Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Prodrugs of Nucleoside 5'-Monophosphate Analogues: Overview of the Recent Literature Concerning their Synthesis and Applications

Author(s): Béatrice Roy, Valentin Navarro and Suzanne Peyrottes*

Volume 30, Issue 11, 2023

Published on: 02 November, 2022

Page: [1256 - 1303] Pages: 48

DOI: 10.2174/0929867329666220909122820

Price: $65

conference banner
Abstract

Nucleoside analogues are widely used as anti-infectious and antitumoral agents. However, their clinical use may face limitations associated with their physicochemical properties, pharmacokinetic parameters, and/or their peculiar mechanisms of action. Indeed, once inside the cells, nucleoside analogues require to be metabolized into their corresponding (poly-)phosphorylated derivatives, mediated by cellular and/or viral kinases, in order to interfere with nucleic acid biosynthesis. Within this activation process, the first-phosphorylation step is often the limiting one and to overcome this limitation, numerous prodrug approaches have been proposed. Herein, we will focus on recent literature data (from 2015 and onwards) related to new prodrug strategies, the development of original synthetic approaches and novel applications of nucleotide prodrugs (namely pronucleotides) leading to the intracellular delivery of 5’-monophosphate nucleoside analogues.

Keywords: Pronucleotide, Phosphotriester, Phosphodiester, Phosphoramidate, Phosphorodiamidate, Asymmetric Synthesis, Chemotherapy.

[1]
Geraghty, R.; Aliota, M.; Bonnac, L. Broad-spectrum antiviral strategies and nucleoside analogues. Viruses, 2021, 13(4), 667.
[http://dx.doi.org/10.3390/v13040667] [PMID: 33924302]
[2]
Seley-Radtke, K.L.; Yates, M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res., 2018, 154, 66-86.
[http://dx.doi.org/10.1016/j.antiviral.2018.04.004] [PMID: 29649496]
[3]
Yates, M.K.; Seley-Radtke, K.L. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antiviral Res., 2019, 162, 5-21.
[http://dx.doi.org/10.1016/j.antiviral.2018.11.016] [PMID: 30529089]
[4]
Guinan, M.; Benckendorff, C.; Smith, M.; Miller, G.J. Recent advances in the chemical synthesis and evaluation of anticancer nucleoside analogues. Molecules, 2020, 25(9), 2050.
[http://dx.doi.org/10.3390/molecules25092050] [PMID: 32354007]
[5]
Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12(6), 447-464.
[http://dx.doi.org/10.1038/nrd4010] [PMID: 23722347]
[6]
Dousson, C.B. Current and future use of nucleo(s)tide prodrugs in the treatment of hepatitis C virus infection. Antivir. Chem. Chemother., 2018, 26, 2040206618756430.
[http://dx.doi.org/10.1177/2040206618756430] [PMID: 29463095]
[7]
Klapars, A.; Chung, J.Y.L.; Limanto, J.; Calabria, R.; Campeau, L.C.; Campos, K.R.; Chen, W.; Dalby, S.M.; Davis, T.A.; DiRocco, D.A.; Hyde, A.M.; Kassim, A.M.; Larsen, M.U.; Liu, G.; Maligres, P.E.; Moment, A.; Peng, F.; Ruck, R.T.; Shevlin, M.; Simmons, B.L.; Song, Z.J.; Tan, L.; Wright, T.J.; Zultanski, S.L. Efficient synthesis of antiviral agent uprifosbuvir enabled by new synthetic methods. Chem. Sci. (Camb.), 2021, 12(26), 9031-9036.
[http://dx.doi.org/10.1039/D1SC01978C] [PMID: 34276931]
[8]
Pradere, U.; Garnier-Amblard, E.C.; Coats, S.J.; Amblard, F.; Schinazi, R.F. Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem. Rev., 2014, 114(18), 9154-9218.
[http://dx.doi.org/10.1021/cr5002035] [PMID: 25144792]
[9]
Schultz, C. Prodrugs of biologically active phosphate esters. Bioorg. Med. Chem., 2003, 11(6), 885-898.
[http://dx.doi.org/10.1016/S0968-0896(02)00552-7] [PMID: 12614874]
[10]
Sinokrot, H.; Smerat, T.; Najjar, A.; Karaman, R. Advanced prodrug strategies in nucleoside and non-nucleoside antiviral agents: A review of the recent five years. Molecules, 2017, 22(10), 1736.
[http://dx.doi.org/10.3390/molecules22101736] [PMID: 29035325]
[11]
Wagner, C.R.; Iyer, V.V.; McIntee, E.J. Pronucleotides: Toward the in vivo delivery of antiviral and anticancer nucleotides. Med. Res. Rev., 2000, 20(6), 417-451.
[http://dx.doi.org/10.1002/1098-1128(200011)20:6<417:AID-MED1>3.0.CO;2-Z] [PMID: 11058891]
[12]
Zemlicka, J. Lipophilic phosphoramidates as antiviral pronucleotides. Biochim. Biophys. Acta Mol. Basis Dis., 2002, 1587(2-3), 276-286.
[http://dx.doi.org/10.1016/S0925-4439(02)00090-X] [PMID: 12084469]
[13]
Li, Y.; Yang, B.; Quan, Y.; Li, Z. Advancement of prodrug approaches for nucleotide antiviral agents. Curr. Top. Med. Chem., 2021, 21(32), 2909-2927.
[http://dx.doi.org/10.2174/1568026621666210728094019] [PMID: 34323189]
[14]
Wiemer, A.J. Metabolic efficacy of phosphate prodrugs and the remdesivir paradigm. ACS Pharmacol. Transl. Sci., 2020, 3(4), 613-626.
[http://dx.doi.org/10.1021/acsptsci.0c00076] [PMID: 32821882]
[15]
Cahard, D.; McGuigan, C.; Balzarini, J. Aryloxy phosphoramidate triesters as protides. Mini Rev. Med. Chem., 2004, 4(4), 371-381.
[http://dx.doi.org/10.2174/1389557043403936] [PMID: 15134540]
[16]
Mehellou, Y. The Protides Boom. ChemMedChem, 2016, 11(11), 1114-1116.
[http://dx.doi.org/10.1002/cmdc.201600156] [PMID: 27159529]
[17]
Mehellou, Y.; Balzarini, J.; McGuigan, C. Aryloxy phosphoramidate triesters: A technology for delivering monophosphorylated nucleosides and sugars into cells. ChemMedChem, 2009, 4(11), 1779-1791.
[http://dx.doi.org/10.1002/cmdc.200900289] [PMID: 19760699]
[18]
Mehellou, Y.; Rattan, H.S.; Balzarini, J. The ProTide prodrug technology: From the concept to the clinic. J. Med. Chem., 2018, 61(6), 2211-2226.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00734] [PMID: 28792763]
[19]
Serpi, M.; Pertusati, F. An overview of ProTide technology and its implications to drug discovery. Expert Opin. Drug Discov., 2021, 16(10), 1149-1161.
[http://dx.doi.org/10.1080/17460441.2021.1922385] [PMID: 33985395]
[20]
Slusarczyk, M.; Serpi, M.; Pertusati, F. Phosphoramidates and phosphonamidates (ProTides) with antiviral activity. Antivir. Chem. Chemother., 2018, 26, 2040206618775243.
[http://dx.doi.org/10.1177/2040206618775243] [PMID: 29792071]
[21]
Gentile, I.; Maraolo, A.E.; Buonomo, A.R.; Zappulo, E.; Borgia, G. The discovery of sofosbuvir: A revolution for therapy of chronic hepatitis C. Expert Opin. Drug Discov., 2015, 10(12), 1363-1377.
[http://dx.doi.org/10.1517/17460441.2015.1094051] [PMID: 26563720]
[22]
Sofia, M.J.; Furman, P.A. The Discovery of Sofosbuvir: A Liver-Targeted Nucleotide Prodrug for the Treatment and Cure of HCV; Springer International Publishing, 2019, pp. 141-169.
[23]
de Wit, E.; Feldmann, F.; Cronin, J.; Jordan, R.; Okumura, A.; Thomas, T.; Scott, D.; Cihlar, T.; Feldmann, H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA, 2020, 117(12), 6771-6776.
[http://dx.doi.org/10.1073/pnas.1922083117] [PMID: 32054787]
[24]
Siegel, D.; Hui, H.C.; Doerffler, E.; Clarke, M.O.; Chun, K.; Zhang, L.; Neville, S.; Carra, E.; Lew, W.; Ross, B.; Wang, Q.; Wolfe, L.; Jordan, R.; Soloveva, V.; Knox, J.; Perry, J.; Perron, M.; Stray, K.M.; Barauskas, O.; Feng, J.Y.; Xu, Y.; Lee, G.; Rheingold, A.L.; Ray, A.S.; Bannister, R.; Strickley, R.; Swaminathan, S.; Lee, W.A.; Bavari, S.; Cihlar, T.; Lo, M.K.; Warren, T.K.; Mackman, R.L. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of ebola and emerging viruses. J. Med. Chem., 2017, 60(5), 1648-1661.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01594] [PMID: 28124907]
[25]
Zarenezhad, E.; Behrouz, S.; Farjam, M.; Rad, M.N.S. A mini review on discovery and synthesis of remdesivir as an effective and promising drug against COVID-19. Russ. J. Bioorganic Chem., 2021, 47(3), 609-621.
[http://dx.doi.org/10.1134/S1068162021030183] [PMID: 34149273]
[26]
Camarasa, M.J. Prodrugs of nucleoside triphosphates as a sound and challenging approach: A pioneering work that opens a new era in the direct intracellular delivery of nucleoside triphosphates. ChemMedChem, 2018, 13(18), 1885-1889.
[http://dx.doi.org/10.1002/cmdc.201800454] [PMID: 30152096]
[27]
Meier, C. Nucleoside diphosphate and triphosphate prodrugs - An unsolvable task? Antivir. Chem. Chemother., 2017, 25(3), 69-82.
[http://dx.doi.org/10.1177/2040206617738656] [PMID: 29096525]
[28]
Jia, X.; Schols, D.; Meier, C. Lipophilic triphosphate prodrugs of various nucleoside analogues. J. Med. Chem., 2020, 63(13), 6991-7007.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00358] [PMID: 32515595]
[29]
Zhao, C.; Jia, X.; Schols, D.; Balzarini, J.; Meier, C. γ‐non‐symmetrically dimasked Tri PPPro prodrugs as potential antiviral agents against HIV. ChemMedChem, 2021, 16(3), 499-512.
[http://dx.doi.org/10.1002/cmdc.202000712] [PMID: 33089929]
[30]
Meier, C.; Jessen, H.; Schulz, T.; Weinschenk, L.; Pertenbreiter, F.; Balzarini, J. Rational development of nucleoside diphosphate prodrugs: DiPPro-compounds. Curr. Med. Chem., 2015, 22(34), 3933-3950.
[http://dx.doi.org/10.2174/0929867322666150825163119] [PMID: 26303175]
[31]
Groaz, E.; De Jonghe, S. Overview of biologically active nucleoside phosphonates. Front Chem., 2021, 8, 616863.
[http://dx.doi.org/10.3389/fchem.2020.616863] [PMID: 33490040]
[32]
Heidel, K.M.; Dowd, C.S. Phosphonate prodrugs: An overview and recent advances. Future Med. Chem., 2019, 11(13), 1625-1643.
[http://dx.doi.org/10.4155/fmc-2018-0591] [PMID: 31469328]
[33]
Pertusat, F.; Serpi, M.; McGuigan, C. Medicinal chemistry of nucleoside phosphonate prodrugs for antiviral therapy. Antivir. Chem. Chemother., 2012, 22(5), 181-203.
[http://dx.doi.org/10.3851/IMP2012] [PMID: 22182785]
[34]
Thornton, P.J.; Kadri, H.; Miccoli, A.; Mehellou, Y. Nucleoside phosphate and phosphonate prodrug clinical candidates. J. Med. Chem., 2016, 59(23), 10400-10410.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00523] [PMID: 27559756]
[35]
Itumoh, E.J.; Data, S.; Leitao, E.M. Opening up the toolbox: Synthesis and mechanisms of phosphoramidates. Molecules, 2020, 25(16), 3684.
[http://dx.doi.org/10.3390/molecules25163684] [PMID: 32823507]
[36]
McGuigan, C.; Pathirana, R.N.; Balzarini, J.; De Clercq, E. Intracellular delivery of bioactive AZT nucleotides by aryl phosphate derivatives of AZT. J. Med. Chem., 1993, 36(8), 1048-1052.
[http://dx.doi.org/10.1021/jm00060a013] [PMID: 8478904]
[37]
McGuigan, C.; Pathirana, R.N.; Mahmood, N.; Devine, K.G.; Hay, A.J. Aryl phosphate derivatives of AZT retain activity against HIV1 in cell lines which are resistant to the action of AZT. Antiviral Res., 1992, 17(4), 311-321.
[http://dx.doi.org/10.1016/0166-3542(92)90026-2] [PMID: 1642482]
[38]
McGuigan, C.; Pathirana, R.N.; Mahmood, N.; Hay, A.J. Aryl phosphate derivates of AZT inhibit HIV replication in cells where the nucleoside is poorly active. Bioorg. Med. Chem. Lett., 1992, 2(7), 701-704.
[http://dx.doi.org/10.1016/S0960-894X(00)80395-9]
[39]
Blagden, S.P.; Rizzuto, I.; Suppiah, P.; O’Shea, D.; Patel, M.; Spiers, L.; Sukumaran, A.; Bharwani, N.; Rockall, A.; Gabra, H.; El-Bahrawy, M.; Wasan, H.; Leonard, R.; Habib, N.; Ghazaly, E. Anti-tumour activity of a first-in-class agent NUC-1031 in patients with advanced cancer: Results of a phase I study. Br. J. Cancer, 2018, 119(7), 815-822.
[http://dx.doi.org/10.1038/s41416-018-0244-1] [PMID: 30206366]
[40]
Kazmi, F.; Nicum, S.; Roux, R.L.; Spiers, L.; Gnanaranjan, C.; Sukumaran, A.; Gabra, H.; Ghazaly, E.; McCracken, N.W.; Harrison, D.J.; Blagden, S.P. A phase Ib open-label, dose-escalation study of NUC-1031 in combination with carboplatin for recurrent ovarian cancer. Clin. Cancer Res., 2021, 27(11), 3028-3038.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-4403] [PMID: 33741651]
[41]
Knox, J.J.; McNamara, M.G.; Goyal, L.; Cosgrove, D.; Springfeld, C.; Sjoquist, K.M.; Park, J.O.; Verdaguer, H.; Braconi, C.; Ross, P.J.; De Gramont, A.; Shroff, R.T.; Zalcberg, J.R.; Palmer, D.H.; Valle, J.W. Phase III study of NUC-1031 + cisplatin vs gemcitabine + cisplatin for first-line treatment of patients with advanced biliary tract cancer (NuTide:121). J. Clin. Oncol., 2021, 39(Suppl. 3), TPS351-TPS351.
[http://dx.doi.org/10.1200/JCO.2021.39.3_suppl.TPS351]
[42]
Alanazi, A.S.; James, E.; Mehellou, Y. The ProTide prodrug technology: Where next? ACS Med. Chem. Lett., 2019, 10(1), 2-5.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00586] [PMID: 30655934]
[43]
Slusarczyk, M.; Ferrari, V.; Serpi, M.; Gönczy, B.; Balzarini, J.; McGuigan, C. Symmetrical diamidates as a class of phosphate prodrugs to deliver the 5′‐monophosphate forms of anticancer nucleoside analogues. ChemMedChem, 2018, 13(21), 2305-2316.
[http://dx.doi.org/10.1002/cmdc.201800504] [PMID: 30199147]
[44]
Siccardi, D.; Kandalaft, L.E.; Gumbleton, M.; McGuigan, C. Stereoselective and concentration-dependent polarized epithelial permeability of a series of phosphoramidate triester prodrugs of D4T: An in vitro study in Caco-2 and Madin-Darby canine kidney cell monolayers. J. Pharmacol. Exp. Ther., 2003, 307(3), 1112-1119.
[http://dx.doi.org/10.1124/jpet.103.056135] [PMID: 14557377]
[45]
Procházková, E.; Navrátil, R.; Janeba, Z.; Roithová, J.; Baszczyňski, O. Reactive cyclic intermediates in the ProTide prodrugs activation: Trapping the elusive pentavalent phosphorane. Org. Biomol. Chem., 2019, 17(2), 315-320.
[http://dx.doi.org/10.1039/C8OB02870B] [PMID: 30543240]
[46]
Sofia, M.J.; Bao, D.; Chang, W.; Du, J.; Nagarathnam, D.; Rachakonda, S.; Reddy, P.G.; Ross, B.S.; Wang, P.; Zhang, H.R.; Bansal, S.; Espiritu, C.; Keilman, M.; Lam, A.M.; Steuer, H.M.M.; Niu, C.; Otto, M.J.; Furman, P.A. Discovery of a β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methyluridine nucleotide prodrug (PSI-7977) for the treatment of hepatitis C virus. J. Med. Chem., 2010, 53(19), 7202-7218.
[http://dx.doi.org/10.1021/jm100863x] [PMID: 20845908]
[47]
Bordoni, C.; Cima, C.M.; Azzali, E.; Costantino, G.; Brancale, A. Microwave-assisted organic synthesis of nucleoside ProTide analogues. RSC Advances, 2019, 9(35), 20113-20117.
[http://dx.doi.org/10.1039/C9RA01754B] [PMID: 35514718]
[48]
Gao, L.J.; Jonghe, S.D.; Herdewijn, P. Synthesis of a nucleobase-modified protide library. Org. Lett., 2016, 18(22), 5816-5819.
[http://dx.doi.org/10.1021/acs.orglett.6b02764] [PMID: 27791384]
[49]
Milisavljevic, N.; Konkolová, E.; Kozák, J.; Hodek, J.; Veselovská, L.; Sýkorová, V.; Čížek, K.; Pohl, R.; Eyer, L.; Svoboda, P.; Růžek, D.; Weber, J.; Nencka, R.; Bouřa, E.; Hocek, M. Antiviral activity of 7-substituted 7-deazapurine ribonucleosides, monophosphate prodrugs, and triphoshates against emerging RNA viruses. ACS Infect. Dis., 2021, 7(2), 471-478.
[http://dx.doi.org/10.1021/acsinfecdis.0c00829] [PMID: 33395259]
[50]
Slusarczyk, M.; Serpi, M.; Ghazaly, E.; Kariuki, B.M.; McGuigan, C.; Pepper, C. Single diastereomers of the clinical anticancer protide agents NUC-1031 and NUC-3373 preferentially target cancer stem cells in vitro. J. Med. Chem., 2021, 64(12), 8179-8193.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02194] [PMID: 34085825]
[51]
Arbelo Román, C.; Wasserthal, P.; Balzarini, J.; Meier, C. Diastereoselective synthesis of (aryloxy)phosphoramidate prodrugs. Eur. J. Org. Chem., 2011, 2011(25), 4899-4909.
[52]
Roman, C.A.; Balzarini, J.; Meier, C. Diastereoselective synthesis of aryloxy phosphoramidate prodrugs of 3′-deoxy-2′,3′-didehydrothymidine monophosphate. J. Med. Chem., 2010, 53(21), 7675-7681.
[http://dx.doi.org/10.1021/jm100817f] [PMID: 20945915]
[53]
Ross, B.S.; Ganapati Reddy, P.; Zhang, H.R.; Rachakonda, S.; Sofia, M.J. Synthesis of diastereomerically pure nucleotide phosphoramidates. J. Org. Chem., 2011, 76(20), 8311-8319.
[http://dx.doi.org/10.1021/jo201492m] [PMID: 21916475]
[54]
Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K.S.; Van Tongeren, S.A.; Garza, N.L.; Donnelly, G.; Shurtleff, A.C.; Retterer, C.J.; Gharaibeh, D.; Zamani, R.; Kenny, T.; Eaton, B.P.; Grimes, E.; Welch, L.S.; Gomba, L.; Wilhelmsen, C.L.; Nichols, D.K.; Nuss, J.E.; Nagle, E.R.; Kugelman, J.R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M.O.; Zhang, L.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K.M.; Trancheva, I.; Feng, J.Y.; Barauskas, O.; Xu, Y.; Wong, P.; Braun, M.R.; Flint, M.; McMullan, L.K.; Chen, S.S.; Fearns, R.; Swaminathan, S.; Mayers, D.L.; Spiropoulou, C.F.; Lee, W.A.; Nichol, S.T.; Cihlar, T.; Bavari, S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 2016, 531(7594), 381-385.
[http://dx.doi.org/10.1038/nature17180] [PMID: 26934220]
[55]
Pertusati, F.; McGuigan, C. Diastereoselective synthesis of P-chirogenic phosphoramidate prodrugs of nucleoside analogues (ProTides) via copper catalysed reaction. Chem. Commun. (Camb.), 2015, 51(38), 8070-8073.
[http://dx.doi.org/10.1039/C5CC00448A] [PMID: 25867944]
[56]
Tran, K.; Beutner, G.L.; Schmidt, M.; Janey, J.; Chen, K.; Rosso, V.; Eastgate, M.D. Development of a diastereoselective phosphorylation of a complex nucleoside via dynamic kinetic resolution. J. Org. Chem., 2015, 80(10), 4994-5003.
[http://dx.doi.org/10.1021/acs.joc.5b00392] [PMID: 25840459]
[57]
Dutartre, M.; Bayardon, J.; Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev., 2016, 45(20), 5771-5794.
[http://dx.doi.org/10.1039/C6CS00031B] [PMID: 27479243]
[58]
Simmons, B.; Liu, Z.; Klapars, A.; Bellomo, A.; Silverman, S.M. Mechanism-Based solution to the protide synthesis problem: Selective access to sofosbuvir, acelarin, and INX-08189. Org. Lett., 2017, 19(9), 2218-2221.
[http://dx.doi.org/10.1021/acs.orglett.7b00469] [PMID: 28418681]
[59]
Liu, Z.; Klapars, A.; Simmons, B.; Bellomo, A.; Kalinin, A.; Weisel, M.; Hill, J.; Silverman, S.M. Development and implementation of an aluminum-promoted phosphorylation in the uprifosbuvir manufacturing route. Org. Process Res. Dev., 2021, 25(3), 661-667.
[http://dx.doi.org/10.1021/acs.oprd.0c00487]
[60]
Chung, J.Y.L.; Kassim, A.M.; Simmons, B.; Davis, T.A.; Song, Z.J.; Limanto, J.; Dalby, S.M.; He, C.Q.; Calabria, R.; Wright, T.J.; Campeau, L.C. Kilogram-scale synthesis of 2′- C-methyl-arabino-uridine from uridine via dynamic selective dipivaloylation. Org. Process Res. Dev., 2022, 26(3), 698-709.
[http://dx.doi.org/10.1021/acs.oprd.1c00175]
[61]
DiRocco, D.A.; Ji, Y.; Sherer, E.C.; Klapars, A.; Reibarkh, M.; Dropinski, J.; Mathew, R.; Maligres, P.; Hyde, A.M.; Limanto, J.; Brunskill, A.; Ruck, R.T.; Campeau, L.C.; Davies, I.W. A multifunctional catalyst that stereoselectively assembles prodrugs. Science, 2017, 356(6336), 426-430.
[http://dx.doi.org/10.1126/science.aam7936] [PMID: 28450641]
[62]
Wang, M.; Zhang, L.; Huo, X.; Zhang, Z.; Yuan, Q.; Li, P.; Chen, J.; Zou, Y.; Wu, Z.; Zhang, W. Catalytic asymmetric synthesis of the anti‐COVID‐19 drug remdesivir. Angew. Chem. Int. Ed., 2020, 59(47), 20814-20819.
[http://dx.doi.org/10.1002/anie.202011527] [PMID: 32870563]
[63]
Xiang, D.F.; Bigley, A.N.; Desormeaux, E.; Narindoshvili, T.; Raushel, F.M. Enzyme-catalyzed kinetic resolution of chiral precursors to antiviral prodrugs. Biochemistry, 2019, 58(29), 3204-3211.
[http://dx.doi.org/10.1021/acs.biochem.9b00530] [PMID: 31268686]
[64]
Bigley, A.N.; Narindoshvili, T.; Raushel, F.M. A Chemoenzymatic synthesis of the (RP)-Isomer of the antiviral prodrug remdesivir. Biochemistry, 2020, 59(33), 3038-3043.
[http://dx.doi.org/10.1021/acs.biochem.0c00591] [PMID: 32786401]
[65]
Alexandre, F.R.; Badaroux, E.; Bilello, J.P.; Bot, S.; Bouisset, T.; Brandt, G.; Cappelle, S.; Chapron, C.; Chaves, D.; Convard, T.; Counor, C.; Da Costa, D.; Dukhan, D.; Gay, M.; Gosselin, G.; Griffon, J.F.; Gupta, K.; Hernandez-Santiago, B.; La Colla, M.; Lioure, M.P.; Milhau, J.; Paparin, J.L.; Peyronnet, J.; Parsy, C.; Pierra Rouvière, C.; Rahali, H.; Rahali, R.; Salanson, A.; Seifer, M.; Serra, I.; Standring, D.; Surleraux, D.; Dousson, C.B. The discovery of IDX21437: Design, synthesis and antiviral evaluation of 2′-α-chloro-2′-β-C-methyl branched uridine pronucleotides as potent liver-targeted HCV polymerase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(18), 4323-4330.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.029] [PMID: 28835346]
[66]
Guo, S.; Xu, M.; Guo, Q.; Zhu, F.; Jiang, X.; Xie, Y.; Shen, J. Discovery of pyrimidine nucleoside dual prodrugs and pyrazine nucleosides as novel anti-HCV agents. Bioorg. Med. Chem., 2019, 27(5), 748-759.
[http://dx.doi.org/10.1016/j.bmc.2019.01.007] [PMID: 30683552]
[67]
Guinan, M.; Huang, N.; Smith, M.; Miller, G.J. Design, chemical synthesis and antiviral evaluation of 2′-deoxy-2′-fluoro-2′-C-methyl-4′-thionucleosides. Bioorg. Med. Chem. Lett., 2022, 61, 128605.
[http://dx.doi.org/10.1016/j.bmcl.2022.128605] [PMID: 35123007]
[68]
Good, S.S.; Moussa, A.; Zhou, X.J.; Pietropaolo, K.; Sommadossi, J.P. Preclinical evaluation of AT-527, a novel guanosine nucleotide prodrug with potent, pan-genotypic activity against hepatitis C virus. PLoS One, 2020, 15(1), e0227104.
[http://dx.doi.org/10.1371/journal.pone.0227104] [PMID: 31914458]
[69]
Good, S.S.; Westover, J.; Jung, K.H.; Zhou, X.J.; Moussa, A.; La Colla, P.; Collu, G.; Canard, B.; Sommadossi, J.P. AT-527, a double prodrug of a guanosine nucleotide analog, is a potent inhibitor of SARS-CoV-2 in vitro and a promising oral antiviral for treatment of COVID-19. Antimicrob. Agents Chemother., 2021, 65(4), e02479-e20.
[http://dx.doi.org/10.1128/AAC.02479-20] [PMID: 33558299]
[70]
Feng, J.Y.; Wang, T.; Park, Y.; Babusis, D.; Birkus, G.; Xu, Y.; Voitenleitner, C.; Fenaux, M.; Yang, H.; Eng, S.; Tirunagari, N.; Kirschberg, T.; Cho, A.; Ray, A.S. Nucleotide prodrug containing a nonproteinogenic amino acid to improve oral delivery of a hepatitis C virus treatment. Antimicrob. Agents Chemother., 2018, 62(8), e00620-e18.
[http://dx.doi.org/10.1128/AAC.00620-18] [PMID: 29866875]
[71]
Wang, T.; Babusis, D.; Park, Y.; Niu, C.; Kim, C.; Zhao, X.; Lu, B.; Ma, B.; Muench, R.C.; Sperger, D.; Ray, A.S.; Murakami, E. Species differences in liver accumulation and metabolism of nucleotide prodrug sofosbuvir. Drug Metab. Pharmacokinet., 2020, 35(3), 334-340.
[http://dx.doi.org/10.1016/j.dmpk.2020.04.333] [PMID: 32345577]
[72]
Lagrutta, A.; Regan, C.P.; Zeng, H.; Imredy, J.P.; Koeplinger, K.; Morissette, P.; Liu, L.; Wollenberg, G.; Brynczka, C.; Lebrón, J.; DeGeorge, J.; Sannajust, F. Cardiac drug-drug interaction between HCV-NS5B pronucleotide inhibitors and amiodarone is determined by their specific diastereochemistry. Sci. Rep., 2017, 7(1), 44820.
[http://dx.doi.org/10.1038/srep44820] [PMID: 28327633]
[73]
Kandil, S.; Pannecouque, C.; Chapman, F.M.; Westwell, A.D.; McGuigan, C. Polyfluoroaromatic stavudine (d4T) ProTides exhibit enhanced anti-HIV activity. Bioorg. Med. Chem. Lett., 2019, 29(24), 126721.
[http://dx.doi.org/10.1016/j.bmcl.2019.126721] [PMID: 31679972]
[74]
Lin, Z.; Gautam, N.; Alnouti, Y.; McMillan, J.; Bade, A.N.; Gendelman, H.E.; Edagwa, B. ProTide generated long-acting abacavir nanoformulations. Chem. Commun. (Camb.), 2018, 54(60), 8371-8374.
[http://dx.doi.org/10.1039/C8CC04708A] [PMID: 29995046]
[75]
Wang, W.; Smith, N.; Makarov, E.; Sun, Y.; Gebhart, C.L.; Ganesan, M.; Osna, N.A.; Gendelman, H.E.; Edagwa, B.J.; Poluektova, L.Y. A long-acting 3TC ProTide nanoformulation suppresses HBV replication in humanized mice. Nanomedicine, 2020, 28, 102185.
[http://dx.doi.org/10.1016/j.nano.2020.102185] [PMID: 32217146]
[76]
Soni, D.; Bade, A.N.; Gautam, N.; Herskovitz, J.; Ibrahim, I.M.; Smith, N.; Wojtkiewicz, M.S.; Shetty, B.L.D.; Alnouti, Y.; McMillan, J.; Gendelman, H.E.; Edagwa, B.J. Synthesis of a long acting nanoformulated emtricitabine ProTide. Biomaterials, 2019, 222, 119441.
[77]
Wang, Z.; Zang, R.; Niu, Z.; Wang, W.; Wang, X.; Tang, Y. Synthesis and antiviral effect of phosphamide modified vidarabine for treating HSV 1 infections. Bioorg. Med. Chem. Lett., 2021, 52, 128405.
[http://dx.doi.org/10.1016/j.bmcl.2021.128405] [PMID: 34624489]
[78]
Schwenzer, H.; De Zan, E.; Elshani, M.; van Stiphout, R.; Kudsy, M.; Morris, J.; Ferrari, V.; Um, I.H.; Chettle, J.; Kazmi, F.; Campo, L.; Easton, A.; Nijman, S.; Serpi, M.; Symeonides, S.; Plummer, R.; Harrison, D.J.; Bond, G.; Blagden, S.P. The novel nucleoside analogue protide nuc-7738 overcomes cancer resistance mechanisms in vitro and in a first-in-human phase I clinical trial. Clin. Cancer Res., 2021, 27(23), 6500-6513.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-1652] [PMID: 34497073]
[79]
Osgerby, L.; Lai, Y.C.; Thornton, P.J.; Amalfitano, J.; Le Duff, C.S.; Jabeen, I.; Kadri, H.; Miccoli, A.; Tucker, J.H.R.; Muqit, M.M.K.; Mehellou, Y. Kinetin riboside and its ProTides activate the Parkinson’s disease associated PTEN-induced putative kinase 1 (PINK1) independent of mitochondrial depolarization. J. Med. Chem., 2017, 60(8), 3518-3524.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01897] [PMID: 28323427]
[80]
Vanden Avond, M.A.; Meng, H.; Beatka, M.J.; Helbling, D.C.; Prom, M.J.; Sutton, J.L.; Slick, R.A.; Dimmock, D.P.; Pertusati, F.; Serpi, M.; Pileggi, E.; Crutcher, P.; Thomas, S.; Lawlor, M.W. The nucleotide prodrug CERC ‐913 improves MTDNA content in primary hepatocytes from DGUOK‐DEFICIENT rats. J. Inherit. Metab. Dis., 2021, 44(2), 492-501.
[http://dx.doi.org/10.1002/jimd.12354] [PMID: 33368311]
[81]
Rauh, T.; Brameyer, S.; Kielkowski, P.; Jung, K.; Sieber, S.A. MS-based in situ proteomics reveals AMPylation of host proteins during bacterial infection. ACS Infect. Dis., 2020, 6(12), 3277-3289.
[http://dx.doi.org/10.1021/acsinfecdis.0c00740] [PMID: 33259205]
[82]
Egron, D.; Imbach, J.L.; Gosselin, G.; Aubertin, A.M.; Périgaud, C. S-acyl-2-thioethyl phosphoramidate diester derivatives as mononucleotide prodrugs. J. Med. Chem., 2003, 46(21), 4564-4571.
[http://dx.doi.org/10.1021/jm0308444] [PMID: 14521418]
[83]
Sizun, G.; Pierra, C.; Peyronnet, J.; Badaroux, E.; Rabeson, C.; Benzaria-Prad, S.; Surleraux, D.; Loi, A.G.; Musiu, C.; Liuzzi, M.; Seifer, M.; Standring, D.; Sommadossi, J.P.; Gosselin, G. Design, synthesis and antiviral evaluation of 2′- C -methyl branched guanosine pronucleotides: The discovery of IDX184, a potent liver-targeted HCV polymerase inhibitor. Future Med. Chem., 2015, 7(13), 1675-1700.
[http://dx.doi.org/10.4155/fmc.15.96] [PMID: 26424162]
[84]
Okon, A.; Matos de Souza, M.R.; Shah, R.; Amorim, R.; da Costa, L.J.; Wagner, C.R. Anchimerically activatable antiviral ProTides. ACS Med. Chem. Lett., 2017, 8(9), 958-962.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00277] [PMID: 28947944]
[85]
Okon, A.; Han, J.; Dawadi, S.; Demosthenous, C.; Aldrich, C.C.; Gupta, M.; Wagner, C.R. Anchimerically activated protides as inhibitors of cap-dependent translation and inducers of chemosensitization in mantle cell lymphoma. J. Med. Chem., 2017, 60(19), 8131-8144.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00916] [PMID: 28858511]
[86]
Villard, A.L.; Aubertin, A.M.; Peyrottes, S.; Périgaud, C. An original pronucleotide strategy for the simultaneous delivery of two bioactive drugs. Eur. J. Med. Chem., 2021, 216, 113315.
[http://dx.doi.org/10.1016/j.ejmech.2021.113315] [PMID: 33711763]
[87]
Mayes, B.A.; Arumugasamy, J.; Baloglu, E.; Bauer, D.; Becker, A.; Chaudhuri, N.; Latham, G.M.; Li, J.; Mathieu, S.; McGarry, F.P.; Rosinovsky, E.; Stewart, A.; Trochet, C.; Wang, J.; Moussa, A. Synthesis of a nucleoside phosphoramidate prodrug inhibitor of HCV NS5B polymerase: Phenylboronate as a transient protecting group. Org. Process Res. Dev., 2014, 18(6), 717-724.
[http://dx.doi.org/10.1021/op500042u]
[88]
Mayes, B.A.; Wang, J.; Arumugasamy, J.; Arunachalam, K.; Baloglu, E.; Bauer, D.; Becker, A.; Chaudhuri, N.; Glynn, R.; Latham, G.M.; Li, J.; Lim, J.; Liu, J.; Mathieu, S.; McGarry, F.P.; Rosinovsky, E.; Soret, A.F.; Stewart, A.; Moussa, A. Scalable synthesis of a nucleoside phosphoramidate prodrug inhibitor of HCV NS5B RdRp: Challenges in the production of a diastereomeric mixture. Org. Process Res. Dev., 2015, 19(4), 520-530.
[http://dx.doi.org/10.1021/op5003837]
[89]
Procházková, E.; Hřebabecký, H.; Dejmek, M.; Šála, M.; Šmídková, M.; Tloušťová, E.; Zborníková, E.; Eyer, L.; Růžek, D.; Nencka, R. Could 5′-N and S ProTide analogues work as prodrugs of antiviral agents? Bioorg. Med. Chem. Lett., 2020, 30(4), 126897.
[http://dx.doi.org/10.1016/j.bmcl.2019.126897] [PMID: 31882298]
[90]
Jacobson, B.A.; Ahmad, Z.; Chen, S.; Waldusky, G.; Dillenburg, M.; Stoian, E.; Cambron, D.A.; Patel, A.J.; Patel, M.R.; Wagner, C.R.; Kratzke, R.A. 4Ei-10 interdiction of oncogenic cap-mediated translation as therapy for non-small cell lung cancer. Invest. New Drugs, 2021, 39(3), 636-643.
[http://dx.doi.org/10.1007/s10637-020-01036-8] [PMID: 33230623]
[91]
Matos de Souza, M.R.; Cunha, M.S.; Okon, A.; Monteiro, F.L.L.; Campanati, L.; Wagner, C.R.; da Costa, L.J. In vitro and in vivo characterization of the anti-zika virus activity of protides of 2′-C-β-methylguanosine. ACS Infect. Dis., 2020, 6(7), 1650-1658.
[http://dx.doi.org/10.1021/acsinfecdis.0c00091] [PMID: 32525653]
[92]
Ahmad, Z.; Jacobson, B.A.; McDonald, M.W.; Vattendahl Vidal, N.; Vattendahl Vidal, G.; Chen, S.; Dillenburg, M.; Okon, A.M.; Patel, M.R.; Wagner, C.R.; Kratzke, R.A. Repression of oncogenic cap-mediated translation by 4Ei-10 diminishes proliferation, enhances chemosensitivity and alters expression of malignancy-related proteins in mesothelioma. Cancer Chemother. Pharmacol., 2020, 85(2), 425-432.
[http://dx.doi.org/10.1007/s00280-020-04029-9] [PMID: 31974652]
[93]
Meppen, M.; Pacini, B.; Bazzo, R.; Koch, U.; Leone, J.F.; Koeplinger, K.A.; Rowley, M.; Altamura, S.; Di Marco, A.; Fiore, F.; Giuliano, C.; Gonzalez-Paz, O.; Laufer, R.; Pucci, V.; Narjes, F.; Gardelli, C. Cyclic phosphoramidates as prodrugs of 2′-C-methylcytidine. Eur. J. Med. Chem., 2009, 44(9), 3765-3770.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.043] [PMID: 19493593]
[94]
Jain, H.V.; Kalman, T.I. Synthesis and study of cyclic pronucleotides of 5-fluoro-2′-deoxyuridine. Bioorg. Med. Chem. Lett., 2012, 22(14), 4497-4501.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.011] [PMID: 22738636]
[95]
Orr, R.K.; McCabe Dunn, J.M.; Nolting, A.; Hyde, A.M.; Ashley, E.R.; Leone, J.; Sirota, E.; Jurica, J.A.; Gibson, A.; Wise, C.; Oliver, S.; Ruck, R.T. New reactions and processes for the efficient synthesis of a HCV NS5b prodrug. Green Chem., 2018, 20(11), 2519-2525.
[http://dx.doi.org/10.1039/C8GC00102B]
[96]
Karuna, R.; Yokokawa, F.; Wang, K.; Zhang, J.; Xu, H.; Wang, G.; Ding, M.; Chan, W.L.; Abdul Ghafar, N.; Leonardi, A.; Seh, C.C.; Seah, P.G.; Liu, W.; Srinivasa, R.P.S.; Lim, S.P.; Lakshminarayana, S.B.; Growcott, E.; Babu, S.; Fenaux, M.; Zhong, W.; Gu, F.; Shi, P.Y.; Blasco, F.; Chen, Y.L. A cyclic phosphoramidate prodrug of 2′-deoxy-2′-fluoro-2′- C -methylguanosine for the treatment of dengue virus infection. Antimicrob. Agents Chemother., 2020, 64(12), e00654-e20.
[http://dx.doi.org/10.1128/AAC.00654-20] [PMID: 32958712]
[97]
Romanowska, J.; Kolodziej, K.; Sobkowski, M.; Rachwalak, M.; Jakubowski, T.; Golebiewska, J.; Kraszewski, A.; Boryski, J.; Dabrowska, A.; Stawinski, J. Aryl H-phosphonates. 19. New anti-HIV pronucleotide phosphoramidate diesters containing amino- and hydroxypyridine auxiliaries. Eur. J. Med. Chem., 2019, 164, 47-58.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.038] [PMID: 30590257]
[98]
Abraham, T.W.; Kalman, T.I.; McIntee, E.J.; Wagner, C.R. Synthesis and biological activity of aromatic amino acid phosphoramidates of 5-fluoro-2′-deoxyuridine and 1-β-arabinofuranosylcytosine: Evidence of phosphoramidase activity. J. Med. Chem., 1996, 39(23), 4569-4575.
[http://dx.doi.org/10.1021/jm9603680] [PMID: 8917645]
[99]
Drontle, D.; Wagner, C.R. Designing a pronucleotide stratagem: Lessons from amino acid phosphoramidates of anticancer and antiviral pyrimidines. Mini Rev. Med. Chem., 2004, 4(4), 409-419.
[http://dx.doi.org/10.2174/1389557043403945] [PMID: 15134543]
[100]
Chou, T.F.; Baraniak, J.; Kaczmarek, R.; Zhou, X.; Cheng, J.; Ghosh, B.; Wagner, C.R. Phosphoramidate pronucleotides: A comparison of the phosphoramidase substrate specificity of human and Escherichia coli histidine triad nucleotide binding proteins. Mol. Pharm., 2007, 4(2), 208-217.
[http://dx.doi.org/10.1021/mp060070y] [PMID: 17217311]
[101]
Chou, T.F.; Wagner, C.R. Substrate specificity and radioactive labeling studies establish that the histidine triad nucleotide binding proteins (Hints) are nucleoside phosphoramidases and protein nucleotidylases. FASEB J., 2006, 20(4), A41-A41.
[http://dx.doi.org/10.1096/fasebj.20.4.A41-d]
[102]
Chou, T.F.; Wagner, C.R. Lysyl-tRNA synthetase-generated lysyl-adenylate is a substrate for histidine triad nucleotide binding proteins. J. Biol. Chem., 2007, 282(7), 4719-4727.
[http://dx.doi.org/10.1074/jbc.M610530200] [PMID: 17158446]
[103]
Zhou, X.; Chou, T.F.; Aubol, B.E.; Park, C.J.; Wolfenden, R.; Adams, J.; Wagner, C.R. Kinetic mechanism of human histidine triad nucleotide binding protein 1. Biochemistry, 2013, 52(20), 3588-3600.
[http://dx.doi.org/10.1021/bi301616c] [PMID: 23614568]
[104]
Shah, R.; Maize, K.M.; Zhou, X.; Finzel, B.C.; Wagner, C.R. Caught before released: Structural mapping of the reaction trajectory for the sofosbuvir activating enzyme, human histidine triad nucleotide binding protein 1 (hHint1). Biochemistry, 2017, 56(28), 3559-3570.
[http://dx.doi.org/10.1021/acs.biochem.7b00148] [PMID: 28691797]
[105]
Maize, K.M.; Shah, R.; Strom, A.; Kumarapperuma, S.; Zhou, A.; Wagner, C.R.; Finzel, B.C. A crystal structure based guide to the design of human histidine triad nucleotide binding protein 1 (hHint1) activated ProTides. Mol. Pharm., 2017, 14(11), 3987-3997.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00664] [PMID: 28968488]
[106]
Jovanovic, D.; Tremmel, P.; Pallan, P.S.; Egli, M.; Richert, C. The enzyme‐free release of nucleotides from phosphoramidates depends strongly on the amino acid. Angew. Chem. Int. Ed., 2020, 59(45), 20154-20160.
[http://dx.doi.org/10.1002/anie.202008665] [PMID: 32757352]
[107]
Romanowska, J.; Sobkowski, M.; Szymańska-Michalak, A.; Kołodziej, K.; Dąbrowska, A.; Lipniacki, A.; Piasek, A.; Pietrusiewicz, Z.M.; Figlerowicz, M.; Guranowski, A.; Boryski, J.; Stawiński, J.; Kraszewski, A. Aryl H-phosphonates 17: (N-aryl)phosphoramidates of pyrimidine nucleoside analogues and their synthesis, selected properties, and anti-HIV activity. J. Med. Chem., 2011, 54(19), 6482-6491.
[http://dx.doi.org/10.1021/jm2001103] [PMID: 21834513]
[108]
Kolodziej, K.; Romanowska, J.; Stawinski, J.; Boryski, J.; Dabrowska, A.; Lipniacki, A.; Piasek, A.; Kraszewski, A.; Sobkowski, M. Aryl H-Phosphonates 18. Synthesis, properties, and biological activity of 2′,3′-dideoxynucleoside (N-heteroaryl)phosphoramidates of increased lipophilicity. Eur. J. Med. Chem., 2015, 100, 77-88.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.004] [PMID: 26071860]
[109]
Adelfinskaya, O.; Herdewijn, P. Amino acid phosphoramidate nucleotides as alternative substrates for HIV-1 reverse transcriptase. Angew. Chem. Int. Ed., 2007, 46(23), 4356-4358.
[http://dx.doi.org/10.1002/anie.200605016] [PMID: 17443759]
[110]
Song, X.P.; Bouillon, C.; Lescrinier, E.; Herdewijn, P. Iminodipropionic acid as the leaving group for DNA polymerization by HIV-1 reverse transcriptase. ChemBioChem, 2011, 12(12), 1868-1880.
[http://dx.doi.org/10.1002/cbic.201100160] [PMID: 21714056]
[111]
(a) Adelfinskaya, O.; Terrazas, M.; Froeyen, M.; Marlière, P.; Nauwelaerts, K.; Herdewijn, P. Polymerase-catalyzed synthesis of DNA from phosphoramidate conjugates of deoxynucleotides and amino acids. Nucleic Acids Res., 2007, 35(15), 5060-5072.
[http://dx.doi.org/10.1093/nar/gkm498] [PMID: 17652326];
(b) De, S.; Groaz, E.; Margamuljana, L.; Herdewijn, P. Syntheses of 5′-nucleoside monophosphate derivatives with unique aminal, hemiaminal, and hemithioaminal functionalities: A new class of 5′-peptidyl nucleotides. Chemistry, 2016, 22(24), 8167-8180.
[http://dx.doi.org/10.1002/chem.201600721] [PMID: 27136602]
[112]
Olesiak, M.; Krajewska, D.; Wasilewska, E. Thiophosphorylation of biologically relevant alcohols by the oxathiaphospholane approach. Synlett, 2002, 2002(06), 0967-0971.
[113]
McGuigan, C.; Madela, K.; Aljarah, M.; Bourdin, C.; Arrica, M.; Barrett, E.; Jones, S.; Kolykhalov, A.; Bleiman, B.; Bryant, K.D.; Ganguly, B.; Gorovits, E.; Henson, G.; Hunley, D.; Hutchins, J.; Muhammad, J.; Obikhod, A.; Patti, J.; Walters, C.R.; Wang, J.; Vernachio, J.; Ramamurty, C.V.S.; Battina, S.K.; Chamberlain, S. Phosphorodiamidates as a promising new phosphate prodrug motif for antiviral drug discovery: Application to anti-HCV agents. J. Med. Chem., 2011, 54(24), 8632-8645.
[http://dx.doi.org/10.1021/jm2011673] [PMID: 22039920]
[114]
McGuigan, C.; Bourdin, C.; Derudas, M.; Hamon, N.; Hinsinger, K.; Kandil, S.; Madela, K.; Meneghesso, S.; Pertusati, F.; Serpi, M.; Slusarczyk, M.; Chamberlain, S.; Kolykhalov, A.; Vernachio, J.; Vanpouille, C.; Introini, A.; Margolis, L.; Balzarini, J. Design, synthesis and biological evaluation of phosphorodiamidate prodrugs of antiviral and anticancer nucleosides. Eur. J. Med. Chem., 2013, 70, 326-340.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.047] [PMID: 24177359]
[115]
Yoshikawa, M.; Kato, T.; Takenishi, T. Studies of phosphorylation. III. Selective phosphorylation of unprotected nucleosides. Bull. Chem. Soc. Jpn., 1969, 42(12), 3505-3508.
[http://dx.doi.org/10.1246/bcsj.42.3505]
[116]
Wang, G.; Dyatkina, N.; Prhavc, M.; Williams, C.; Serebryany, V.; Hu, Y.; Huang, Y.; Wan, J.; Wu, X.; Deval, J.; Fung, A.; Jin, Z.; Tan, H.; Shaw, K.; Kang, H.; Zhang, Q.; Tam, Y.; Stoycheva, A.; Jekle, A.; Smith, D.B.; Beigelman, L. Synthesis and Anti-HCV activities of 4′-fluoro-2′-substituted uridine triphosphates and nucleotide prodrugs: Discovery of 4′-fluoro-2′-c-methyluridine 5′-phosphoramidate prodrug (AL-335) for the treatment of hepatitis C infection. J. Med. Chem., 2019, 62(9), 4555-4570.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00143] [PMID: 30951311]
[117]
Hedger, A.K.; Oomen, M.E.; Liu, V.; Moazami, M.P.; Rhind, N.; Dekker, J.; Watts, J.K. Progress toward an amplifiable metabolic label for DNA: Conversion of 4-thiothymidine (4sT) to 5-methyl-2′-deoxycytidine and synthesis of a 4sT phosphorodiamidate prodrug. Can. J. Chem., 2018, 96(7), 636-645.
[http://dx.doi.org/10.1139/cjc-2017-0732]
[118]
Marcellin, P.; Chang, T.T.; Lim, S.G.; Tong, M.J.; Sievert, W.; Shiffman, M.L.; Jeffers, L.; Goodman, Z.; Wulfsohn, M.S.; Xiong, S.; Fry, J.; Brosgart, C.L. Adefovir dipivoxil for the treatment of hepatitis B E antigen-positive chronic hepatitis B. N. Engl. J. Med., 2003, 348(9), 808-816.
[http://dx.doi.org/10.1056/NEJMoa020681] [PMID: 12606735]
[119]
Robbins, B.L.; Srinivas, R.V.; Kim, C.; Bischofberger, N.; Fridland, A. Anti-human immunodeficiency virus activity and cellular metabolism of a potential prodrug of the acyclic nucleoside phosphonate 9-R-(2-phosphonomethoxy-propyl) adenine (PMPA), Bis(isopropyloxymethylcar-bonyl)PMPA. Antimicrob. Agents Chemother., 1998, 42(3), 612-617.
[http://dx.doi.org/10.1128/AAC.42.3.612] [PMID: 9517941]
[120]
Peyrottes, S.; Coussot, G.; Lefebvre, I.; Imbach, J.L.; Gosselin, G.; Aubertin, A.M.; Périgaud, C. S-acyl-2-thioethyl aryl phosphotriester derivatives of AZT: Synthesis, antiviral activity, and stability study. J. Med. Chem., 2003, 46(5), 782-793.
[http://dx.doi.org/10.1021/jm021016y] [PMID: 12593658]
[121]
Schlienger, N.; Peyrottes, S.; Kassem, T.; Imbach, J.L.; Gosselin, G.; Aubertin, A.M.; Périgaud, C. S-Acyl-2-thioethyl aryl phosphotriester derivatives as mononucleotide prodrugs. J. Med. Chem., 2000, 43(23), 4570-4574.
[http://dx.doi.org/10.1021/jm000996o] [PMID: 11087582]
[122]
Erion, M.D.; Bullough, D.A.; Lin, C.C.; Hong, Z. HepDirect prodrugs for targeting nucleotide-based antiviral drugs to the liver. Curr. Opin. Investig. Drugs, 2006, 7(2), 109-117.
[PMID: 16499280]
[123]
Erion, M.D.; van Poelje, P.D.; MacKenna, D.A.; Colby, T.J.; Montag, A.C.; Fujitaki, J.M.; Linemeyer, D.L.; Bullough, D.A. Liver-targeted drug delivery using HepDirect prodrugs. J. Pharmacol. Exp. Ther., 2005, 312(2), 554-560.
[http://dx.doi.org/10.1124/jpet.104.075903] [PMID: 15340017]
[124]
Meier, C.; Balzarini, J. Application of the cycloSal-prodrug approach for improving the biological potential of phosphorylated biomolecules. Antiviral Res., 2006, 71(2-3), 282-292.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.011] [PMID: 16735066]
[125]
Meier, C.; Meerbach, A.; Balzarini, J. Cyclosal-pronucleotides - development of first and second generation chemical trojan horses for antiviral chemotherapy. Front. Biosci., 2004, 9(1-3), 873-890.
[http://dx.doi.org/10.2741/1283] [PMID: 14766416]
[126]
Gunic, E.; Girardet, J.L.; Ramasamy, K.; Stoisavljevic-Petkov, V.; Chow, S.; Yeh, L.T.; Hamatake, R.K.; Raney, A.; Hong, Z. Cyclic monophosphate prodrugs of base-modified 2′-C-methyl ribonucleosides as potent inhibitors of hepatitis C virus RNA replication. Bioorg. Med. Chem. Lett., 2007, 17(9), 2452-2455.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.030] [PMID: 17331721]
[127]
Lam, A.M.; Espiritu, C.; Murakami, E.; Zennou, V.; Bansal, S.; Micolochick Steuer, H.M.; Niu, C.; Keilman, M.; Bao, H.; Bourne, N.; Veselenak, R.L.; Reddy, P.G.; Chang, W.; Du, J.; Nagarathnam, D.; Sofia, M.J.; Otto, M.J.; Furman, P.A. Inhibition of hepatitis C virus replicon RNA synthesis by PSI-352938, a cyclic phosphate prodrug of β-D-2′-deoxy-2′-α-fluoro-2′-β-C-methylguanosine. Antimicrob. Agents Chemother., 2011, 55(6), 2566-2575.
[http://dx.doi.org/10.1128/AAC.00032-11] [PMID: 21444700]
[128]
Sontakke, V.A.; Shinde, V.S.; Lönnberg, H.; Ora, M. Synthesis and stability of nucleoside 3′,5′-cyclic phosphate triesters masked with enzymatically and thermally labile phosphate protecting groups. Eur. J. Org. Chem., 2015, 2015(2), 389-394.
[http://dx.doi.org/10.1002/ejoc.201403227]
[129]
Nakamura, M.; Uemura, K.; Saito-Tarashima, N.; Sato, A.; Orba, Y.; Sawa, H.; Matsuda, A.; Maenaka, K.; Minakawa, N. Synthesis and anti-dengue virus activity of 5-Ethynylimidazole-4-carboxamide (EICA) nucleotide prodrugs. Chem. Pharm. Bull. (Tokyo), 2022, 70(3), 220-225.
[http://dx.doi.org/10.1248/cpb.c21-01038] [PMID: 34955490]
[130]
Pertusati, F.; Pileggi, E.; Richards, J.; Wootton, M.; Van Leemputte, T.; Persoons, L.; De Coster, D.; Villanueva, X.; Daelemans, D.; Steenackers, H.; McGuigan, C.; Serpi, M. Drug repurposing: Phosphate prodrugs of anticancer and antiviral FDA-approved nucleosides as novel antimicrobials. J. Antimicrob. Chemother., 2020, 75(10), 2864-2878.
[http://dx.doi.org/10.1093/jac/dkaa268] [PMID: 32688391]
[131]
Huynh, N.; Dickson, C.; Zencak, D.; Hilko, D.H.; Mackay-Sim, A.; Poulsen, S.A. Labeling of cellular DNA with a Cyclo sal phosphotriester pronucleotide analog of 5-ethynyl-2′-deoxyuridine. Chem. Biol. Drug Des., 2015, 86(4), 400-409.
[http://dx.doi.org/10.1111/cbdd.12506] [PMID: 25557046]
[132]
Tera, M.; Glasauer, S.M.K.; Luedtke, N.W. In vivo incorporation of azide groups into DNA by using membrane-permeable nucleotide triesters. ChemBioChem, 2018, 19(18), 1939-1943.
[http://dx.doi.org/10.1002/cbic.201800351] [PMID: 29953711]
[133]
Tera, M.; Luedtke, N.W. Cross-linking cellular nucleic acids via a target-directing double click reagent. Optical Bioorthog. Methods, 2020, 641, 433-457.
[134]
Neef, A.B.; Luedtke, N.W. An azide-modified nucleoside for metabolic labeling of DNA. ChemBioChem, 2014, 15(6), 789-793.
[http://dx.doi.org/10.1002/cbic.201400037] [PMID: 24644275]
[135]
Moreno, S.; Brunner, M.; Delazer, I.; Rieder, D.; Lusser, A.; Micura, R. Synthesis of 4-thiouridines with prodrug functionalization for RNA metabolic labeling. RSC Chem. Biol., 2022, 3(4), 447-455.
[http://dx.doi.org/10.1039/D2CB00001F] [PMID: 35441143]
[136]
Ruthenbeck, A.; Marangoni, E.; Diercks, B.P.; Krüger, A.; Froese, A.; Bork, N.; Nikolaev, V.; Guse, A.; Meier, C. Membrane-permeable octanoyloxybenzyl-masked cnmps as novel tools for non-invasive cell assays. Molecules, 2018, 23(11), 2960.
[http://dx.doi.org/10.3390/molecules23112960] [PMID: 30428589]
[137]
Weinschenk, L.; Schols, D.; Balzarini, J.; Meier, C. Nucleoside diphosphate prodrugs: Nonsymmetric Di PPPro-nucleotides. J. Med. Chem., 2015, 58(15), 6114-6130.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00737] [PMID: 26125628]
[138]
Qi, H.; Lu, J.; Li, J.; Wang, M.; Xu, Y.; Wang, Y.; Zhang, H. Enhanced antitumor activity of monophosphate ester prodrugs of gemcitabine: In vitro and in vivo evaluation. J. Pharm. Sci., 2016, 105(9), 2966-2973.
[http://dx.doi.org/10.1016/j.xphs.2016.02.006] [PMID: 26994559]
[139]
Wang, Y.; Li, Y.; Lu, J.; Qi, H.; Cheng, I.; Zhang, H. Involvement of CYP4F2 in the metabolism of a novel monophosphate ester prodrug of gemcitabine and its interaction potential in vitro. Molecules, 2018, 23(5), 1195.
[http://dx.doi.org/10.3390/molecules23051195] [PMID: 29772747]
[140]
Kraszewski, A.; Sobkowski, M.; Stawinski, J. H-phosphonate chemistry in the synthesis of electrically neutral and charged antiviral and anticancer pronucleotides. Front Chem., 2020, 8, 595738.
[http://dx.doi.org/10.3389/fchem.2020.595738] [PMID: 33282839]
[141]
Szymanska-Michalak, A.; Wawrzyniak, D.; Framski, G.; Stawinski, J.; Barciszewski, J.; Kraszewski, A. New antiglioma zwitterionic pronucleotides with an FdUMP framework. Eur. J. Med. Chem., 2018, 144, 682-691.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.070] [PMID: 29289891]
[142]
Schlienger, N.; Lefebvre, I.; Aubertin, A.M.; Peyrottes, S.; Périgaud, C. Mononucleoside phosphorodithiolates as mononucleotide prodrugs. Eur. J. Med. Chem., 2022, 227, 113914.
[http://dx.doi.org/10.1016/j.ejmech.2021.113914] [PMID: 34695774]
[143]
Li, J.; Liu, S.; Shi, J.; Wang, X.; Xue, Y.; Zhu, H.J. Tissue-specific proteomics analysis of anti-covid-19 nucleoside and nucleotide prodrug-activating enzymes provides insights into the optimization of prodrug design and pharmacotherapy strategy. ACS Pharmacol. Transl. Sci., 2021, 4(2), 870-887.
[http://dx.doi.org/10.1021/acsptsci.1c00016] [PMID: 33855276]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy