Generic placeholder image

Current Cosmetic Science

Editor-in-Chief

ISSN (Print): 2666-7797
ISSN (Online): 2666-7800

Review Article

Lipophilic PAMAM Dendrimer: Conceptualization of Targeted Cosmetics and Drug Delivery

Author(s): Aditya Singh, Vaseem Ahamad Ansari*, Tarique Mahmood, Farogh Ahsan and Rufaida Wasim

Volume 1, Issue 2, 2022

Published on: 01 November, 2022

Article ID: e070922208585 Pages: 11

DOI: 10.2174/2666779701666220907092152

Price: $65

Abstract

The structure, properties, synthesis, negligible toxicity, and surface modification of PAMAM (polyamidoamine dendrimers) are all discussed in this review. The properties of supramolecular PAMAM dendrimers in nanopolymer science have shown great progress in delivering medicines. A divergent strategy was used to construct a Generation four (G4.0) PAMAM dendrimer with an ethylenediaminetetraacetic acid core and repeating units of acrylic acid and ethylenediamine. PAMAM dendrimers have an amidoamine repeat branching architecture that starts with an ethylene diamine initiator core. A generation [G] is a set of branching steps that follow each other. Drug molecules can be transferred either as covalently bonded to the functional groups on the dendrimer surface or by forming non-covalent complexes with dendrimers. Full-generation PAMAM dendrimers are terminated with amine surface [G0, G1, G2, G3, G4], whereas halfgeneration dendrimers are terminated with carboxylate [G1.5, G2.5, etc.]. PAMAM dendrimers appear to have negligible toxicity and immunogenicity, as well as favorable biodistribution; according to the current study, they can improve drug solubility, prevent drug degradation, increase circulation time, and potentially target drugs. According to the characterization study, they exhibit strong lipophilic qualities, allowing them to easily pass the blood-brain barrier. Due to the cheaper polydispersity index of dendrimers, they possess greater stability, and the void spaces of dendrimers are accessible for drug loading. The existence of a duplet functional group on the dendrimers enables appending vectors, ligands and devices to target drug delivery in the body.

Keywords: Dendrimers, generation, covalently, toxicity, PAMAM, cosmetics

Graphical Abstract

[1]
Sampathkumar, S.; Yarema, K. Dendrimers in Cancer Treatment and Diagnosis. Nanotechnologies for the Life Sciences; Wiley: New York, 2007, pp. 1-43.
[http://dx.doi.org/10.1002/9783527610419.ntls0071]
[2]
Klajnert, B.; Bryszewska, M. Dendrimers: Properties and applications. Acta Biochim. Pol., 2001, 48(1), 199-208.
[http://dx.doi.org/10.18388/abp.2001_5127] [PMID: 11440170]
[3]
Tomalia, D.; Fréchet, J. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J. Polym. Sci. A Polym. Chem., 2002, 40(16), 2719-2728.
[http://dx.doi.org/10.1002/pola.10301]
[4]
Tomalia, D.A. The dendritic state. Mater. Today, 2005, 8(3), 34-46.
[http://dx.doi.org/10.1016/S1369-7021(05)00746-7]
[5]
Tomalia, D.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S. A new class of polymers: Starburst-dendritic macromolecules. Polym. J., 1985, 17(1), 117-132.
[http://dx.doi.org/10.1295/polymj.17.117]
[6]
Newkome, G.R.; Yao, Z.Q.; Baker, G.R.; Gupta, V.K. Cascade molecules: A new approach to micelles.1aA [27]-arborol. J. Org. Chem., 1985, 50(11), 2003-2004.
[http://dx.doi.org/10.1021/jo00211a052]
[7]
Hawker, C.J.; Frechet, J.M.J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic mac-romolecules. J. Am. Chem. Soc., 2002, 112(21), 7638-7647.
[http://dx.doi.org/10.1021/ja00177a027]
[8]
de Gennes, P.G.; Hervet, H. Statistics of « starburst » polymers. J Phys Lettres., 1983, 44(9), 351-360.
[http://dx.doi.org/10.1051/jphyslet:01983004409035100]
[9]
Mansfield, M.L.; Klushin, L.I. Monte carlo studies of dendrimer macromolecules. Macromolecules, 2002, 26(16), 4262-4268.
[http://dx.doi.org/10.1021/ma00068a029]
[10]
Bhalgat, M.K.; Roberts, J.C. Molecular modeling of polyamidoamine (PAMAM) StarburstTM dendrimers. Eur. Polym. J., 2000, 36(3), 647-651.
[http://dx.doi.org/10.1016/S0014-3057(99)00088-9]
[11]
Wolinsky, J.B.; Grinstaff, M.W. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv. Drug Deliv. Rev., 2008, 60(9), 1037-1055.
[http://dx.doi.org/10.1016/j.addr.2008.02.012] [PMID: 18448187]
[12]
Kulhari, H.; Pooja, D.; Prajapati, S.K.; Chauhan, A.S. Performance evaluation of PAMAM dendrimer based simvastatin formulations. Int. J. Pharm., 2011, 405(1-2), 203-209.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.002] [PMID: 21145960]
[13]
Baker, J.R., Jr Dendrimer-based nanoparticles for cancer therapy. Hematology, 2009, 1(2), 708-719.
[http://dx.doi.org/10.1182/asheducation-2009.1.708] [PMID: 20008257]
[14]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6(9), 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[15]
Talanov, V.S.; Regino, C.A.S.; Kobayashi, H.; Bernardo, M.; Choyke, P.L.; Brechbiel, M.W. Dendrimer-based nanoprobe for dual modali-ty magnetic resonance and fluorescence imaging. Nano Lett., 2006, 6(7), 1459-1463.
[http://dx.doi.org/10.1021/nl060765q] [PMID: 16834429]
[16]
Yoon, H.C.; Hong, M.Y.; Kim, H.S. Affinity biosensor for avidin using a double functionalized dendrimer monolayer on a gold electrode. Anal. Biochem., 2000, 282(1), 121-128.
[http://dx.doi.org/10.1006/abio.2000.4608] [PMID: 10860508]
[17]
Zimmerman, S. Dendrimers in molecular recognition and self-assembly. Curr. Opin. Colloid Interface Sci., 1997, 2(1), 89-99.
[http://dx.doi.org/10.1016/S1359-0294(97)80013-1]
[18]
Zeng, F.; Zimmerman, S.C. Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly. Chem. Rev., 1997, 97(5), 1681-1712.
[http://dx.doi.org/10.1021/cr9603892] [PMID: 11851463]
[19]
Tomalia, D.A.; Hedstrand, D.M.; Ferritto, M.S. Comb-Burst dendrimer topology. New macromolecular architecture derived from dendritic grafting. Macromolecules, 1991, 24(6), 1435-1438.
[http://dx.doi.org/10.1021/ma00006a039]
[20]
Maciejewski, M. Concepts of trapping topologically by shell molecules. J. Macromol. Sci. Part A - Chem., 1982, 17(4), 689-703.
[http://dx.doi.org/10.1080/00222338208062416]
[21]
Kim, Y.H.; Webster, O.W. Water soluble hyperbranched polyphenylene: “a unimolecular micelle? J. Am. Chem. Soc., 1990, 112(11), 4592-4593.
[http://dx.doi.org/10.1021/ja00167a094]
[22]
Newkome, G.R.; Moorefield, C.N.; Baker, G.R.; Johnson, A.L.; Behera, R.K. Alkane cascade polymers possessing micellar topology: Mi-cellanoic acid derivatives. Angew. Chem. Int. Ed. Engl., 1991, 30(9), 1176-1178.
[http://dx.doi.org/10.1002/anie.199111761]
[23]
Valério, C.; Fillaut, J-L.; Ruiz, J.; Guittard, J.; Blais, J-C.; Astruc, D. The dendritic effect in molecular recognition: ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anions. J. Am. Chem. Soc., 1997, 119(10), 2588-2589.
[http://dx.doi.org/10.1021/ja964127t]
[24]
Astruc, D. Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology. Nat. Chem., 2012, 4(4), 255-267.
[http://dx.doi.org/10.1038/nchem.1304] [PMID: 22437709]
[25]
Twyman, L.J.; King, A.S.H.; Martin, I.K. Catalysis inside dendrimers. Chem. Soc. Rev., 2002, 31(2), 69-82.
[http://dx.doi.org/10.1039/b107812g] [PMID: 12109207]
[26]
Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev., 2010, 110(4), 1857-1959.
[http://dx.doi.org/10.1021/cr900327d] [PMID: 20356105]
[27]
Azar, N.T.P.; Mutlu, P.; Khodadust, R.; Gunduz, U. Poly amidoamine PAMAM nanoparticles: Synthesis and biomedical applications. Hacettepe J Biol Chem., 2013, 41(3), 289-299.
[28]
Janaszewska, A.; Studzian, M.; Petersen, J.F.; Ficker, M.; Paolucci, V.; Christensen, J.B.; Tomalia, D.A.; Klajnert-Maculewicz, B. Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups-its uptake, efflux, and location in a cell. Colloids Surf. B Biointerfaces, 2017, 159(11), 211-216.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.052] [PMID: 28797971]
[29]
Janaszewska, A.; Ciolkowski, M.; Wróbel, D.; Petersen, J.F.; Ficker, M.; Christensen, J.B.; Bryszewska, M.; Klajnert, B. Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines. Nanomedicine , 2013, 9(4), 461-464.
[http://dx.doi.org/10.1016/j.nano.2013.01.010] [PMID: 23434674]
[30]
Esfand, R.; Tomalia, D.A. Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications. Drug Discov. Today, 2001, 6(8), 427-436.
[http://dx.doi.org/10.1016/S1359-6446(01)01757-3] [PMID: 11301287]
[31]
Biswas, S.; Deshpande, P.P.; Navarro, G.; Dodwadkar, N.S.; Torchilin, V.P. Lipid modified triblock PAMAM-based nanocarriers for siR-NA drug co-delivery. Biomaterials, 2013, 34(4), 1289-1301.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.024] [PMID: 23137395]
[32]
Otto, D.P.; de Villiers, M.M. Poly(amidoamine) dendrimers as a pharmaceutical excipient. Are we there yet? J. Pharm. Sci., 2018, 107(1), 75-83.
[http://dx.doi.org/10.1016/j.xphs.2017.10.011] [PMID: 29045886]
[33]
Kesharwani, P.; Banerjee, S.; Gupta, U.; Cairul, M.; Amin, I.M.; Padhye, S. PAMAM dendrimers as promising nanocarriers for RNAi ther-apeutics. Mater. Today, 2015, 18(10), 565-572.
[http://dx.doi.org/10.1016/j.mattod.2015.06.003]
[34]
Wang, Y.; Cao, X.; Guo, R.; Shen, M.; Zhang, M.; Zhu, M. Targeted delivery of doxorubicin into cancer cells using a folic acid–dendrimer conjugate. Polym. Chem., 2011, 2(8), 1754-1760.
[http://dx.doi.org/10.1039/c1py00179e]
[35]
Chen, C.Z.; Cooper, S.L. Interactions between dendrimer biocides and bacterial membranes. Biomaterials, 2002, 23(16), 3359-3368.
[http://dx.doi.org/10.1016/S0142-9612(02)00036-4] [PMID: 12099278]
[36]
Chen, C.Z.; Beck-Tan, N.C.; Dhurjati, P.; van Dyk, T.K.; LaRossa, R.A.; Cooper, S.L. Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: Structure-activity studies. Biomacromolecules, 2000, 1(3), 473-480.
[http://dx.doi.org/10.1021/bm0055495] [PMID: 11710139]
[37]
Winnicka, K.; Sosnowska, K.; Wieczorek, P.; Sacha, P.T.; Tryniszewska, E. Poly(amidoamine) dendrimers increase antifungal activity of clotrimazole. Biol. Pharm. Bull., 2011, 34(7), 1129-1133.
[http://dx.doi.org/10.1248/bpb.34.1129] [PMID: 21720026]
[38]
Winnicka, K.; Wroblewska, M.; Wieczorek, P.; Sacha, P.T.; Tryniszewska, E. Hydrogel of ketoconazole and PAMAM dendrimers: Formu-lation and antifungal activity. Molecules, 2012, 17(4), 4612-4624.
[http://dx.doi.org/10.3390/molecules17044612] [PMID: 22513487]
[39]
Jose, J.; Charyulu, R.N. Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers. Int. J. Pharm. Investig., 2016, 6(2), 123-127.
[http://dx.doi.org/10.4103/2230-973X.177833] [PMID: 27051632]
[40]
Zhu, J.; Xiong, Z.; Shen, M.; Shi, X. Encapsulation of doxorubicin within multifunctional gadolinium-loaded dendrimer nanocomplexes for targeted theranostics of cancer cells. RSC Advances, 2015, 5(38), 30286-30296.
[http://dx.doi.org/10.1039/C5RA01215E]
[41]
Öztürk, K.; Esendağlı, G.; Gürbüz, M.U.; Tülü, M.; Çalış, S. Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers. Int. J. Pharm., 2017, 517(1-2), 157-167.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.009] [PMID: 27965135]
[42]
Majoros, I.J.; Myc, A.; Thomas, T.; Mehta, C.B.; Baker, J.R. Jr PAMAM dendrimer-based multifunctional conjugate for cancer therapy: Synthesis, characterization, and functionality. Biomacromolecules, 2006, 7(2), 572-579.
[http://dx.doi.org/10.1021/bm0506142] [PMID: 16471932]
[43]
Zhang, L.; Zhu, S.; Qian, L.; Pei, Y.; Qiu, Y.; Jiang, Y. RGD-modified PEG-PAMAM-DOX conjugates: in vitro and in vivo studies for gli-oma. Eur. J. Pharm. Biopharm., 2011, 79(2), 232-240.
[http://dx.doi.org/10.1016/j.ejpb.2011.03.025] [PMID: 21496485]
[44]
Kesharwani, P.; Xie, L.; Banerjee, S.; Mao, G.; Padhye, S.; Sarkar, F.H.; Iyer, A.K. Hyaluronic acid-conjugated polyamidoamine den-drimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf. B Biointerfaces, 2015, 136, 413-423.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.043] [PMID: 26440757]
[45]
Thanh, V.M.; Nguyen, T.H.; Tran, T.V.; Ngoc, U.P.; Ho, M.N.; Nguyen, T.T.; Chau, Y.N.T.; Le, V.T.; Tran, N.Q.; Nguyen, C.K.; Nguyen, D.H. Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release. Mater. Sci. Eng. C, 2018, 82, 291-298.
[http://dx.doi.org/10.1016/j.msec.2017.07.051] [PMID: 29025661]
[46]
Pande, S.; Crooks, R.M. Analysis of poly(amidoamine) dendrimer structure by UV-vis spectroscopy. Langmuir, 2011, 27(15), 9609-9613.
[http://dx.doi.org/10.1021/la201882t] [PMID: 21714516]
[47]
Castagnola, M.; Zuppi, C.; Rossetti, D.V.; Vincenzoni, F.; Lupi, A.; Vitali, A.; Meucci, E.; Messana, I. Characterization of dendrimer prop-erties by capillary electrophoresis and their use as pseudostationary phases. Electrophoresis, 2002, 23(12), 1769-1778.
[http://dx.doi.org/10.1002/1522-2683(200206)23:12<1769:AID-ELPS1769>3.0.CO;2-I] [PMID: 12116119]
[48]
Soininen, A.J.; Kasëmi, E.; Schlüter, A.D.; Ikkala, O.; Ruokolainen, J.; Mezzenga, R. Self-assembly and induced circular dichroism in den-dritic supramolecules with cholesteric pendant groups. J. Am. Chem. Soc., 2010, 132(31), 10882-10890.
[http://dx.doi.org/10.1021/ja103754d] [PMID: 20681722]
[49]
Appelhans, D.; Oertel, U.; Mazzeo, R.; Komber, H.; Hoffmann, J.; Weidner, S. Dense-shell glycodendrimers: UV/Vis and electron para-magnetic resonance study of metal ion complexation. Proc. R Soc. A., 2010, 466(2117), 1489-1513.
[50]
Chiu, M.H.; Prenner, E.J. Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macro-molecules and their interactions. J. Pharm. Bioallied Sci., 2011, 3(1), 39-59.
[http://dx.doi.org/10.4103/0975-7406.76463] [PMID: 21430954]
[51]
Pan, Z.; Xu, M.; Cheung, E.Y.; Harris, K.D.M.; Constable, E.C.; Housecroft, C.E. Understanding the structural properties of a dendrimeric material directly from powder X-ray diffraction data. J. Phys. Chem. B, 2006, 110(24), 11620-11623.
[http://dx.doi.org/10.1021/jp0624348] [PMID: 16800454]
[52]
Gautam, S.; Gupta, A.; Agrawal, S.; Surekha, S. Spectroscopic characterization of dendrimers. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 77-80.
[53]
Porcar, L.; Liu, Y.; Verduzco, R.; Hong, K.; Butler, P.D.; Magid, L.J.; Smith, G.S.; Chen, W.R. Structural investigation of PAMAM den-drimers in aqueous solutions using small-angle neutron scattering: Effect of generation. J. Phys. Chem. B, 2008, 112(47), 14772-14778.
[http://dx.doi.org/10.1021/jp805297a] [PMID: 18950222]
[54]
Mullen, D.G.; Desai, A.; van Dongen, M.A.; Barash, M.; Baker, J.R., Jr; Banaszak Holl, M.M. Best practices for purification and characteri-zation of PAMAM dendrimer. Macromolecules, 2012, 45(12), 5316-5320.
[http://dx.doi.org/10.1021/ma300485p] [PMID: 23180887]
[55]
Giordanengo, R.; Mazarin, M.; Wu, J.; Peng, L.; Charles, L. Propagation of structural deviations of poly(amidoamine) fan-shape den-drimers (generations 0–3) characterized by MALDI and electrospray mass spectrometry. Int. J. Mass Spectrom., 2007, 266(1–3), 62-75.
[http://dx.doi.org/10.1016/j.ijms.2007.07.002]
[56]
Biricova, V.; Laznickova, A. Dendrimers: Analytical characterization and applications. Bioorg. Chem., 2009, 37(6), 185-192.
[http://dx.doi.org/10.1016/j.bioorg.2009.07.006] [PMID: 19703699]
[57]
Zhou, L.; Russell, D.H.; Zhao, M.; Crooks, R.M. Characterization of poly(amidoamine) dendrimers and their complexes with Cu2+ by matrix-assisted laser desorption ionization mass spectrometry. Macromolecules, 2001, 34, 3567-3573.
[http://dx.doi.org/10.1021/ma001782j]
[58]
Najlah, M.; Freeman, S.; Attwood, D.; D’Emanuele, A. Synthesis, characterization and stability of dendrimer prodrugs. Int. J. Pharm., 2006, 308(1-2), 175-182.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.033] [PMID: 16384673]
[59]
Xu, T.H.; Lu, R.; Qiu, X.P.; Liu, X.L.; Xue, P.C.; Tan, C.H. Synthesis and characterization of carbazole-based dendrimers with porphyrin cores. Eur. J. Org. Chem., 2006, 2006(17), 4014-4020.
[http://dx.doi.org/10.1002/ejoc.200600356]
[60]
Carr, P.L.; Davies, G.R.; Feast, W.J.; Stainton, N.M.; Ward, I.M. Dielectric and mechanical characterization of aryl ester dendrimer/PET blends. Polymer (Guildf.), 1996, 37(12), 2395-2401.
[http://dx.doi.org/10.1016/0032-3861(96)85351-1]
[61]
Tintaru, A.; Ungaro, R.; Liu, X.; Chen, C.; Giordano, L.; Peng, L.; Charles, L. Structural characterization of new defective molecules in poly(amidoamide) dendrimers by combining mass spectrometry and nuclear magnetic resonance. Anal. Chim. Acta, 2015, 853(1), 451-459.
[http://dx.doi.org/10.1016/j.aca.2014.10.048] [PMID: 25467490]
[62]
Sharma, A.; Gautam, S.P.; Gupta, A.K. Surface modified dendrimers: Synthesis and characterization for cancer targeted drug delivery. Bioorg. Med. Chem., 2011, 19(11), 3341-3346.
[http://dx.doi.org/10.1016/j.bmc.2011.04.046] [PMID: 21570304]
[63]
Popescu, M-C.; Filip, D.; Vasile, C.; Cruz, C.; Rueff, J.M.; Marcos, M.; Serrano, J.L.; Singurel, G. Characterization by fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of PAMAM dendrimer. J. Phys. Chem. B, 2006, 110(29), 14198-14211.
[http://dx.doi.org/10.1021/jp061311k] [PMID: 16854120]
[64]
Li, J.; Piehler, L.T.; Qin, D.; Baker, J.R.; Tomalia, D.A.; Meier, D.J. Visualization and characterization of poly(amidoamine) dendrimers by atomic force microscopy. Langmuir, 2000, 16(13), 5613-5616.
[http://dx.doi.org/10.1021/la000035c]
[65]
Shi, X.; Sun, K.; Balogh, L.P.; Baker, J.R. Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles. Nanotechnology, 2006, 17(18), 4554-4560.
[http://dx.doi.org/10.1088/0957-4484/17/18/005]
[66]
Xia, C.; Fan, X.; Locklin, J.; Advincula, R.C.; Gies, A.; Nonidez, W. Characterization, supramolecular assembly, and nanostructures of thiophene dendrimers. J. Am. Chem. Soc., 2004, 126(28), 8735-8743.
[http://dx.doi.org/10.1021/ja0484404] [PMID: 15250726]
[67]
Baytekin, B.; Werner, N.; Luppertz, F.; Engeser, M.; Brüggemann, J.; Bitter, S. How useful is mass spectrometry for the characterization of dendrimers?: “Fake defects” in the ESI and MALDI mass spectra of dendritic compounds. Int. J. Mass Spectrom., 2006, 249-250, 138-148.
[http://dx.doi.org/10.1016/j.ijms.2006.01.016]
[68]
Paomephan, P.; Assavanig, A.; Chaturongakul, S.; Cady, N.C.; Bergkvist, M.; Niamsiri, N. Insight into the antibacterial property of chitosan nanoparticles against Escherichia coli and Salmonella typhimurium and their application as vegetable wash disinfectant. Food Control, 2018, 86, 294-301.
[http://dx.doi.org/10.1016/j.foodcont.2017.09.021]
[69]
Shankar, S.; Pangeni, R.; Park, J.W.; Rhim, J.W. Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Mater. Sci. Eng. C, 2018, 92, 508-517.
[http://dx.doi.org/10.1016/j.msec.2018.07.015] [PMID: 30184776]
[70]
Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release, 2004, 100(1), 5-28.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.010] [PMID: 15491807]
[71]
Sharma, S. Enhanced antibacterial efficacy of silver nanoparticles immobilized in a chitosan nanocarrier. Int. J. Biol. Macromol.,, 2017, 104((Pt B),), 1740-1745.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.043] [PMID: 28736042]
[72]
Abbasi, E.; Aval, SF.; Akbarzadeh, A.; Milani, M.; Nasrabadi, HT;; Joo, SW. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 1-10.
[http://dx.doi.org/10.1186/1556-276X-9-247]
[73]
Kim, Y.; Park, E.J.; Na, D.H. Recent progress in dendrimer-based nanomedicine development. Arch. Pharm. Res., 2018, 41(6), 571-582.
[http://dx.doi.org/10.1007/s12272-018-1008-4] [PMID: 29450862]
[74]
Swami, R.; Singh, I.; Kulhari, H.; Jeengar, M.K.; Khan, W.; Sistla, R. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: Anin vitro and in vivo evaluation. J. Nanopart. Res., 2015, 17(6), 271.
[http://dx.doi.org/10.1007/s11051-015-3063-9]
[75]
Márquez-Miranda, V.; Peñaloza, J.P.; Araya-Durán, I.; Reyes, R.; Vidaurre, S.; Romero, V.; Fuentes, J.; Céric, F.; Velásquez, L.; González-Nilo, F.D.; Otero, C. Effect of terminal groups of dendrimers in the complexation with antisense oligonucleotides and cell uptake. Nanoscale Res. Lett., 2016, 11(1), 66.
[http://dx.doi.org/10.1186/s11671-016-1260-9] [PMID: 26847692]
[76]
Vidal, F.; Vásquez, P.; Díaz, C.; Nova, D.; Alderete, J.; Guzmán, L. Mechanism of PAMAM dendrimers internalization in hippocampal neurons. Mol. Pharm., 2016, 13(10), 3395-3403.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00381] [PMID: 27556289]
[77]
Zhang, F.; Trent Magruder, J.; Lin, Y-A.; Crawford, T.C.; Grimm, J.C.; Sciortino, C.M.; Wilson, M.A.; Blue, M.E.; Kannan, S.; Johnston, M.V.; Baumgartner, W.A.; Kannan, R.M. Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous admin-istration in a large animal brain injury model. J. Control. Release, 2017, 249, 173-182.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.032] [PMID: 28137632]
[78]
Santos, A.; Veiga, F.; Figueiras, A. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications. Materials (Basel), 2019, 13(1), 65-76.
[http://dx.doi.org/10.3390/ma13010065] [PMID: 31877717]
[79]
Jing, Wei S.; Zhi-Chun, S.; Liao Yu, Q.; Min, Z. Nano drug delivery system based on low-generation PAMAM dendrimer loaded disulfi-ram and photosensitizer indocyanine green and application thereof; People’s Republic of China State Intellectual Property Office, 2018, pp. 1-16.
[80]
Wenjin, X.; Jia, Y.; Yan, Z.; Jinling, X.; Qi, Z.; Tianshun, D. Environmental pH stimuli-responsive type tumor targeting and controlled drug release nano-carrier and preparation method of nano-carrierand preparation method of nano-carrier. China:; China National Intellectual Property Administration, 2017, pp. 1-10.
[81]
Nieznanski, K.; Nieznanska, H.; Surewicz, W.K.; Surewicz, K.; Bandyszewska, M. Prion protein-dendrimer conjugates for use in treatment of Alzheimer disease. US20190092837, , 2020.
[82]
Jingwei, S.; Zhichun, S.; Yuehuang, W. Self-Assembled Nanoparticles Based on Low-Generation PAMAM (Polyamidoamine) Dendrimer Loaded Anti-Cancer Drugs and Application of Self-Assembled Nanoparticles in Anti-Tumor Field; China National Intellectual Property Ad-ministration: China, 2017, pp. 58-67.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy