [PMID: 23710117]
[102]
Steed PM, Tansey MG, Zalevsky J, et al. Inactivation of TNF signaling by rationally designed dominant-negative TNF variants. Science 2003; 301(5641): 1895-8.
[http://dx.doi.org/10.1126/science.1081297] [PMID: 14512626]
[103]
Barnum CJ, Chen X, Chung J, et al. Peripheral administration of the selective inhibitor of soluble tumor necrosis factor (TNF) XPro®1595 attenuates nigral cell loss and glial activation in 6-OHDA hemiparkinsonian rats. J Parkinsons Dis 2014; 4(3): 349-60.
[http://dx.doi.org/10.3233/JPD-140410] [PMID: 25061061]
[104]
Randhi R, Damon M, Dixon KJ. Selective inhibition of soluble TNF using XPro1595 relieves pain and attenuates cerulein-induced pathology in mice. BMC Gastroenterol 2021; 21(1): 243.
[http://dx.doi.org/10.1186/s12876-021-01827-0] [PMID: 34049483]

© 2024 Bentham Science Publishers | Privacy Policy