Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

A Novel 6,8,9-Trisubstituted Purine Analogue Drives Breast Cancer Luminal A Subtype MCF-7 to Apoptosis and Senescence through Hsp70 Inhibition

Author(s): Pinar Kul, Meral Tuncbilek*, Mustafa Ergul, Ezgi Nurdan Yenilmez Tunoglu and Yusuf Tutar*

Volume 23, Issue 5, 2023

Published on: 06 October, 2022

Page: [585 - 598] Pages: 14

DOI: 10.2174/1871520622666220905122346

Price: $65

Abstract

Background: Cancer cells restrain apoptotic and senescence pathways through intracellular heat shock protein 70 (Hsp 70). These cells aid stimulus-independent growth, and their higher metabolism rate requires Hsps. Hsps compensate abnormally increased substrate protein folding rate of cancer cells.

Objective: Misfolding of substrate proteins especially signaling substrate proteins, may not function properly. Therefore, Hsp70 folds these substrate proteins into their native-fully functional states, and this mode of action helps cancer cell survival.

Methods: Targeting Hsps is promising cancer therapy, and in this study, 6,8,9-trisubstituted purine derivatives were designed and synthesized to inhibit Hsp70 and drive cancer cells to apoptosis. Further, oncogenic stimuli through inhibitors can induce an irreversible senescent state and senescence is a barrier to transformation.

Results: Hsp70 helps cancer cells to bypass the cellular senescence program, however, binding of N6-(4- isopropylaniline) analogue (7) depletes Hsp70 function as evidenced by aggregation assay and Hsp70 depletion induces senescence pathway.

Conclusion: The purine-based inhibitor-compound 7 effectively inhibits MCF-7 cell line. Moreover, the therapeutic potential with regard to the senescence-associated secretory phenotype has complementary action. Dual action of the inhibitor not only drives the cells to apoptosis but also force the cells to be in the senescence state and provides promising results specially for luminal A type breast cancer therapy.

Keywords: Purine analogues, cytotoxic activity, drug design, apoptosis, senescence, Hsp70 inhibition

Graphical Abstract

[1]
Tutar, L.; Tutar, Y. Heat shock proteins; an overview. Curr. Pharm. Biotechnol., 2010, 11(2), 216-222.
[http://dx.doi.org/10.2174/138920110790909632] [PMID: 20170474]
[2]
Tutar, Y.; Song, Y.; Masison, D.C. Primate chaperones Hsc70 (constitutive) and Hsp70 (induced) differ functionally in supporting growth and prion propagation in Saccharomyces cerevisiae. Genetics, 2006, 172(2), 851-861.
[http://dx.doi.org/10.1534/genetics.105.048926] [PMID: 16299395]
[3]
Ergul, M.; Aktan, F.; Yildiz, M.T.; Tutar, Y. Perturbation of HSP network in MCF-7 breast cancer cell line triggers inducible HSP70 expression and leads to tumor suppression. Anticancer. Agents Med. Chem., 2020, 20(9), 1051-1060.
[http://dx.doi.org/10.2174/1871520620666200213102210] [PMID: 32053081]
[4]
Tutar, L.; Tutar, Y. Ydj1 but not Sis1 stabilizes Hsp70 protein under prolonged stress in vitro. Biopolymers, 2008, 89(3), 171-174.
[http://dx.doi.org/10.1002/bip.20881] [PMID: 17985367]
[5]
Tutar, Y. Heat shock proteins, substrate specificity and modulation of function. Protein Pept. Lett., 2006, 13(7), 699-705.
[http://dx.doi.org/10.2174/092986606777790593] [PMID: 17018013]
[6]
Ciocca, D.R.; Calderwood, S.K. Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones, 2005, 10(2), 86-103.
[http://dx.doi.org/10.1379/CSC-99r.1] [PMID: 16038406]
[7]
Ozgur, A.; Tutar, Y. Therapeutic proteins: A to Z. Protein Pept. Lett., 2013, 20(12), 1365-1372.
[http://dx.doi.org/10.2174/092986652012131112125148] [PMID: 24261980]
[8]
Stankiewicz, A.R.; Lachapelle, G.; Foo, C.P.Z.; Radicioni, S.M.; Mosser, D.D. Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J. Biol. Chem., 2005, 280(46), 38729-38739.
[http://dx.doi.org/10.1074/jbc.M509497200] [PMID: 16172114]
[9]
Vargas-Roig, L.M.; Gago, F.E.; Tello, O.; Aznar, J.C.; Ciocca, D.R. Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int. J. Cancer, 1998, 79(5), 468-475.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19981023)79:5<468:AID-IJC4>3.0.CO;2-Z]
[10]
Coşkun, K.A.; Koca, İ, Gümüş M.; Tutar, Y. Designing specific HSP70 substrate binding domain inhibitor for perturbing protein folding pathways to inhibit cancer mechanism. Anticancer. Agents Med. Chem., 2021, 21(11), 1472-1480.
[http://dx.doi.org/10.2174/1871520620666200918103509] [PMID: 32951578]
[11]
Bliman, D.; Pettersson, M.; Bood, M.; Grøtli, M. 8-Bromination of 2,6,9-trisubstituted purines with pyridinium tribromide. Tetrahedron Lett., 2014, 55(18), 2929-2931.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.084]
[12]
Sharma, S.; Singh, J.; Ojha, R.; Singh, H.; Kaur, M.; Bedi, P.M.S.; Nepali, K. Design strategies, structure activity relationship and mechanistic insights for purines as kinase inhibitors. Eur. J. Med. Chem., 2016, 112, 298-346.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.018] [PMID: 26907156]
[13]
Burchenal, J.H.; Murphy, M.L.; Ellison, R.R.; Sykes, M.P.; Tan, T.C.; Leone, L.A.; Karnof-Sky, D.A.; Craver, L.F.; Dargeon, H.W.; Rhoads, C.P. Clinical evaluation of a new antimetabolite, 6-mercaptopurine, in the treatment of leukemia and allied diseases. Blood, 1953, 8(11), 965-999.
[http://dx.doi.org/10.1182/blood.V8.11.965.965] [PMID: 13105700]
[14]
Elion, G.B. Historical background of 6-mercaptopurine. Toxicol. Ind. Health, 1986, 2(2), 1-9.
[http://dx.doi.org/10.1177/074823378600200201] [PMID: 3538499]
[15]
Lee, J.J.; Chu, E. Antimetabolites. In: DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology, 11th ed.; De- Vita, V.T.; Rosenberg, S.A.; Lawrence, T.S., Eds.; Wolters Kluwer: Philadelphia, 2019, pp. 265-269.
[16]
Robak, P.; Robak, T. Older and new purine nucleoside analogs for patients with acute leukemias. Cancer Treat. Rev., 2013, 39(8), 851-861.
[http://dx.doi.org/10.1016/j.ctrv.2013.03.006] [PMID: 23566572]
[17]
Sun, J.; Wei, Q.; Zhou, Y.; Wang, J.; Liu, Q.; Xu, H. A systematic analysis of FDA-approved anticancer drugs. BMC Syst. Biol., 2017, 11(S5)(Suppl. 5), 87.
[http://dx.doi.org/10.1186/s12918-017-0464-7] [PMID: 28984210]
[18]
Greeley, Z.W.; Giannasca, N.J.; Porter, M.J.; Margulies, B.J. Acyclovir, cidofovir, and amenamevir have additive antiviral effects on herpes simplex virus TYPE 1. Antiviral Res., 2020, 176, 104754.
[http://dx.doi.org/10.1016/j.antiviral.2020.104754] [PMID: 32114034]
[19]
Vissani, M.A.; Zabal, O.; Tordoya, M.S.; Parreño, V.; Thiry, E.; Barrandeguy, M. In vitro comparison of acyclovir, ganciclovir and cidofovir against equid alphaherpesvirus 3 and evaluation of their efficacy against six field isolates. Rev. Argent. Microbiol., 2018, 50(4), 380-390.
[http://dx.doi.org/10.1016/j.ram.2018.01.003] [PMID: 29779880]
[20]
De Santis, M.; Apicella, M.; De Luca, C.; D’Oria, L.; Valentini, P.; Sanguinetti, M.; Lanzone, A.; Scambia, G.; Santangelo, R.; Masini, L. Valacyclovir in primary maternal CMV infection for prevention of vertical transmission: A case-series. J. Clin. Virol., 2020, 127, 104351.
[http://dx.doi.org/10.1016/j.jcv.2020.104351] [PMID: 32325395]
[21]
De Clercq, E.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev., 2016, 29(3), 695-747.
[http://dx.doi.org/10.1128/CMR.00102-15] [PMID: 27281742]
[22]
Mohammed, A.F.; Andrei, G.; Hayallah, A.M.; Abdel-Moty, S.G.; Snoeck, R.; Simons, C. Synthesis and anti-HSV activity of tricyclic penciclovir and hydroxybutylguanine derivatives. Bioorg. Med. Chem., 2019, 27(6), 1023-1033.
[http://dx.doi.org/10.1016/j.bmc.2019.02.005] [PMID: 30738653]
[23]
Spruance, S.L.; Bodsworth, N.; Resnick, H.; Conant, M.; Oeuvray, C.; Gao, J.; Hamed, K. Single-dose, patient-initiated famciclovir: A randomized, double-blind, placebo-controlled trial for episodic treatment of herpes labialis. J. Am. Acad. Dermatol., 2006, 55(1), 47-53.
[http://dx.doi.org/10.1016/j.jaad.2006.02.031] [PMID: 16781291]
[24]
Hu, Y.; Hu, S.; Pan, G.; Wu, D.; Wang, T.; Yu, C.; Fawad Ansari, M.; Yadav Bheemanaboina, R.R.; Cheng, Y.; Bai, L.; Zhou, C.; Zhang, J. Potential antibacterial ethanol-bridged purine azole hybrids as dual-targeting inhibitors of MRSA. Bioorg. Chem., 2021, 114, 105096.
[http://dx.doi.org/10.1016/j.bioorg.2021.105096] [PMID: 34147878]
[25]
Konduri, S.; Prashanth, J.; Krishna, V.S.; Sriram, D.; Behera, J.N.; Siegel, D.; Rao, K.P. Design and synthesis of purine connected piperazine derivatives as novel inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2020, 30(22), 127512.
[http://dx.doi.org/10.1016/j.bmcl.2020.127512] [PMID: 32871269]
[26]
Gavriil, E.S.; Dimitrakis, S.; Papadaki, G.; Balaska, S.; Lambrinidis, G.; Lougiakis, N.; Marakos, P.; Diallinas, G.; Pouli, N.; Mikros, E. Structure-activity relationships in fungal nucleobases transporters as dissected by the inhibitory effects of novel purine analogues. Eur. J. Med. Chem., 2018, 156, 240-251.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.038] [PMID: 30006169]
[27]
Rodenko, B.; Detz, R.J.; Pinas, V.A.; Lambertucci, C.; Brun, R.; Wanner, M.J.; Koomen, G.J. Solid phase synthesis and antiprotozoal evaluation of di- and trisubstituted 5′-carboxamidoadenosine analogues. Bioorg. Med. Chem., 2006, 14(5), 1618-1629.
[http://dx.doi.org/10.1016/j.bmc.2005.10.011] [PMID: 16249090]
[28]
Wanner, M.J.; Rodenko, B.; Koch, M.; Koomen, G.J. New (1-deaza)purine derivatives via efficient C-2 nitration of the (1-deaza)purine ring. Nucleosides Nucleotides Nucleic Acids, 2004, 23(8-9), 1313-1320.
[http://dx.doi.org/10.1081/NCN-200027566] [PMID: 15571251]
[29]
Brændvang, M.; Bakken, V.; Gundersen, L.L. Synthesis, structure, and antimycobacterial activity of 6-[1(3H)-isobenzofuranylidene-methyl]purines and analogs. Bioorg. Med. Chem., 2009, 17(18), 6512-6516.
[http://dx.doi.org/10.1016/j.bmc.2009.08.012] [PMID: 19709890]
[30]
Khoje, A.D.; Kulendrn, A.; Charnock, C.; Wan, B.; Franzblau, S.; Gundersen, L.L. Synthesis of non-purine analogs of 6-aryl-9-benzylpurines, and their antimycobacterial activities. Compounds modified in the imidazole ring. Bioorg. Med. Chem., 2010, 18(20), 7274-7282.
[http://dx.doi.org/10.1016/j.bmc.2010.08.016] [PMID: 20833056]
[31]
Legraverend, M.; Grierson, D.S. The purines: Potent and versatile small molecule inhibitors and modulators of key biological targets. Bioorg. Med. Chem., 2006, 14(12), 3987-4006.
[http://dx.doi.org/10.1016/j.bmc.2005.12.060] [PMID: 16503144]
[32]
Vardanyan, R.; Hruby, V. Antineoplastic agents.In: Synthesis of Best-Seller Drugs; Vardanyan, R.; Hruby, V., Eds.; Academic Press: Arizona, 2016, pp. 495-547.
[http://dx.doi.org/10.1016/B978-0-12-411492-0.00028-6]
[33]
Elmallah, M.I.Y.; Cordonnier, M.; Vautrot, V.; Chanteloup, G.; Garrido, C.; Gobbo, J. Membrane-anchored heat-shock protein 70 (Hsp70) in cancer. Cancer Lett., 2020, 469, 134-141.
[http://dx.doi.org/10.1016/j.canlet.2019.10.037] [PMID: 31669516]
[34]
Schmitt, E.; Gehrmann, M.; Brunet, M.; Multhoff, G.; Garrido, C. Intracellular and extracellular functions of heat shock proteins: Repercussions in cancer therapy. J. Leukoc. Biol., 2007, 81(1), 15-27.
[http://dx.doi.org/10.1189/jlb.0306167] [PMID: 16931602]
[35]
Massey, A.J.; Williamson, D.S.; Browne, H.; Murray, J.B.; Dokurno, P.; Shaw, T.; Macias, A.T.; Daniels, Z.; Geoffroy, S.; Dopson, M.; Lavan, P.; Matassova, N.; Francis, G.L.; Graham, C.J.; Parsons, R.; Wang, Y.; Padfield, A.; Comer, M.; Drysdale, M.J.; Wood, M. A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother. Pharmacol., 2010, 66(3), 535-545.
[http://dx.doi.org/10.1007/s00280-009-1194-3] [PMID: 20012863]
[36]
Koca, İ; Özgür, A.; Er, M.; Gümüş, M.; Açikalin Coşkun, K.; Tutar, Y. Design and synthesis of pyrimidinyl acyl thioureas as novel Hsp90 inhibitors in invasive ductal breast cancer and its bone metastasis. Eur. J. Med. Chem., 2016, 122, 280-290.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.032] [PMID: 27376491]
[37]
Koca, İ; Gumuş, M.; Özgür, A.; Dişli, A.; Tutar, Y. A novel approach to inhibit heat shock response as anticancer strategy by coumarine compounds containing thiazole skeleton. Anticancer. Agents Med. Chem., 2015, 15(7), 916-930.
[http://dx.doi.org/10.2174/1871520615666150407155623] [PMID: 25846761]
[38]
Koca, İ; Özgür, A.; Coşkun, K.A.; Tutar, Y. Synthesis and anticancer activity of acyl thioureas bearing pyrazole moiety. Bioorg. Med. Chem., 2013, 21(13), 3859-3865.
[http://dx.doi.org/10.1016/j.bmc.2013.04.021] [PMID: 23664495]
[39]
Alqahtani, A.S.; Ghorab, M.M.; Nasr, F.A.; Ahmed, M.Z.; Al-Mishari, A.A.; Attia, S.M. Novel sulphonamide-bearing methoxyquinazolinone derivatives as anticancer and apoptosis inducers: Synthesis, biological evaluation and in silico studies. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 86-99.
[http://dx.doi.org/10.1080/14756366.2021.1983807] [PMID: 34894963]
[40]
Guleria, V.; Pal, T.; Sharma, B.; Chauhan, S.; Jaiswal, V. Pharmacokinetic and molecular docking studies to design antimalarial compounds targeting Actin I. Int. J. Health Sci. (Qassim), 2021, 15(6), 4-15.
[PMID: 34916893]
[41]
Tutar, Y.; Arslan, D.; Tutar, L. Heat, pH induced aggregation and surface hydrophobicity of S. cerevesiae Ssa1 protein. Protein J., 2010, 29(7), 501-508.
[http://dx.doi.org/10.1007/s10930-010-9280-2] [PMID: 20835845]
[42]
Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Forner, O.; Marin-Garcia, P.; Arnau, V.; D’Eustachio, P.; Stein, L.; Hermjakob, H. Reactome pathway analysis: A high-performance in-memory approach. BMC Bioinformatics, 2017, 18(1), 142.
[http://dx.doi.org/10.1186/s12859-017-1559-2] [PMID: 28249561]
[43]
Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Marin-Garcia, P.; Ping, P.; Stein, L.; D’Eustachio, P.; Hermjakob, H. Reactome diagram viewer: Data structures and strategies to boost performance. Bioinformatics, 2018, 34(7), 1208-1214.
[http://dx.doi.org/10.1093/bioinformatics/btx752] [PMID: 29186351]
[44]
Bahceci, I.; Dogrusoz, U.; La, K.C.; Babur, Ö.; Gao, J.; Schultz, N. PathwayMapper: A collaborative visual web editor for cancer pathways and genomic data. Bioinformatics, 2017, 33(14), 2238-2240.
[http://dx.doi.org/10.1093/bioinformatics/btx149] [PMID: 28334343]
[45]
Rufini, A.; Tucci, P.; Celardo, I.; Melino, G. Senescence and aging: The critical roles of p53. Oncogene, 2013, 32(43), 5129-5143.
[http://dx.doi.org/10.1038/onc.2012.640] [PMID: 23416979]
[46]
Rayess, H.; Wang, M.B.; Srivatsan, E.S. Cellular senescence and tumor suppressor gene p16. Int. J. Cancer, 2012, 130(8), 1715-1725.
[http://dx.doi.org/10.1002/ijc.27316] [PMID: 22025288]
[47]
Atwood, A.A.; Sealy, L. C/EBPbeta’s role in determining Ras-induced senescence or transformation. Small GTPases, 2011, 2(1), 41-46.
[http://dx.doi.org/10.4161/sgtp.2.1.15038] [PMID: 21686281]
[48]
Wang, L.; Lankhorst, L.; Bernards, R. Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer, 2022, 22(6), 340-355.
[http://dx.doi.org/10.1038/s41568-022-00450-9] [PMID: 35241831]
[49]
Yogev, O.; Anzi, S.; Inoue, K.; Shaulian, E. Induction of transcriptionally active Jun proteins regulates drug-induced senescence. J. Biol. Chem., 2006, 281(45), 34475-34483.
[http://dx.doi.org/10.1074/jbc.M602865200] [PMID: 16966326]
[50]
Faget, D.V.; Ren, Q.; Stewart, S.A. Unmasking senescence: Context-dependent effects of SASP in cancer. Nat. Rev. Cancer, 2019, 19(8), 439-453.
[http://dx.doi.org/10.1038/s41568-019-0156-2] [PMID: 31235879]
[51]
Jing, H. Lee, S. NF-κB in cellular senescence and cancer treatment. Mol. Cells, 2014, 37(3), 189-195.
[http://dx.doi.org/10.14348/molcells.2014.2353] [PMID: 24608805]
[52]
Albakova, Z.; Armeev, G.A.; Kanevskiy, L.M.; Kovalenko, E.I.; Sapozhnikov, A.M. HSP70 multi-functionality in cancer. Cells, 2020, 9(3), 587.
[http://dx.doi.org/10.3390/cells9030587] [PMID: 32121660]
[53]
Mijit, M.; Caracciolo, V.; Melillo, A.; Amicarelli, F.; Giordano, A. Role of p53 in the regulation of cellular senescence. Biomolecules, 2020, 10(3), 420.
[http://dx.doi.org/10.3390/biom10030420] [PMID: 32182711]
[54]
Liu, L.; Ishihara, K.; Ichimura, T.; Fujita, N.; Hino, S.; Tomita, S.; Watanabe, S.; Saitoh, N.; Ito, T.; Nakao, M. MCAF1/AM is involved in Sp1-mediated maintenance of cancer-associated telomerase activity. J. Biol. Chem., 2009, 284(8), 5165-5174.
[http://dx.doi.org/10.1074/jbc.M807098200] [PMID: 19106100]
[55]
Luan, Y.P.; Li, Q.F.; Wu, S.G.; Mao, D.C.; Deng, Y.Y.; Chen, R.W. Tsoong induces apoptosis and inhibits proliferation, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol. Med. Rep., 2017, 17(3), 3527-3536.
[http://dx.doi.org/10.3892/mmr.2017.8328] [PMID: 29286105]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy