Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Oligonucleotides Carrying Nucleoside Antimetabolites as Potential Prodrugs

Author(s): Carme Fàbrega, Anna Clua, Ramon Eritja* and Anna Aviñó

Volume 30, Issue 11, 2023

Published on: 24 January, 2022

Page: [1304 - 1319] Pages: 16

DOI: 10.2174/0929867328666211129124039

Price: $65

Abstract

Background: Nucleoside and nucleobase antimetabolites are an important class of chemotherapeutic agents for the treatment of cancer as well as other diseases.

Introduction: In order to avoid undesirable side effects, several prodrug strategies have been developed. In the present review, we describe a relatively unknown strategy that consists of using oligonucleotides modified with nucleoside antimetabolites as prodrugs.

Methods: The active nucleotides are generated by enzymatic degradation once incorporated into cells. This strategy has attracted large interest and is widely utilized at present due to the continuous developments made in therapeutic oligonucleotides and the recent advances in nanomaterials and nanomedicine.

Results: A large research effort was made mainly in the improvement of the antiproliferative properties of nucleoside homopolymers, but recently, chemically modified aptamers, antisense oligonucleotides and/or siRNA carrying antiproliferative nucleotides have demonstrated a great potential due to the synergetic effect of both therapeutic entities. In addition, DNA nanostructures with interesting properties have been built to combine antimetabolites and enhancers of cellular uptake in the same scaffold. Finally, protein nanoparticles functionalized with receptor-binders and antiproliferative oligomers represent a new avenue for a more effective treatment in cancer therapy.

Conclusion: It is expected that oligonucleotides carrying nucleoside antimetabolites will be considered as potential drugs in the near future for biomedical applications.

Keywords: Antimetabolites, nucleosides, nanomedicine, antiproliferative oligomers, homopolymers, floxuridine, gemcitabine, cytarabine.

[1]
Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(1), 9-29.
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
[2]
Grem, J.L. 5-Fluorouracil: Forty-plus and still ticking. A review of its preclinical and clinical development. Invest. New Drugs, 2000, 18(4), 299-313.
[http://dx.doi.org/10.1023/A:1006416410198] [PMID: 11081567]
[3]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[4]
Harris, A.L.; Potter, C.; Bunch, C.; Boutagy, J.; Harvey, D.J.; Grahame-Smith, D.G. Pharmacokinetics of cytosine arabinoside in patients with acute myeloid leukaemia. Br. J. Clin. Pharmacol., 1979, 8(3), 219-227.
[http://dx.doi.org/10.1111/j.1365-2125.1979.tb01005.x] [PMID: 291436]
[5]
Zhang, X-W.; Ma, Y-X.; Sun, Y.; Cao, Y-B.; Li, Q.; Xu, C-A. Gemcitabine in combination with a second cytotoxic agent in the first-line treatment of locally advanced or metastatic pancreatic cancer: a systematic review and meta-analysis. Target. Oncol., 2017, 12(3), 309-321.
[http://dx.doi.org/10.1007/s11523-017-0486-5] [PMID: 28353074]
[6]
Sahasranaman, S.; Howard, D.; Roy, S. Clinical pharmacology and pharmacogenetics of thiopurines. Eur. J. Clin. Pharmacol., 2008, 64(8), 753-767.
[http://dx.doi.org/10.1007/s00228-008-0478-6] [PMID: 18506437]
[7]
Rai, K.R.; Peterson, B.L.; Appelbaum, F.R.; Kolitz, J.; Elias, L.; Shepherd, L.; Hines, J.; Threatte, G.A.; Larson, R.A.; Cheson, B.D.; Schiffer, C.A. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N. Engl. J. Med., 2000, 343(24), 1750-1757.
[http://dx.doi.org/10.1056/NEJM200012143432402] [PMID: 11114313]
[8]
Ghoshal, K.; Jacob, S.T. Specific inhibition of pre-ribosomal RNA processing in extracts from the lymphosarcoma cells treated with 5-fluorouracil. Cancer Res., 1994, 54(3), 632-636.
[PMID: 8306322]
[9]
Sato, A.; Hiramoto, A.; Uchikubo, Y.; Miyazaki, E.; Satake, A.; Naito, T.; Hiraoka, O.; Miyake, T.; Kim, H.S.; Wataya, Y. Gene expression profiles of necrosis and apoptosis induced by 5-fluoro-2′-deoxyuridine. Genomics, 2008, 92(1), 9-17.
[http://dx.doi.org/10.1016/j.ygeno.2008.02.002] [PMID: 18572099]
[10]
Danenberg, P.V.; Lockshn, A. Fluorinated pyrimidines as tight-binding inhibitors of thymidylate synthetase. Pharmac. Ther., 1981, 13, 69-90.
[http://dx.doi.org/10.1016/0006-291X(74)90601-9] [PMID: 4275130]
[11]
Santi, D.V. Mechanism of interaction of thymidylate synthetase with 5-Fluorodeoxyuridylate. Biochemistry, 1974, 13(3), 471-481.
[12]
Goulian, M.; Bleile, B.M.; Dickey, L.M.; Grafstrom, R.H.; Ingraham, H.A.; Neynaber, S.A.; Peterson, M.S.; Tseng, B.Y. Mechanism of thymineless death. Adv. Exp. Med. Biol., 1986, 195(B), 89-95.
[http://dx.doi.org/10.1007/978-1-4684-1248-2_15]
[13]
Houghton, J.A.; Harwood, F.G.; Tillman, D.M. Thymineless death in colon carcinoma cells is mediated via fas signaling. Proc. Natl. Acad. Sci. USA, 1997, 94(15), 8144-8149.
[http://dx.doi.org/10.1073/pnas.94.15.8144] [PMID: 9223329]
[14]
Gmeiner, W.H. Entrapment of DNA topoisomerase-DNA complexes by nucleotide/nucleoside analogs. Cancer Drug Resist., 2019, 2, 994-1001.
[http://dx.doi.org/10.20517/cdr.2019.95] [PMID: 31930190]
[15]
Chen, L.; MacMillan, A.M.; Chang, W.; Ezaz-Nikpay, K.; Lane, W.S.; Verdine, G.L. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry, 1991, 30(46), 11018-11025.
[http://dx.doi.org/10.1021/bi00110a002] [PMID: 1932026]
[16]
Brank, A.S.; Eritja, R.; Garcia, R.G.; Marquez, V.E.; Christman, J.K. Inhibition of HhaI DNA (Cytosine-C5) methyltransferase by oligodeoxyribonucleotides containing 5-aza-2′-deoxycytidine: Examination of the intertwined roles of co-factor, target, transition state structure and enzyme conformation. J. Mol. Biol., 2002, 323(1), 53-67.
[http://dx.doi.org/10.1016/S0022-2836(02)00918-X] [PMID: 12368098]
[17]
van Bemmel, D.M.; Brank, A.S.; Eritja, R.; Marquez, V.E.; Christman, J.K. DNA (Cytosine-C5) methyltransferase inhibition by oligodeoxyribonucleotides containing 2-(1H)-pyrimidinone (zebularine aglycon) at the enzymatic target site. Biochem. Pharmacol., 2009, 78(6), 633-641.
[http://dx.doi.org/10.1016/j.bcp.2009.05.017] [PMID: 19467223]
[18]
Yu, J.; Xie, T.; Wang, Z.; Wang, X.; Zeng, S.; Kang, Y.; Hou, T. DNA methyltransferases: Emerging targets for the discovery of inhibitors as potent anticancer drugs. Drug Discov. Today, 2019, 24(12), 2323-2331.
[http://dx.doi.org/10.1016/j.drudis.2019.08.006] [PMID: 31494187]
[19]
Chu, E.; Allegra, C.J. Regulation of Thymidylate Synthase in human colon cancer cells treated with 5-Fluorouracil and Interferon-Gamma. In: Novel Approaches to Selective Treatments of Human Solid Tumors; Springer, 1993; pp. 143-151.
[http://dx.doi.org/10.1007/978-1-4615-2488-5_16]
[20]
Diasio, R.B.; Harris, B.E. Clinical pharmacology of 5-fluorouracil. Clin. Pharmacokinet., 1989, 16(4), 215-237.
[http://dx.doi.org/10.2165/00003088-198916040-00002] [PMID: 2656050]
[21]
Hammond, W.A.; Swaika, A.; Mody, K. Pharmacologic resistance in colorectal cancer: A review. Ther. Adv. Med. Oncol., 2016, 8(1), 57-84.
[http://dx.doi.org/10.1177/1758834015614530] [PMID: 26753006]
[22]
Shiga, T.; Hiraide, M. Cardiotoxicities of 5-Fluorouracil and other fluoropyrimidines. Curr. Treat. Options Oncol., 2020, 21(4), 27.
[http://dx.doi.org/10.1007/s11864-020-0719-1] [PMID: 32266582]
[23]
Kessler, D.A.; Austin, R.H.; Levine, H. Resistance to chemotherapy: Patient variability and cellular heterogeneity. Cancer Res., 2014, 74(17), 4663-4670.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0118] [PMID: 25183790]
[24]
Li, F.; Maag, H.; Alfredson, T. Prodrugs of nucleoside analogues for improved oral absorption and tissue targeting. J. Pharm. Sci., 2008, 97(3), 1109-1134.
[http://dx.doi.org/10.1002/jps.21047] [PMID: 17696166]
[25]
Vivian, D.; Polli, J.E. Synthesis and in vitro evaluation of bile acid prodrugs of floxuridine to target the liver. Int. J. Pharm., 2014, 475(1-2), 597-604.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.014] [PMID: 25219859]
[26]
Landowski, C.P.; Vig, B.S.; Song, X.; Amidon, G.L. Targeted delivery to PEPT1-overexpressing cells: acidic, basic, and secondary floxuridine amino acid ester prodrugs. Mol. Cancer Ther., 2005, 4(4), 659-667.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0290] [PMID: 15827340]
[27]
Gmeiner, W.H.; Debinski, W.; Milligan, C.; Caudell, D.; Pardee, T.S. The applications of the novel polymeric Fluoropyrimidine F10 in cancer treatment: Current evidence. Future Oncology, 2016, 12(17), 2009-2020.
[http://dx.doi.org/10.2217/fon-2016-0091]
[28]
Liu, J.; Skradis, A.; Kolar, C.; Kolath, J.; Anderson, J.; Lawson, T.; Talmadge, J.; Gmeiner, W.H. Increased cytotoxicity and decreased in vivo toxicity of FdUMP[10] relative to 5-FU. Nucleosides Nucleotides, 1999, 18(8), 1789-1802.
[http://dx.doi.org/10.1080/07328319908044843] [PMID: 10478484]
[29]
Liao, Z-Y.; Sordet, O.; Zhang, H-L.; Kohlhagen, G.; Antony, S.; Gmeiner, W.H.; Pommier, Y. Novel polypyrimidine antitumor agent FdUMP[10] induces thymineless death with topoisomerase I-DNA complexe. Cancer Res., 2005, 65(11), 4844-4851.
[30]
Gmeiner, W.H.; Reinhold, W.C.; Pommier, Y. Genome-wide mRNA and microRNA profiling of the NCI 60 cell- line screen and comparison of FdUMP[10] with fluorouracil, floxuridine, and topoisomerase 1 poisons. Mol. Cancer Ther., 2010, 9(12), 3105-3114.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0674] [PMID: 21159603]
[31]
Pardee, T.S.; Gomes, E.; Jennings-Gee, J.; Caudell, D.; Gmeiner, W.H. Unique dual targeting of thymidylate synthase and topoisomerase1 by FdUMP[10] results in high efficacy against AML and low toxicity. Blood, 2012, 119(15), 3561-3570.
[http://dx.doi.org/10.1182/blood-2011-06-362442] [PMID: 22362039]
[32]
Curtin, N.J.; Harris, A.L.; Aherne, G.W. Mechanism of cell death following thymidylate synthase inhibition: 2′-deoxyuridine-5′-triphosphate accumulation, DNA damage, and growth inhibition following exposure to CB3717 and dipyridamole. Cancer Res., 1991, 51(9), 2346-2352.
[PMID: 2015598]
[33]
Gmeiner, W.H.; Gearhart, P.J.; Pommier, Y.; Nakamura, J. F10 Cytotoxicity via topoisomerase I cleavage complex repair consistent with a unique mechanism for thymineless death. Future Oncol., 2016, 12(19), 2183-2188.
[http://dx.doi.org/10.2217/fon-2016-0127]
[34]
Pourquier, P.; Takebayashi, Y.; Urasaki, Y.; Gioffre, C.; Kohlhagen, G.; Pommier, Y. Induction of topoisomerase I cleavage complexes by 1-β -D-arabinofuranosylcytosine (ara-C) in vitro and in ara-C-treated cells. Proc. Natl. Acad. Sci. USA, 2000, 97(4), 1885-1890.
[http://dx.doi.org/10.1073/pnas.97.4.1885] [PMID: 10677551]
[35]
Pourquier, P.; Gioffre, C.; Kohlhagen, G.; Urasaki, Y.; Goldwasser, F.; Hertel, L.W.; Yu, S.; Pon, R.T.; Gmeiner, W.H.; Pommier, Y. Gemcitabine (2′,2′-difluoro-2′-deoxycytidine), an antimetabolite that poisons topoisomerase I. Clin. Cancer Res., 2002, 8(8), 2499-2504.
[PMID: 12171875]
[36]
Gmeiner, W.H.; Trump, E.; Wei, C. Enhanced DNA-directed effects of FdUMP[10] compared to 5FU. Nucleosides Nucleotides Nucleic Acids, 2004, 23(1-2), 401-410.
[http://dx.doi.org/10.1081/NCN-120028336] [PMID: 15043163]
[37]
Gmeiner, W.H.; Willingham, M.C.; Bourland, J.D.; Hatcher, H.C.; Smith, T.L.; D’agostino, R.B.; Blackstock, W. F10 inhibits growth of PC3 xenografts and enhances the effects of radiation therapy. J. Clin. Oncol. Res., 2014, 2(4), 1028.
[38]
Kamm, Y.J.L.; Peters, G.J.; Hull, W.E.; Punt, C.J.A.; Heerschap, A. Correlation between 5-fluorouracil metabolism and treatment response in two variants of C26 murine colon carcinoma. Br. J. Cancer, 2003, 89(4), 754-762.
[http://dx.doi.org/10.1038/sj.bjc.6601162] [PMID: 12915890]
[39]
Liu, J.; Schmitz, J.C.; Lin, X.; Tai, N.; Yan, W.; Farrell, M.; Bailly, M.; Chen, T.; Chu, E. Thymidylate synthase as a translational regulator of cellular gene expression. Biochim. Biophys. Acta, 2002, 1587(2-3), 174-182.
[http://dx.doi.org/10.1016/S0925-4439(02)00080-7] [PMID: 12084459]
[40]
Jennings-Gee, J.; Pardee, T.S.; Gmeiner, W.H. Replication-dependent irreversible topoisomerase 1 poisoning is responsible for FdUMP[10] anti-leukemic activity. Exp. Hematol., 2013, 41(2), 180-188.
[http://dx.doi.org/10.1016/j.exphem.2012.10.007] [PMID: 23085462]
[41]
Pardee, T.S.; Stadelman, K.; Jennings-Gee, J.; Caudell, D.L.; Gmeiner, W.H. The poison oligonucleotide F10 is highly effective against acute lymphoblastic leukemia while sparing normal hematopoietic cells. Oncotarget, 2014, 5, 4170-4179.
[http://dx.doi.org/10.18632/oncotarget.1937]
[42]
Mani, C.; Pai, S.; Papke, C.M.; Palle, K.; Gmeiner, W.H. Thymineless death by the fluoropyrimidine polymer F10 involves replication fork collapse and is enhanced by Chk1 inhibition. Neoplasia, 2018, 20(12), 1236-1245.
[http://dx.doi.org/10.1016/j.neo.2018.10.006] [PMID: 30439567]
[43]
Gmeiner, W.H.; Lema-Tome, C.; Gibo, D.; Jennings-Gee, J.; Milligan, C.; Debinski, W. Selective anti-tumor activity of the novel fluoropyrimidine polymer F10 towards G48a orthotopic GBM tumors. J. Neurooncol., 2014, 116(3), 447-454.
[http://dx.doi.org/10.1007/s11060-013-1321-1] [PMID: 24346635]
[44]
Gmeiner, W.H.; Jennings-Gee, J.; Stuart, C.H.; Pardee, T.S. Thymineless death in F10-treated AML cells occurs via lipid raft depletion and Fas/FasL co-localization in the plasma membrane with activation of the extrinsic apoptotic pathway. Leuk. Res., 2015, 39(2), 229-235.
[http://dx.doi.org/10.1016/j.leukres.2014.11.006] [PMID: 25510486]
[45]
Gmeiner, W.H.; Boyacioglu, O.; Stuart, C.H.; Jennings-Gee, J.; Balaji, K.C. The cytotoxic and pro-apoptotic activities of the novel fluoropyrimidine F10 towards prostate cancer cells are enhanced by Zn(2+) -chelation and inhibiting the serine protease Omi/HtrA2. Prostate, 2015, 75(4), 360-369.
[http://dx.doi.org/10.1002/pros.22922] [PMID: 25408502]
[46]
Miura, K.; Kinouchi, M.; Ishida, K.; Fujibuchi, W.; Naitoh, T.; Ogawa, H.; Ando, T.; Yazaki, N.; Watanabe, K.; Haneda, S.; Shibata, C.; Sasaki, I. 5-fu metabolism in cancer and orally-administrable 5-fu drugs. Cancers (Basel), 2010, 2(3), 1717-1730.
[http://dx.doi.org/10.3390/cancers2031717] [PMID: 24281184]
[47]
Dominijanni, A.; Gmeiner, W.H. Improved potency of F10 relative to 5-fluorouracil in colorectal cancer cells with p53 mutations. Cancer Drug Resist., 2018, 1(1), 48-58.
[http://dx.doi.org/10.20517/cdr.2018.01] [PMID: 30613833]
[48]
Pritchard, D.M.; Watson, A.J.M.; Potten, C.S.; Jackman, A.L.; Hickman, J.A. Inhibition by uridine but not thymidine of p53-dependent intestinal apoptosis initiated by 5-fluorouracil: Evidence for the involvement of RNA perturbation. Proc. Natl. Acad. Sci. USA, 1997, 94(5), 1795-1799.
[http://dx.doi.org/10.1073/pnas.94.5.1795] [PMID: 9050858]
[49]
Ötvös, L.; Sági, J. Daganatellenes Antiszensz Oligonukleotidok (Antisense oligonucleotides with antitumor activity). Magy. Onkol. (Hung. Oncology), 2004, 48, 221–227.
[PMID: 15520872]
[50]
Wu, S.Y.; Chen, T.M.; Gmeiner, W.H.; Chu, E.; Schmitz, J.C. Development of modified siRNA molecules incorporating 5-fluoro-2′-deoxyuridine residues to enhance cytotoxicity. Nucleic Acids Res., 2013, 41(8), 4650-4659.
[http://dx.doi.org/10.1093/nar/gkt120] [PMID: 23449220]
[51]
Haber, A.O.; Jain, A.; Mani, C.; Nevler, A.; Agostini, L.C.; Golan, T.; Palle, K.; Yeo, C.J.; Gmeiner, W.H.; Brody, J.R. AraC-FdUMP[10] is a next-generation fluoropyrimidine with potent antitumor activity in PDAC and synergy with PARG inhibition. Mol. Cancer Res., 2021, 19(4), 565-572.
[http://dx.doi.org/10.1158/1541-7786.MCR-20-0985] [PMID: 33593942]
[52]
Gmeiner, W.H.; Dominijanni, A.; Haber, A.O.; Ghiraldeli, L.P.; Caudell, D.L.; D’Agostino, R., Jr; Pasche, B.C.; Smith, T.L.; Deng, Z.; Kiren, S.; Mani, C.; Palle, K.; Brody, J.R. Improved antitumor activity of the fluoropyrimidine polymer CF10 in preclinical colorectal cancer models through distinct mechanistic and pharmacologic properties. Mol. Cancer Ther., 2021, 20(3), 553-563.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0516] [PMID: 33361273]
[53]
Zhu, L.; Guo, Y.; Qian, Q.; Yan, D.; Li, Y.; Zhu, X.; Zhang, C. Carrier-free delivery of precise drug-chemogene conjugates for synergistic treatment of drug-resistant cancer. Angew. Chem. Int. Ed. Engl., 2020, 59(41), 17944-17950.
[http://dx.doi.org/10.1002/anie.202006895] [PMID: 32643224]
[54]
Simonenko, V.; Lu, X.; Roesch, E.; Mutisya, D.; Shao, C.; Sun, Q.; Patterson-Orazem, A.; McNair, M.; Shanmuganathan, A.; Lu, P. A novel SiRNA–gemcitabine construct as a potential therapeutic for treatment of pancreatic cancer. NAR Cancer, 2020, 2(3), zcaa016.
[55]
Sierant, M.; Sobczak, M.; Janicka, M.; Paduszynska, A.; Piotrzkowska, D. Biological and physicochemical characterization of SiRNAs modified with 2′,2′-Difluoro-2′-Deoxycytidine (Gemcitabine). New J. Chem., 2010, 34(5), 918-924.
[http://dx.doi.org/10.1039/b9nj00746f]
[56]
Ghosh, S.; Mallick, S.; Das, U.; Verma, A.; Pal, U.; Chatterjee, S.; Nandy, A.; Saha, K.D.; Maiti, N.C.; Baishya, B.; Suresh Kumar, G.; Gmeiner, W.H. Curcumin stably interacts with DNA hairpin through minor groove binding and demonstrates enhanced cytotoxicity in combination with FdU nucleotides. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(3), 485-494.
[http://dx.doi.org/10.1016/j.bbagen.2017.10.018] [PMID: 29107813]
[57]
Jin, C.; Zhang, H.; Zou, J.; Liu, Y.; Zhang, L.; Li, F.; Wang, R.; Xuan, W.; Ye, M.; Tan, W. Floxuridine homomeric oligonucleotides “Hitchhike” with albumin in situ for cancer chemotherapy. Angew. Chem. Int. Ed. Engl., 2018, 57(29), 8994-8997.
[http://dx.doi.org/10.1002/anie.201804156] [PMID: 29923269]
[58]
Aviñó, A.; Clua, A.; Bleda, M.J.; Eritja, R.; Fàbrega, C. Evaluation of floxuridine oligonucleotide conjugates carrying potential enhancers of cellular uptake. Int. J. Mol. Sci., 2021, 22(11), 5678.
[59]
Chappell, A.E.; Gaus, H.J.; Berdeja, A.; Gupta, R.; Jo, M.; Prakash, T.P.; Oestergaard, M.; Swayze, E.E.; Seth, P.P. Mechanisms of palmitic acid-conjugated antisense oligonucleotide distribution in mice. Nucleic Acids Res., 2020, 48(8), 4382-4395.
[http://dx.doi.org/10.1093/nar/gkaa164] [PMID: 32182359]
[60]
Wang, S.; Allen, N.; Prakash, T.P.; Liang, X.H.; Crooke, S.T. Lipid conjugates enhance endosomal release of antisense oligonucleotides into cells. Nucleic Acid Ther., 2019, 29(5), 245-255.
[http://dx.doi.org/10.1089/nat.2019.0794] [PMID: 31158063]
[61]
Ma, H.; Liu, J.; Ali, M.M.; Mahmood, M.A.I.; Labanieh, L.; Lu, M.; Iqbal, S.M.; Zhang, Q.; Zhao, W.; Wan, Y. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem. Soc. Rev., 2015, 44(5), 1240-1256.
[http://dx.doi.org/10.1039/C4CS00357H] [PMID: 25561050]
[62]
Morita, Y.; Leslie, M.; Kameyama, H.; Volk, D.E.; Tanaka, T. Aptamer therapeutics in cancer: Current and future. Cancers (Basel), 2018, 10(3), 80.
[http://dx.doi.org/10.3390/cancers10030080] [PMID: 29562664]
[63]
Nimjee, S.M.; White, R.R.; Becker, R.C.; Sullenger, B.A. Aptamers as therapeutics. Annu. Rev. Pharmacol. Toxicol., 2017, 57, 61-79.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104558] [PMID: 28061688]
[64]
Zhu, G.; Niu, G.; Chen, X. Aptamer-drug conjugates. Bioconjug. Chem., 2015, 26(11), 2186-2197.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00291] [PMID: 26083153]
[65]
Dua, P.; Sajeesh, S.; Kim, S.; Lee, D.K. ALPPL2 Aptamer-mediated targeted delivery of 5-Fluoro-2′-Deoxyuridine to pancreatic cancer. Nucleic Acid Ther., 2015, 25(4), 180-187.
[http://dx.doi.org/10.1089/nat.2014.0516] [PMID: 25919296]
[66]
Ray, P.; Cheek, M.A.; Sharaf, M.L.; Li, N.; Ellington, A.D.; Sullenger, B.A.; Shaw, B.R.; White, R.R. Aptamer- mediated delivery of chemotherapy to pancreatic cancer cells. Nucleic Acid Ther., 2012, 22(5), 295-305.
[http://dx.doi.org/10.1089/nat.2012.0353] [PMID: 23030589]
[67]
Park, J.Y.; Chae, J.R.; Cho, Y.L.; Kim, Y.; Lee, D.; Lee, J.K.; Kang, W.J. Targeted therapy of hepatocellular carcinoma using gemcitabine-incorporated GPC3 aptamer. Pharmaceutics, 2020, 12(10), 985.
[http://dx.doi.org/10.3390/pharmaceutics12100985] [PMID: 33080969]
[68]
Joshi, M.; Choi, J.-S.; Park, J.-W.; Doh, K.-O. Combination of doxorubicin with gemcitabine-incorporated GQuadruplex aptamer showed synergistic and selective anticancer effect in breast cancer cells. J. Microbiol. Biotechnol., 2019, 29(11), 1799-1805.
[http://dx.doi.org/10.4014/jmb.1907.07029]
[69]
Kruspe, S.; Hahn, U. An aptamer intrinsically comprising 5-fluoro-2′-deoxyuridine for targeted chemotherapy. Angew. Chem. Int. Ed. Engl., 2014, 53(39), 10541-10544.
[http://dx.doi.org/10.1002/anie.201405778] [PMID: 25145319]
[70]
Yoon, S.; Huang, K-W.; Reebye, V.; Spalding, D.; Przytycka, T.M.; Wang, Y.; Swiderski, P.; Li, L.; Armstrong, B.; Reccia, I.; Zacharoulis, D.; Dimas, K.; Kusano, T.; Shively, J.; Habib, N.; Rossi, J.J. Aptamer-drug conjugates of active metabolites of nucleoside analogs and cytotoxic agents inhibit pancreatic tumor cell growth. Mol. Ther. Nucleic Acids, 2017, 6, 80-88.
[http://dx.doi.org/10.1016/j.omtn.2016.11.008] [PMID: 28325302]
[71]
Murakami, T.; Zhang, T-Y.; Koyanagi, Y.; Tanaka, Y.; Kim, J.; Suzuki, Y.; Minoguchi, S.; Tamamura, H.; Waki, M.; Matsumoto, A.; Fujii, N.; Shida, H.; Hoxie, J.A.; Peiper, S.C.; Yamamoto, N. Inhibitory mechanism of the CXCR4 antagonist T22 against human immunodeficiency virus type 1 infection. J. Virol., 1999, 73(9), 7489-7496.
[http://dx.doi.org/10.1128/JVI.73.9.7489-7496.1999] [PMID: 10438838]
[72]
Céspedes, M.V.; Unzueta, U.; Aviñó, A.; Gallardo, A.; Álamo, P.; Sala, R.; Sánchez-Chardi, A.; Casanova, I.; Mangues, M.A.; Lopez-Pousa, A.; Eritja, R.; Villaverde, A.; Vázquez, E.; Mangues, R. Selective depletion of metastatic stem cells as therapy for human colorectal cancer. EMBO Mol. Med., 2018, 10(10), e8772.
[http://dx.doi.org/10.15252/emmm.201708772] [PMID: 30190334]
[73]
Aviñó, A.; Unzueta, U.; Virtudes Céspedes, M.; Casanova, I.; Vázquez, E.; Villaverde, A.; Mangues, R.; Eritja, R. Efficient bioactive oligonucleotide-protein conjugation for cell-targeted cancer therapy. ChemistryOpen, 2019, 8(3), 382-387.
[http://dx.doi.org/10.1002/open.201900038] [PMID: 30976478]
[74]
Voltà-Durán, E.; Serna, N.; Sánchez-García, L.; Aviñó, A.; Sánchez, J.M.; López-Laguna, H.; Cano-Garrido, O.; Casanova, I.; Mangues, R.; Eritja, R.; Vázquez, E.; Villaverde, A.; Unzueta, U. Design and engineering of tumor-targeted, dual-acting cytotoxic nanoparticles. Acta Biomater., 2021, 119, 312-322.
[http://dx.doi.org/10.1016/j.actbio.2020.11.018] [PMID: 33189955]
[75]
Walz, J.M.; Avelar, R.L.; Longtine, K.J.; Carter, K.L.; Mermel, L.A.; Heard, S.O. Anti-infective external coating of central venous catheters: a randomized, noninferiority trial comparing 5-fluorouracil with chlorhexidine/silver sulfadiazine in preventing catheter colonization. Crit. Care Med., 2010, 38(11), 2095-2102.
[http://dx.doi.org/10.1097/CCM.0b013e3181f265ba] [PMID: 20711070]
[76]
Serna, N.; Carratalá, J.V.; Parladé, E.; Sánchez-Chardi, A.; Aviñó, A.; Unzueta, U.; Mangues, R.; Eritja, R.; Ferrer-Miralles, N.; Vazquez, E.; Villaverde, A. Developing protein-antitumoral drug nanoconjugates as bifunctional antimicrobial agents. ACS Appl. Mater. Interfaces, 2020, 12(52), 57746-57756.
[http://dx.doi.org/10.1021/acsami.0c18317] [PMID: 33325705]
[77]
Álamo, P.; Cedano, J.; Conchillo-Sole, O.; Cano-Garrido, O.; Alba-Castellon, L.; Serna, N.; Aviñó, A.; Carrasco-Diaz, L.M.; Sánchez-Chardi, A.; Martinez-Torró, C.; Gallardo, A.; Cano, M.; Eritja, R.; Villaverde, A.; Mangues, R.; Vazquez, E.; Unzueta, U. Rational engineering of a human GFP-like protein scaffold for humanized targeted nanomedicines. Acta Biomater., 2021, 130, 211-222.
[http://dx.doi.org/10.1016/j.actbio.2021.06.001] [PMID: 34116228]
[78]
Wang, P.; Meyer, T.A.; Pan, V.; Dutta, P.K.; Ke, Y. The beauty and utility of DNA origami. Chem, 2017, 2(3), 359-382.
[http://dx.doi.org/10.1016/j.chempr.2017.02.009]
[79]
Li, J.; Fan, C.; Pei, H.; Shi, J.; Huang, Q. Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv. Mater., 2013, 25(32), 4386-4396.
[http://dx.doi.org/10.1002/adma.201300875] [PMID: 23765613]
[80]
Bagalkot, V.; Farokhzad, O.C.; Langer, R.; Jon, S. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew. Chem. Int. Ed., 2006, 45(48), 8149-8152.
[http://dx.doi.org/10.1002/anie.200602251] [PMID: 17099918]
[81]
Clua, A.; Fàbrega, C.; García-Chica, J.; Grijalvo, S.; Eritja, R. Parallel G-quadruplex structures increase cellular uptake and cytotoxicity of 5-Fluoro-2′-deoxyuridine Oligomers in 5-Fluorouracil resistant cells. Molecules, 2021, 26(6), 1741.
[http://dx.doi.org/10.3390/molecules26061741] [PMID: 33804620]
[82]
Zhang, F.; Yin, J.; Zhang, C.; Han, M.; Wang, X.; Fu, S.; Du, J.; Zhang, H.; Li, W. Affibody-conjugated RALA polymers delivering oligomeric 5-Fluorodeoxyuridine for targeted therapy of HER2 overexpressing gastric cancer. Macromol. Biosci., 2020, 20(7), e2000083.
[http://dx.doi.org/10.1002/mabi.202000083] [PMID: 32558229]
[83]
Jorge, A.F.; Aviñó, A.; Pais, A.A.C.C.; Eritja, R.; Fàbrega, C. DNA-based nanoscaffolds as vehicles for 5-fluoro-2′-deoxyuridine oligomers in colorectal cancer therapy. Nanoscale, 2018, 10(15), 7238-7249.
[http://dx.doi.org/10.1039/C7NR08442K] [PMID: 29632908]
[84]
Mou, Q.; Ma, Y.; Pan, G.; Xue, B.; Yan, D.; Zhang, C.; Zhu, X. DNA trojan horses: Self-assembled Floxuridine- containing DNA polyhedra for cancer therapy. Angew. Chem. Int. Ed. Engl., 2017, 56(41), 12528-12532.
[http://dx.doi.org/10.1002/anie.201706301] [PMID: 28806476]
[85]
Bigey, P.; Knox, J.D.; Croteau, S.; Bhattacharya, S.K.; Théberge, J.; Szyf, M. Modified oligonucleotides as bona fide antagonists of proteins interacting with DNA. Hairpin antagonists of the human DNA methyltransferase. J. Biol. Chem., 1999, 274(8), 4594-4606.
[http://dx.doi.org/10.1074/jbc.274.8.4594] [PMID: 9988694]
[86]
Sheikhnejad, G.; Brank, A.; Christman, J.K.; Goddard, A.; Alvarez, E.; Ford, H., Jr; Marquez, V.E.; Marasco, C.J.; Sufrin, J.R.; O’gara, M.; Cheng, X. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine. J. Mol. Biol., 1999, 285(5), 2021-2034.
[http://dx.doi.org/10.1006/jmbi.1998.2426] [PMID: 9925782]
[87]
Zhou, L.; Cheng, X.; Connolly, B.A.; Dickman, M.J.; Hurd, P.J.; Hornby, D.P. Zebularine: A novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J. Mol. Biol., 2002, 321(4), 591-599.
[http://dx.doi.org/10.1016/S0022-2836(02)00676-9] [PMID: 12206775]
[88]
Lamparska, K.; Clark, J.; Babilonia, G.; Bedell, V.; Yip, W.; Smith, S.S. 2′-Deoxyriboguanylurea, the primary breakdown product of 5-aza-2′-deoxyribocytidine, is a mutagen, an epimutagen, an inhibitor of DNA methyltransferases and an inducer of 5-azacytidine-type fragile sites. Nucleic Acids Res., 2012, 40(19), 9788-9801.
[http://dx.doi.org/10.1093/nar/gks706] [PMID: 22850746]
[89]
Marquez, V.E.; Wang, P.; Nicklaus, M.C.; Maier, M.; Manoharan, M.; Christman, J.K.; Banavali, N.K.; Mackerell, A.D., Jr. Inhibition of (cytosine C5)-methyltransferase by oligonucleotides containing flexible (cyclopentane) and conformationally constrained (bicyclo[3.1.0]hexane) abasic sites. Nucleosides Nucleotides Nucleic Acids, 2001, 20(4-7), 451-459.
[http://dx.doi.org/10.1081/NCN-100002319] [PMID: 11563060]
[90]
Kasai, Y.; Sato, K.; Utsumi, S.; Ichikawa, S. Improvement of SN Ar Reaction rate by an electron-withdrawing group in the crosslinking of DNA cytosine-5 methyltransferase by a covalent oligodeoxyribonucleotide inhibitor. ChemBioChem, 2018, 19(17), 1866-1872.
[http://dx.doi.org/10.1002/cbic.201800244] [PMID: 29900657]
[91]
Sato, K.; Kunitomo, Y.; Kasai, Y.; Utsumi, S.; Suetake, I.; Tajima, S.; Ichikawa, S.; Matsuda, A. Mechanism-based inhibitor of DNA Cytosine-5 Methyltransferase by a SN Ar reaction with an oligodeoxyribonucleotide containing a 2-Amino-4-Halopyridine-C-nucleoside. ChemBioChem, 2018, 19(8), 865-872.
[http://dx.doi.org/10.1002/cbic.201700688] [PMID: 29392812]
[92]
Yoo, C.B.; Jeong, S.; Egger, G.; Liang, G.; Phiasivongsa, P.; Tang, C.; Redkar, S.; Jones, P.A. Delivery of 5-aza-2′-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res., 2007, 67(13), 6400-6408.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0251] [PMID: 17616700]
[93]
Chuang, J.C.; Warner, S.L.; Vollmer, D.; Vankayalapati, H.; Redkar, S.; Bearss, D.J.; Qiu, X.; Yoo, C.B.; Jones, P.A. S110, a 5-Aza-2′-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol. Cancer Ther., 2010, 9(5), 1443-1450.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-1048] [PMID: 20442312]
[94]
Lavelle, D.; Saunthararajah, Y.; Vaitkus, K.; Singh, M.; Banzon, V.; Phiasivongsva, P.; Redkar, S.; Kanekal, S.; Bearss, D.; Shi, C.; Inloes, R.; DeSimone, J. S110, a novel decitabine dinucleotide, increases fetal hemoglobin levels in baboons (P. anubis). J. Transl. Med., 2010, 8(1), 92.
[http://dx.doi.org/10.1186/1479-5876-8-92] [PMID: 20932295]
[95]
Seley-Radtke, K.L.; Yates, M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res., 2018, 154, 66-86.
[http://dx.doi.org/10.1016/j.antiviral.2018.04.004] [PMID: 29649496]
[96]
Yates, M.K.; Seley-Radtke, K.L. The evolution of antiviral nucleoside analogues: A review for chemists and non- chemists. Part II: Complex modifications to the nucleoside scaffold. Antiviral Res., 2019, 162, 5-21.
[http://dx.doi.org/10.1016/j.antiviral.2018.11.016] [PMID: 30529089]
[97]
Zhang, C.; Han, M.; Zhang, F.; Yang, X.; Du, J.; Zhang, H.; Li, W.; Chen, S. Enhancing antitumor efficacy of nucleoside analog 5-Fluorodeoxyuridine on HER2-overexpressing breast cancer by affibody-engineered DNA nanoparticle. Int. J. Nanomedicine, 2020, 15, 885-900.
[http://dx.doi.org/10.2147/IJN.S231144] [PMID: 32103944]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy