Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

A Molecular Approach of Caloric Restriction and Vitamins for Cancer Prevention

Author(s): Carmen Rubio*, Fernando Gatica, Paola Rodríguez-Quintero, Zayra Morales and Héctor Romo-Parra*

Volume 23, Issue 5, 2023

Published on: 13 September, 2022

Page: [571 - 584] Pages: 14

DOI: 10.2174/1871520622666220819092503

Price: $65

Abstract

Each year, cancer claims the lives of around 10.0 million people worldwide. Food components have been shown to alter numerous intracellular signaling events that frequently go awry during carcinogenesis. Many studies suggest that dietary behaviors involving the consumption of antioxidant-rich foods, as well as caloric restriction, may play an important role in cancer prevention. Gene expression patterns, such as genetic polymorphisms, can influence the response to food components by altering their specific action on targets, as well as absorption, metabolism, and distribution, among other things. This review discusses two significant cancer prevention techniques: a vitamin-rich diet and caloric restriction. It also discusses the possible molecular interactions between the two dietary strategies and the first clues of a probable synergy that would come from combining caloric restriction with antioxidant use. Caloric restriction diets have positive effects on life expectancy and enable avoidance of age-related illnesses. As a result, this manuscript is based on the degenerative nature of cancer and intends to shed light on the biochemical features of not just calorie restriction but also vitamins. Both are thought to have an effect on oxidative stress, autophagy, and signaling pathways involved in energy metabolism and mitochondrial functions.

Keywords: Cancer prevention, vitamins, caloric restriction, antioxidants, diet, genetic polymorphisms.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Schafer, K.A. The cell cycle: A review. Vet. Pathol., 1998, 35(6), 461-478.
[http://dx.doi.org/10.1177/030098589803500601] [PMID: 9823588]
[3]
Lee, Y.H.; Heo, J.H.; Kim, T.H.; Kang, H.; Kim, G.; Kim, J.; Cho, S.H.; An, H.J. Significance of cell cycle regulatory proteins as malignant and prognostic biomarkers in ovarian epithelial tumors. Int. J. Gynecol. Pathol., 2011, 30(3), 205-217.
[http://dx.doi.org/10.1097/PGP.0b013e3182063e71] [PMID: 21464733]
[4]
Gartel, A.L.; Radhakrishnan, S.K. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res., 2005, 65(10), 3980-3985.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3995] [PMID: 15899785]
[5]
Oberley, L.W.; Buettner, G.R. Role of superoxide dismutase in cancer: A review. Cancer Res., 1979, 39(4), 1141-1149.
[PMID: 217531]
[6]
Ahn, J.; Nowell, S.; McCann, S.E.; Yu, J.; Carter, L.; Lang, N.P.; Kadlubar, F.F.; Ratnasinghe, L.D.; Ambrosone, C.B. Associations between catalase phenotype and genotype: Modification by epidemiologic factors. Cancer Epidemiol. Biomarkers Prev., 2006, 15(6), 1217-1222.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0104] [PMID: 16775184]
[7]
Trueba, G.P.; Sánchez, G.M.; Giuliani, A. Oxygen free radical and antioxidant defense mechanism in cancer. Front. Biosci., 2004, 9(1), 2029-2044.
[http://dx.doi.org/10.2741/1335] [PMID: 15353268]
[8]
Bonnet, S.; Archer, S.L.; Allalunis-Turner, J.; Haromy, A.; Beaulieu, C.; Thompson, R.; Lee, C.T.; Lopaschuk, G.D.; Puttagunta, L.; Bonnet, S.; Harry, G.; Hashimoto, K.; Porter, C.J.; Andrade, M.A.; Thebaud, B.; Michelakis, E.D. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell, 2007, 11(1), 37-51.
[http://dx.doi.org/10.1016/j.ccr.2006.10.020] [PMID: 17222789]
[9]
Demierre, M.F.; Higgins, P.D.R.; Gruber, S.B.; Hawk, E.; Lippman, S.M. Statins and cancer prevention. Nat. Rev. Cancer, 2005, 5(12), 930-942.
[http://dx.doi.org/10.1038/nrc1751] [PMID: 16341084]
[10]
Manna, P.; Jain, S.K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies. Metab. Syndr. Relat. Disord., 2015, 13(10), 423-444.
[http://dx.doi.org/10.1089/met.2015.0095] [PMID: 26569333]
[11]
Jacobs, E.J.; Rodriguez, C.; Mondul, A.M.; Connell, C.J.; Henley, S.J.; Calle, E.E.; Thun, M.J. A large cohort study of aspirin and other nonsteroidal anti-inflammatory drugs and prostate cancer incidence. J. Natl. Cancer Inst., 2005, 97(13), 975-980.
[http://dx.doi.org/10.1093/jnci/dji173] [PMID: 15998950]
[12]
Harris, R.E.; Chlebowski, R.T.; Jackson, R.D.; Vogel, V.G. Breast cancer and nonsteroidal anti-inflammatory drugs; Prospective results from the women’s health initiative. Breast Dis., 2004, 15(2), 134-135.
[13]
Albini, A.; Tosetti, F.; Benelli, R.; Noonan, D.M. Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res., 2005, 65(23), 10637-10641.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3473] [PMID: 16322203]
[14]
Nakano, M.; Denda, N.; Matsumoto, M.; Kawamura, M.; Kawakubo, Y.; Hatanaka, K.; Hiramoto, Y.; Sato, Y.; Noshiro, M.; Harada, Y. Interaction between cyclooxygenase (COX)-1- and COX-2-products modulates COX-2 expression in the late phase of acute inflammation. Eur. J. Pharmacol., 2007, 559(2-3), 210-218.
[http://dx.doi.org/10.1016/j.ejphar.2006.11.080] [PMID: 17258197]
[15]
Albini, A.; Noonan, D.M. Rescuing COX-2 inhibitors from the waste bin. J. Natl. Cancer Inst., 2005, 97(11), 859-860.
[http://dx.doi.org/10.1093/jnci/dji149] [PMID: 15928309]
[16]
Madeo, F.; Carmona-Gutierrez, D.; Hofer, S.J.; Kroemer, G. Caloric restriction mimetics against age-associated disease: Targets, mechanisms, and therapeutic potential. Cell Metab., 2019, 29(3), 592-610.
[http://dx.doi.org/10.1016/j.cmet.2019.01.018] [PMID: 30840912]
[17]
Heilbronn, L.K.; Ravussin, E. Calorie restriction and aging: Review of the literature and implications for studies in humans. Am. J. Clin. Nutr., 2003, 78(3), 361-369.
[http://dx.doi.org/10.1093/ajcn/78.3.361] [PMID: 12936916]
[18]
Weindruch, R.; Walford, R.L.; Fligiel, S.; Guthrie, D. The retardation of aging in mice by dietary restriction: Longevity, cancer, immunity and lifetime energy intake. J. Nutr., 1986, 116(4), 641-654.
[http://dx.doi.org/10.1093/jn/116.4.641] [PMID: 3958810]
[19]
Most, J.; Tosti, V.; Redman, L.M.; Fontana, L. Calorie restriction in humans: An update. Ageing Res. Rev., 2017, 39, 36-45.
[http://dx.doi.org/10.1016/j.arr.2016.08.005] [PMID: 27544442]
[20]
Duan, W.; Guo, Z.; Jiang, H.; Ware, M.; Li, X.J.; Mattson, M.P. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc. Natl. Acad. Sci. USA, 2003, 100(5), 2911-2916.
[http://dx.doi.org/10.1073/pnas.0536856100] [PMID: 12589027]
[21]
Mattison, J.A.; Colman, R.J.; Beasley, T.M.; Allison, D.B.; Kemnitz, J.W.; Roth, G.S. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun., 2016, 2017(8), 1-12. [Internet
[PMID: 28094793]
[22]
Escobar, K.A.; Cole, N.H.; Mermier, C.M.; VanDusseldorp, T.A. Autophagy and aging: Maintaining the proteome through exercise and caloric restriction. Aging Cell, 2019, 18(1), e12876.
[http://dx.doi.org/10.1111/acel.12876] [PMID: 30430746]
[23]
Kim, S.S.; Choi, K.M.; Kim, S.; Park, T.; Cho, I.C.; Lee, J.W.; Lee, C.K. Whole-transcriptome analysis of mouse adipose tissue in response to short-term caloric restriction. Mol. Genet. Genomics, 2016, 291(2), 831-847.
[http://dx.doi.org/10.1007/s00438-015-1150-3] [PMID: 26606930]
[24]
Shi, Y.; Massagué, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 2003, 113(6), 685-700.
[http://dx.doi.org/10.1016/S0092-8674(03)00432-X] [PMID: 12809600]
[25]
Tsushima, H.; Kawata, S.; Tamura, S.; Ito, N.; Shirai, Y.; Kiso, S.; Imai, Y.; Shimomukai, H.; Nomura, Y.; Matsuda, Y.; Matsuzawa, Y. High levels of transforming growth factor beta 1 in patients with colorectal cancer: Association with disease progression. Gastroenterology, 1996, 110(2), 375-382.
[http://dx.doi.org/10.1053/gast.1996.v110.pm8566583] [PMID: 8566583]
[26]
Tamai, K.; Zeng, X.; Liu, C.; Zhang, X.; Harada, Y.; Chang, Z.; He, X. A mechanism for Wnt coreceptor activation. Mol. Cell, 2004, 13(1), 149-156.
[http://dx.doi.org/10.1016/S1097-2765(03)00484-2] [PMID: 14731402]
[27]
Rubio, C.; Luna, R.; Rosiles, A.; Rubio-Osornio, M. Caloric restriction and ketogenic diet therapy for epilepsy: A molecular approach involving Wnt pathway and KATP channels. Front. Neurol., 2020, 11(November), 584298.
[http://dx.doi.org/10.3389/fneur.2020.584298] [PMID: 33250850]
[28]
Clevers, H.; Nusse, R. Wnt/β-catenin signaling and disease. Cell, 2012, 149(6), 1192-1205.
[http://dx.doi.org/10.1016/j.cell.2012.05.012] [PMID: 22682243]
[29]
Clemmons, D.R. Role of insulin-like growth factor binding proteins in controlling IGF actions. Mol. Cell. Endocrinol., 1998, 140(1-2), 19-24.
[http://dx.doi.org/10.1016/S0303-7207(98)00024-0] [PMID: 9722163]
[30]
Rigiracciolo, D.C.; Nohata, N.; Lappano, R.; Cirillo, F.; Talia, M.; Scordamaglia, D.; Gutkind, J.S.; Maggiolini, M. IGF-1/IGF-1R/FAK/YAP Transduction Signaling Prompts Growth Effects in Triple-Negative Breast Cancer (TNBC) Cells. Cells, 2020, 9(12), 2619.
[31]
Salido, E.C.; Lakshmanan, J.; Fisher, D.A.; Shapiro, L.J.; Barajas, L. Expression of epidermal growth factor in the rat kidney. An immunocytochemical and in situ hybridization study. Histochemistry, 1991, 96(1), 65-72.
[http://dx.doi.org/10.1007/BF00266763] [PMID: 1938482]
[32]
Harvie, M.N.; Pegington, M.; Mattson, M.P.; Frystyk, J.; Dillon, B.; Evans, G.; Cuzick, J.; Jebb, S.A.; Martin, B.; Cutler, R.G.; Son, T.G.; Maudsley, S.; Carlson, O.D.; Egan, J.M.; Flyvbjerg, A.; Howell, A. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: A randomized trial in young overweight women. Int. J. Obes., 2011, 35(5), 714-727.
[http://dx.doi.org/10.1038/ijo.2010.171] [PMID: 20921964]
[33]
Schübel, R.; Nattenmüller, J.; Sookthai, D.; Nonnenmacher, T.; Graf, M.E.; Riedl, L.; Schlett, C.L.; von Stackelberg, O.; Johnson, T.; Nabers, D.; Kirsten, R.; Kratz, M.; Kauczor, H.U.; Ulrich, C.M.; Kaaks, R.; Kühn, T. Effects of intermittent and continuous calorie restriction on body weight and metabolism over 50 wk: A randomized controlled trial. Am. J. Clin. Nutr., 2018, 108(5), 933-945.
[http://dx.doi.org/10.1093/ajcn/nqy196] [PMID: 30475957]
[34]
Trepanowski, J.F.; Kroeger, C.M.; Barnosky, A.; Klempel, M.C.; Bhutani, S.; Hoddy, K.K.; Gabel, K.; Freels, S.; Rigdon, J.; Rood, J.; Ravussin, E.; Varady, K.A. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: A randomized clinical trial. JAMA Intern. Med., 2017, 177(7), 930-938.
[http://dx.doi.org/10.1001/jamainternmed.2017.0936] [PMID: 28459931]
[35]
Kunduraci, Y.E.; Ozbek, H. Does the energy restriction intermittent fasting diet alleviate metabolic syndrome biomarkers? A randomized controlled trial. Nutrients, 2020, 12(10), 1-13.
[http://dx.doi.org/10.3390/nu12103213] [PMID: 33096684]
[36]
Lv, M.; Zhu, X.; Wang, H.; Wang, F.; Guan, W. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: A systematic review and meta-analysis. PLoS One, 2014, 9(12), e115147.
[http://dx.doi.org/10.1371/journal.pone.0115147] [PMID: 25502434]
[37]
Augustin, L.S.A.; Libra, M.; Crispo, A.; Grimaldi, M.; De Laurentiis, M.; Rinaldo, M.; D’Aiuto, M.; Catalano, F.; Banna, G.; Ferrau’, F.; Rossello, R.; Serraino, D.; Bidoli, E.; Massarut, S.; Thomas, G.; Gatti, D.; Cavalcanti, E.; Pinto, M.; Riccardi, G.; Vidgen, E.; Kendall, C.W.; Jenkins, D.J.; Ciliberto, G.; Montella, M. Low glycemic index diet, exercise and vitamin D to reduce breast cancer recurrence (DEDiCa): Design of a clinical trial. BMC Cancer, 2017, 17(1), 69.
[http://dx.doi.org/10.1186/s12885-017-3064-4] [PMID: 28114909]
[38]
Rock, C.L.; Saxe, G.A.; Ruffin, M.T., IV; August, D.A.; Schottenfeld, D. Carotenoids, vitamin A, and estrogen receptor status in breast cancer. Nutr. Cancer, 1996, 25(3), 281-296.
[http://dx.doi.org/10.1080/01635589609514452] [PMID: 8771571]
[39]
Lotan, R.; Lotan, D.; Carralero, D.M. Modulation of galactoside-binding lectins in tumor cells by differentiation-inducing agents. Cancer Lett., 1989, 48(2), 115-122.
[http://dx.doi.org/10.1016/0304-3835(89)90046-3] [PMID: 2555043]
[40]
Moon, R.C.; Constantinou, A.I. Dietary retinoids and carotenoids in rodent models of mammary tumorigenesis. Breast Cancer Res. Treat., 1997, 46(2-3), 181-189.
[http://dx.doi.org/10.1023/A:1005995925246] [PMID: 9478273]
[41]
Sogno, I.; Venè, R.; Ferrari, N.; De Censi, A.; Imperatori, A.; Noonan, D.M.; Tosetti, F.; Albini, A. Angioprevention with fenretinide: Targeting angiogenesis in prevention and therapeutic strategies. Crit. Rev. Oncol. Hematol., 2010, 75(1), 2-14.
[http://dx.doi.org/10.1016/j.critrevonc.2009.10.007] [PMID: 20034809]
[42]
Pastorino, U.; Infante, M.; Maioli, M.; Chiesa, G.; Buyse, M.; Firket, P.; Rosmentz, N.; Clerici, M.; Soresi, E.; Valente, M. Adjuvant treatment of stage I lung cancer with high-dose vitamin A. J. Clin. Oncol., 1993, 11(7), 1216-1222.
[http://dx.doi.org/10.1200/JCO.1993.11.7.1216] [PMID: 8391063]
[43]
Lippman, S.M.; Benner, S.E.; Hong, W.K. Retinoid chemoprevention studies in upper aerodigestive tract and lung carcinogenesis. Cancer Res., 1994, 54(7)(Suppl.), 2025s-2028s.
[PMID: 8137332]
[44]
Sundaram, M.; Sivaprasadarao, A.; DeSousa, M.M.; Findlay, J.B.C. The transfer of retinol from serum retinol-binding protein to cellular retinol-binding protein is mediated by a membrane receptor. J. Biol. Chem., 1998, 273(6), 3336-3342.
[http://dx.doi.org/10.1074/jbc.273.6.3336] [PMID: 9452451]
[45]
Bendich, A. The safety of β-carotene. Nutr. Cancer, 1988, 11(4), 207-214.
[http://dx.doi.org/10.1080/01635588809513989] [PMID: 3064048]
[46]
Pelczynska, M.; Switalska, M.; Maciejewska, M.; Jaroszewicz, I.; Kutner, A.; Opolski, A. Antiproliferative activity of vitamin D compounds in combination with cytostatics. Anticancer Res., 2006, 26(4), 2701-2705.
[47]
Jones, B.B.; Ohno, C.K.; Allenby, G.; Boffa, M.B.; Levin, A.A.; Grippo, J.F.; Petkovich, M. New retinoid X receptor subtypes in zebra fish (Danio rerio) differentially modulate transcription and do not bind 9-cis retinoic acid. Mol. Cell. Biol., 1995, 15(10), 5226-5234.
[http://dx.doi.org/10.1128/MCB.15.10.5226] [PMID: 7565671]
[48]
Huang, P.; Chandra, V.; Rastinejad, F. Retinoic acid actions through mammalian nuclear receptors. Chem. Rev., 2014, 114(1), 233-254.
[http://dx.doi.org/10.1021/cr400161b] [PMID: 24308533]
[49]
Lane, M.A.; Bailey, S.J. Role of retinoid signalling in the adult brain. Prog. Neurobiol., 2005, 75(4), 275-293.
[http://dx.doi.org/10.1016/j.pneurobio.2005.03.002] [PMID: 15882777]
[50]
Szanto, A.; Narkar, V.; Shen, Q.; Uray, I.P.; Davies, P.J.A.; Nagy, L. Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ., 2004, 11(S2)(Suppl. 2), S126-S143.
[http://dx.doi.org/10.1038/sj.cdd.4401533] [PMID: 15608692]
[51]
Dimberg, A.; Bahram, F.; Karlberg, I.; Larsson, L.G.; Nilsson, K.; Öberg, F. Retinoic acid-induced cell cycle arrest of human myeloid cell lines is associated with sequential down-regulation of c-Myc and cyclin E and posttranscriptional up-regulation of p27(Kip1). Blood, 2002, 99(6), 2199-2206.
[http://dx.doi.org/10.1182/blood.V99.6.2199] [PMID: 11877298]
[52]
Spinella, M.J.; Freemantle, S.J.; Sekula, D.; Chang, J.H.; Christie, A.J.; Dmitrovsky, E. Retinoic acid promotes ubiquitination and proteolysis of cyclin D1 during induced tumor cell differentiation. J. Biol. Chem., 1999, 274(31), 22013-22018.
[http://dx.doi.org/10.1074/jbc.274.31.22013] [PMID: 10419526]
[53]
Sun, S.Y.; Yue, P.; Hong, W.K.; Lotan, R. Induction of Fas expression and augmentation of Fas/Fas ligand-mediated apoptosis by the synthetic retinoid CD437 in human lung cancer cells. Cancer Res., 2000, 60(22), 6537-6543.
[PMID: 11103825]
[54]
Gururajan, M.; Chui, R.; Karuppannan, A.K.; Ke, J.; Jennings, C.D.; Bondada, S. c-Jun N-terminal kinase (JNK) is required for survival and proliferation of B-lymphoma cells. Blood, 2005, 106(4), 1382-1391.
[http://dx.doi.org/10.1182/blood-2004-10-3819] [PMID: 15890690]
[55]
Obeng, E. Apoptosis (programmed cell death) and its signals - A review. Braz. J. Biol., 2021, 81(4), 1133-1143.
[http://dx.doi.org/10.1590/1519-6984.228437] [PMID: 33111928]
[56]
Schadendorf, D.; Kern, M.A.; Artuc, M.; Pahl, H.L.; Rosenbach, T.; Fichtner, I. Treatment of melanoma cells with the synthetic retinoid CD437 induces apoptosis via activation of AP-1 in vitro, and causes growth inhibition in xenografts in vivo. J. Cell Biol., 1996, 135(6), 1889-1898.
[57]
Tichelaar, J.W.; Yan, Y.; Tan, Q.; Wang, Y.; Estensen, R.D.; Young, M.R.; Colburn, N.H.; Yin, H.; Goodin, C.; Anderson, M.W.; You, M. A dominant-negative c-jun mutant inhibits lung carcinogenesis in mice. Cancer Prev. Res. (Phila.), 2010, 3(9), 1148-1156.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0023] [PMID: 20716630]
[58]
Moon, R.C. Comparative aspects of carotenoids and retinoids as chemopreventive agents for cancer. J. Nutr., 1989, 119(1), 127-134.
[http://dx.doi.org/10.1093/jn/119.1.127] [PMID: 2643696]
[59]
Palozza, P.; Serini, S.; Di Nicuolo, F.; Calviello, G. Mitogenic and apoptotic signaling by carotenoids: Involvement of a redox mechanism. IUBMB Life, 2001, 52(1-2), 77-81.
[http://dx.doi.org/10.1080/15216540252774810] [PMID: 11795599]
[60]
Palozza, P. Calviello, G.; Serini, S.; Maggiano, N.; Lanza, P.; Ranelletti, F.O.; Bartoli, G.M. β-carotene at high concentrations induces apoptosis by enhancing oxy-radical production in human adenocarcinoma cells. Free Radic. Biol. Med., 2001, 30(9), 1000-1007.
[http://dx.doi.org/10.1016/S0891-5849(01)00488-9] [PMID: 11316580]
[61]
Albanes, D.; Heinonen, O.P.; Taylor, P.R.; Virtamo, J.; Edwards, B.K.; Rautalahti, M.; Hartman, A.M.; Palmgren, J.; Freedman, L.S.; Haapakoski, J.; Barrett, M.J.; Pietinen, P.; Malila, N.; Tala, E.; Liippo, K.; Salomaa, E.R.; Tangrea, J.A.; Teppo, L.; Askin, F.B.; Taskinen, E.; Erozan, Y.; Greenwald, P.; Huttunen, J.K. Alpha-Tocopherol and beta-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: Effects of base-line characteristics and study compliance. J. Natl. Cancer Inst., 1996, 88(21), 1560-1570.
[http://dx.doi.org/10.1093/jnci/88.21.1560] [PMID: 8901854]
[62]
Liu, C.; Wang, X.D.; Bronson, R.T.; Smith, D.E.; Krinsky, N.I.; Russell, R.M. Effects of physiological versus pharmacological β-carotene supplementation on cell proliferation and histopathological changes in the lungs of cigarette smoke-exposed ferrets. Carcinogenesis, 2000, 21(12), 2245-2253.
[http://dx.doi.org/10.1093/carcin/21.12.2245] [PMID: 11133814]
[63]
Berggren Söderlund, M.; Fex, G.; Nilsson-Ehle, P. Decreasing serum concentrations of all-trans, 13-cis retinoic acids and retinol during fasting and caloric restriction. J. Intern. Med., 2003, 253(3), 375-380.
[http://dx.doi.org/10.1046/j.1365-2796.2003.01114.x] [PMID: 12603506]
[64]
Plank, M.; Wuttke, D.; van Dam, S.; Clarke, S.A.; de Magalhães, J.P. A meta-analysis of caloric restriction gene expression profiles to infer common signatures and regulatory mechanisms. Mol. Biosyst., 2012, 8(4), 1339-1349.
[http://dx.doi.org/10.1039/c2mb05255e] [PMID: 22327899]
[65]
Kumar, S.; Sandell, L.L.; Trainor, P.A.; Koentgen, F.; Duester, G. Alcohol and aldehyde dehydrogenases: Retinoid metabolic effects in mouse knockout models. Biochim. Biophys. Acta, 2012, 1821(1), 198-205.
[http://dx.doi.org/10.1016/j.bbalip.2011.04.004] [PMID: 21515404]
[66]
Jimenez-Lara, A.M.; Aranda, A. The vitamin D receptor binds in a transcriptionally inactive form and without a defined polarity on a retinoic acid response element. FASEB J., 1999, 13(9), 1073-1081.
[http://dx.doi.org/10.1096/fasebj.13.9.1073] [PMID: 10336890]
[67]
Krishnan, A.V.; Trump, D.L.; Johnson, C.S.; Feldman, D. The role of vitamin D in cancer prevention and treatment. Rheum. Dis. Clin. North Am., 2012, 38(1), 161-178.
[http://dx.doi.org/10.1016/j.rdc.2012.03.014] [PMID: 22525850]
[68]
Jiménez-Lara, A.M.; Aranda, A. Vitamin D represses retinoic acid-dependent transactivation of the retinoic acid receptor-β2 promoter: The AF-2 domain of the vitamin D receptor is required for transrepression. Endocrinology, 1999, 140(6), 2898-2907.
[http://dx.doi.org/10.1210/endo.140.6.6770] [PMID: 10342883]
[69]
Lamprecht, S.A.; Lipkin, M. Chemoprevention of colon cancer by calcium, vitamin D and folate: Molecular mechanisms. Nat. Rev. Cancer, 2003, 3(8), 601-614.
[http://dx.doi.org/10.1038/nrc1144] [PMID: 12894248]
[70]
Slatter, M.L.; Yakumo, K.; Hoffman, M.; Neuhausen, S. Variants of the VDR gene and risk of colon cancer (United States). Cancer Causes Control, 2001, 12(4), 359-364.
[http://dx.doi.org/10.1023/A:1011280518278] [PMID: 11456232]
[71]
Hubner, R.A.; Muir, K.R.; Liu, J.F.; Logan, R.F.A.; Grainge, M.J.; Houlston, R.S. Dairy products, polymorphisms in the vitamin D receptor gene and colorectal adenoma recurrence. Int. J. Cancer, 2008, 123(3), 586-593.
[http://dx.doi.org/10.1002/ijc.23536] [PMID: 18470879]
[72]
Lappe, J.M.; Travers-Gustafson, D.; Davies, K.M.; Recker, R.R.; Heaney, R.P. Vitamin D and calcium supplementation reduces cancer risk: Results of a randomized trial. Am. J. Clin. Nutr., 2008, 87(3), 794.
[73]
Holt, P.R.; Bresalier, R.S.; Ma, C.K.; Liu, K.F.; Lipkin, M.; Byrd, J.C.; Yang, K. Calcium plus vitamin D alters preneoplastic features of colorectal adenomas and rectal mucosa. Cancer, 2006, 106(2), 287-296.
[http://dx.doi.org/10.1002/cncr.21618] [PMID: 16353199]
[74]
Sergeev, I.N. Vitamin D status and vitamin D-dependent apoptosis in obesity. Nutrients, 2020, 12(5), 1-9.
[http://dx.doi.org/10.3390/nu12051392] [PMID: 32413960]
[75]
Larriba, M.J.; González-Sancho, J.M.; Barbáchano, A.; Niell, N.; Ferrer-Mayorga, G.; Muñoz, A. Vitamin D is a multilevel repressor of Wnt/β-catenin signaling in cancer cells. Cancers (Basel), 2013, 5(4), 1242-1260.
[http://dx.doi.org/10.3390/cancers5041242] [PMID: 24202444]
[76]
Himbert, C.; Ose, J.; Delphan, M.; Ulrich, C.M. A systematic review of the interrelation between diet- and surgery-induced weight loss and vitamin D status. Nutr. Res., 2017, 38, 13-26.
[http://dx.doi.org/10.1016/j.nutres.2016.12.004] [PMID: 28381350]
[77]
Weiss, E.P.; Villareal, D.T.; Racette, S.B.; Steger-May, K.; Premachandra, B.N.; Klein, S.; Fontana, L. Caloric restriction but not exercise-induced reductions in fat mass decrease plasma triiodothyronine concentrations: A randomized controlled trial. Rejuvenation Res., 2008, 11(3), 605-609.
[http://dx.doi.org/10.1089/rej.2007.0622] [PMID: 18593278]
[78]
Grilo, E.C.; Costa, P.N.; Gurgel, C.S.S.; Beserra, A.F de L.; Almeida, F.N de S.; Dimenstein, R. Alpha-tocopherol and gamma-tocopherol concentration in vegetable oils. Food Sci. Technol. (Campinas), 2014, 34(2), 379-385.
[http://dx.doi.org/10.1590/S0101-20612014005000031]
[79]
Suzukawa, M.; Ayaori, M.; Shige, H.; Hisada, T.; Ishikawa, T.; Nakamura, H. Effect of supplementation with vitamin E on LDL oxidizability and prevention of atherosclerosis. Biofactors, 1998, 7(1-2), 51-54.
[http://dx.doi.org/10.1002/biof.5520070108] [PMID: 9523028]
[80]
Toth, B.; Patil, K. Enhancing effect of vitamin E on murine intestinal tumorigenesis by 1,2-dimethylhydrazine dihydrochloride. J. Natl. Cancer Inst., 1983, 70(6), 1107-1111.
[PMID: 6574281]
[81]
Klein, E.A.; Thompson, I.M., Jr; Tangen, C.M.; Crowley, J.J.; Lucia, M.S.; Goodman, P.J.; Minasian, L.M.; Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; Karp, D.D.; Lieber, M.M.; Walther, P.J.; Klotz, L.; Parsons, J.K.; Chin, J.L.; Darke, A.K.; Lippman, S.M.; Goodman, G.E.; Meyskens, F.L., Jr; Baker, L.H. Vitamin E and the risk of prostate cancer: The selenium and vitamin E cancer prevention trial (SELECT). JAMA, 2011, 306(14), 1549-1556.
[http://dx.doi.org/10.1001/jama.2011.1437] [PMID: 21990298]
[82]
Prasad, K.N.; Edwards-Prasad, J. Effects of tocopherol (vitamin E) acid succinate on morphological alterations and growth inhibition in melanoma cells in culture. Cancer Res., 1982, 42(2), 550-555.
[PMID: 6275980]
[83]
Azzi, A.; Gysin, R.; Kempná, P.; Munteanu, A.; Negis, Y.; Villacorta, L.; Visarius, T.; Zingg, J.M. Vitamin E mediates cell signaling and regulation of gene expression. Ann. N. Y. Acad. Sci., 2004, 1031(1), 86-95.
[http://dx.doi.org/10.1196/annals.1331.009] [PMID: 15753136]
[84]
Selvaduray, K.R.; Radhakrishnan, A.K.; Kutty, M.K.; Nesaretnam, K. Palm tocotrienols inhibit proliferation of murine mammary cancer cells and induce expression of interleukin-24 mRNA. J. Interferon Cytokine Res., 2010, 30(12), 909-916.
[http://dx.doi.org/10.1089/jir.2010.0021] [PMID: 21121862]
[85]
Zhuang, S.; Lynch, M.C.; Kochevar, I.E. Caspase-8 mediates caspase-3 activation and cytochrome c release during singlet oxygen-induced apoptosis of HL-60 cells. Exp. Cell Res., 1999, 250(1), 203-212.
[http://dx.doi.org/10.1006/excr.1999.4501] [PMID: 10388534]
[86]
Patacsil, D.; Tran, A.T.; Cho, Y.S.; Suy, S.; Saenz, F.; Malyukova, I.; Ressom, H.; Collins, S.P.; Clarke, R.; Kumar, D. Gamma-tocotrienol induced apoptosis is associated with unfolded protein response in human breast cancer cells. J. Nutr. Biochem., 2012, 23(1), 93-100.
[http://dx.doi.org/10.1016/j.jnutbio.2010.11.012] [PMID: 21429729]
[87]
Tham, S.Y.; Loh, H.S.; Mai, C.W.; Fu, J.Y. Tocotrienols modulate a life or death decision in cancers. Int. J. Mol. Sci., 2019, 20(2), 372.
[http://dx.doi.org/10.3390/ijms20020372] [PMID: 30654580]
[88]
Frontini, M.; Imbriano, C.; Manni, I.; Mantovani, R. Cell cycle regulation of NF-YC nuclear localization. Cell Cycle, 2004, 3(2), 217-222.
[http://dx.doi.org/10.4161/cc.3.2.654] [PMID: 14712092]
[89]
Neuzil, J.; Weber, T.; Schröder, A.; Lu, M.; Ostermann, G.; Gellert, N.; Mayne, G.C.; Olejnicka, B.; Nègre-Salvayre, A.; Stícha, M.; Coffey, R.J.; Weber, C. Induction of cancer cell apoptosis by α-tocopheryl succinate: Molecular pathways and structural requirements. FASEB J., 2001, 15(2), 403-415.
[http://dx.doi.org/10.1096/fj.00-0251com] [PMID: 11156956]
[90]
Reiners, J.J., Jr; Caruso, J.A.; Mathieu, P.; Chelladurai, B.; Yin, X.M.; Kessel, D. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ., 2002, 9(9), 934-944.
[http://dx.doi.org/10.1038/sj.cdd.4401048] [PMID: 12181744]
[91]
Gulli, L.F.; Palmer, K.C.; Chen, Y.Q.; Reddy, K.B. Epidermal growth factor-induced apoptosis in A431 cells can be reversed by reducing the tyrosine kinase activity. Cell Growth Differ., 1996, 7(2), 173-178.
[PMID: 8822200]
[92]
Arcaro, A.; Guerreiro, A.S. The phosphoinositide 3-kinase pathway in human cancer: Genetic alterations and therapeutic implications. Curr. Genomics, 2007, 8(5), 271-306.
[http://dx.doi.org/10.2174/138920207782446160] [PMID: 19384426]
[93]
Ahn, K.S. Sethi, G.; Krishnan, K.; Aggarwal, B.B. γ-tocotrienol inhibits nuclear factor-kappaB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. J. Biol. Chem., 2007, 282(1), 809-820.
[http://dx.doi.org/10.1074/jbc.M610028200] [PMID: 17114179]
[94]
Miyazawa, T.; Burdeos, G.C.; Itaya, M.; Nakagawa, K.; Miyazawa, T.; Vitamin, E.; Vitamin, E. Regulatory redox interactions. IUBMB Life, 2019, 71(4), 430-441.
[http://dx.doi.org/10.1002/iub.2008] [PMID: 30681767]
[95]
Venturini, P.R.; Thomazini, B.F.; Oliveira, C.A.; Alves, A.A.; Camargo, T.F.; Domingues, C.E.C.; Barbosa-Sampaio, H.C.L.; do Amaral, M.E.C. Vitamin E supplementation and caloric restriction promotes regulation of insulin secretion and glycemic homeostasis by different mechanisms in rats. Biochem. Cell Biol., 2018, 96(6), 777-785.
[http://dx.doi.org/10.1139/bcb-2018-0066] [PMID: 30481061]
[96]
Pepper, C.; Ali, K.; Thomas, A.; Hoy, T.; Fegan, C.; Chowdary, P.; Kell, J.; Bentley, P. Retinoid-induced apoptosis in B-cell chronic lymphocytic leukaemia cells is mediated through caspase-3 activation and is independent of p53, the retinoic acid receptor, and differentiation. Eur. J. Haematol., 2002, 69(4), 227-235.
[http://dx.doi.org/10.1034/j.1600-0609.2002.02799.x] [PMID: 12431242]
[97]
Wolterbeek, A.P.M.; Roggeband, R.; van Moorsel, C.J.A.; Baan, R.A.; Koeman, J.H.; Feron, V.J.; Rutten, A.A. Vitamin A and β-carotene influence the level of benzo[a]pyrene-induced DNA adducts and DNA-repair activities in hamster tracheal epithelium in organ culture. Cancer Lett., 1995, 91(2), 205-214.
[http://dx.doi.org/10.1016/0304-3835(95)03740-N] [PMID: 7767911]
[98]
Kirkham, A.A.; Ian Paterson, D.; Prado, C.M.; Mackey, J.R.; Courneya, K.S.; Pituskin, E. Correction to: Rationale and design of the caloric restriction and exercise protection from anthracycline toxic effects (CREATE) study: A 3-arm parallel group phase II randomized controlled trial in early breast cancer. BMC Cancer, 2019, 19(1), 1-12.
[http://dx.doi.org/10.1186/s12885-019-5298-9] [PMID: 30606139]
[99]
Demark-Wahnefried, W.; Rogers, L.Q.; Gibson, J.T.; Harada, S.; Frugé, A.D.; Oster, R.A.; Grizzle, W.E.; Norian, L.A.; Yang, E.S.; Della Manna, D.; Jones, L.W.; Azrad, M.; Krontiras, H. Randomized trial of weight loss in primary breast cancer: Impact on body composition, circulating biomarkers and tumor characteristics. Int. J. Cancer, 2020, 146(10), 2784-2796.
[http://dx.doi.org/10.1002/ijc.32637] [PMID: 31442303]
[100]
Orgel, E.; Framson, C.; Buxton, R.; Kim, J.; Li, G.; Tucci, J.; Freyer, D.R.; Sun, W.; Oberley, M.J.; Dieli-Conwright, C.; Mittelman, S.D. Caloric and nutrient restriction to augment chemotherapy efficacy for acute lymphoblastic leukemia: the IDEAL trial. Blood Adv., 2021, 5(7), 1853-1861.
[http://dx.doi.org/10.1182/bloodadvances.2020004018] [PMID: 33792627]
[101]
Henning, S.M.; Galet, C.; Gollapudi, K.; Byrd, J.B.; Liang, P.; Li, Z.; Grogan, T.; Elashoff, D.; Magyar, C.E.; Said, J.; Cohen, P.; Aronson, W.J. Phase II prospective randomized trial of weight loss prior to radical prostatectomy. Prostate Cancer Prostatic Dis., 2018, 21(2), 212-220.
[http://dx.doi.org/10.1038/s41391-017-0001-1] [PMID: 29203893]
[102]
D’Alonzo, N.J.; Qiu, L.; Sears, D.D.; Chinchilli, V.; Brown, J.C.; Sarwer, D.B.; Schmitz, K.H.; Sturgeon, K.M. WISER survivor trial: Combined effect of exercise and weight loss interventions on insulin and insulin resistance in breast cancer survivors. Nutrients, 2021, 13(9), 3108.
[http://dx.doi.org/10.3390/nu13093108] [PMID: 34578984]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy