Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Micronutrients and Plant Food Bioactive Compounds Against Obesity Related Diseases

Author(s): Elena Azzini*, Lorenzo Barnaba, Donatella Ciarapica and Angela Polito

Volume 23, Issue 3, 2023

Published on: 02 November, 2022

Page: [316 - 335] Pages: 20

DOI: 10.2174/1871530322666220903143820

Price: $65

conference banner
Abstract

Background: The adipose tissue influences by an extensive crosstalk at the local and systemic level the energy balance, including storage, mobilization, and utilization at both central and peripheral sites in response to specific external stimuli or metabolic changes. The balance between energy intake and expenditure is a delicate equilibrium among multifactorial aspects ranging from genetic to environmental influences.

Aim: The evidence from several recently published papers dealing with the topic of the beneficial health effects of micronutrient and plant bioactive compounds on obesity and/or comorbidities has been reported in this paper.

Methodology: MEDLINE database (PubMed database; National Library of Medicine, Bethesda, MD and Google Scholar) was searched by combining the terms of specific micronutrients and/or plant bioactive compounds associated with obesity and related comorbidities. All English language manuscripts published between 2005 and 2021 in the MEDLINE database were searched, selected, and reviewed here.

Conclusion: People do not consume single food or ingredients but global composite diets; thus, the evaluation of mechanisms of action, efficacy and safety of vitamins and mineral and natural bioactive compounds is still a challenge in research on nutrition and food supplements.

Keywords: Plant bioactive compounds, micronutrients, obesity, metabolic diseases.

Graphical Abstract

[1]
Swinburn, B.A.; Kraak, V.I.; Allender, S.; Atkins, V.J.; Baker, P.I.; Bogard, J.R.; Brinsden, H.; Calvillo, A.; De Schutter, O.; Devarajan, R.; Ezzati, M.; Friel, S.; Goenka, S.; Hammond, R.A.; Hastings, G.; Hawkes, C.; Herrero, M.; Hovmand, P.S.; Howden, M.; Jaacks, L.M.; Kapetanaki, A.B.; Kasman, M.; Kuhnlein, H.V.; Kumanyika, S.K.; Larijani, B.; Lobstein, T.; Long, M.W.; Matsudo, V.K.R.; Mills, S.D.H.; Morgan, G.; Morshed, A.; Nece, P.M.; Pan, A.; Patterson, D.W.; Sacks, G.; Shekar, M.; Simmons, G.L.; Smit, W.; Tootee, A.; Vandevijvere, S.; Waterlander, W.E.; Wolfenden, L.; Dietz, W.H. The Global syndemic of obesity, undernutrition, and climate change: The lancet commission report. Lancet, 2019, 393(10173), 791-846. [Erratum in: Lancet. 2019 Feb 23;393]. [10173]. [:746. PMID: 30700377].
[http://dx.doi.org/10.1016/S0140-6736(18)32822-8] [PMID: 30700377]
[3]
Azzini, E.; Venneria, E.; Ciarapica, D.; Foddai, M.S.; Intorre, F.; Zaccaria, M.; Maiani, F.; Palomba, L.; Barnaba, L.; Tubili, C.; Maiani, G.; Polito, A. Effect of red orange juice consumption on body composition and nutritional status in overweight/obese female: A pilot study. Oxid. Med. Cell. Longev., 2017, 2017, 1672567.
[http://dx.doi.org/10.1155/2017/1672567] [PMID: 28408969]
[4]
Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients, 2010, 2(6), 611-625.
[http://dx.doi.org/10.3390/nu2060611] [PMID: 22254045]
[5]
Azzini, E.; Giacometti, J.; Russo, G.L. Antioxidant phytochemicals at the pharma-nutrition interface. Oxid. Med. Cell. Longev., 2017, 2017, 6986143.
[http://dx.doi.org/10.1155/2017/6986143] [PMID: 29250301]
[6]
Via, M. The malnutrition of obesity: Micronutrient deficiencies that promote diabetes. ISRN Endocrinol., 2012, 2012, 103472.
[http://dx.doi.org/10.5402/2012/103472] [PMID: 22462011]
[7]
Prasad, C.; Imrhan, V.; Juma, S.; Maziarz, M.; Prasad, A.; Tiernan, C.; Vijayagopal, P. Bioactive plant metabolites in the management of non-communicable metabolic diseases: Looking at opportunities beyond the horizon. Metabolites, 2015, 5(4), 733-765.
[http://dx.doi.org/10.3390/metabo5040733] [PMID: 26703752]
[8]
Hussein, R.; El-Anssary, A. Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. In: Herbal Medicine; Builders, P.F., Ed.; Intechopen: London, UK, 2019.
[http://dx.doi.org/10.5772/intechopen.76139]
[9]
Noce, A.; Di Lauro, M.; Di Daniele, F.; Pietroboni Zaitseva, A.; Marrone, G.; Borboni, P.; Di Daniele, N. Natural bioactive compounds useful in clinical management of metabolic syndrome. Nutrients, 2021, 13(2), 630.
[http://dx.doi.org/10.3390/nu13020630] [PMID: 33669163]
[10]
Milenkovic, D.; Morand, C.; Cassidy, A.; Konic-Ristic, A.; Tomás-Barberán, F.; Ordovas, J.M.; Kroon, P.; De Caterina, R.; Rodriguez-Mateos, A. Interindividual variability in biomarkers of cardiometabolic health after consumption of major plant-food bioactive compounds and the determinants involved. Adv. Nutr., 2017, 8(4), 558-570.
[http://dx.doi.org/10.3945/an.116.013623] [PMID: 28710143]
[11]
Hajalizadeh, Z.; Dayani, O.; Khezri, A.; Tahmasbi, R.; Mohammadabadi, M.R. The effect of adding fennel (Foeniculum vulgare) seed powder to the diet of fattening lambs on performance, carcass characteristics and liver enzymes. Small Rumin. Res., 2019, 175, 72-77.
[http://dx.doi.org/10.1016/j.smallrumres.2019.04.011]
[12]
Shahsavari, M.; Mohammadabadi, M.; Khezri, A.; Asadi Fozi, M.; Babenko, O.; Kalashnyk, O.; Oleshko, V.; Tkachenko, S. Correlation between insulin-like growth factor 1 gene expression and fennel (Foeniculum vulgare) seed powder consumption in muscle of sheep. Anim. Biotechnol., 2021, 1-11.
[http://dx.doi.org/10.1080/10495398.2021.2000997] [PMID: 34783639]
[13]
Masoudzadeh, S.H.; Mohammadabadi, M.; Khezri, A.; Stavetska, R.V.; Oleshko, V.P.; Babenko, O.I.; Yemets, Z.; Kalashnik, O.M. Effects of diets with different levels of fennel (Foeniculum vulgare) seed powder on DLK1 gene expression in brain, adipose tissue, femur muscle and rumen of Kermani lambs. Small Rumin. Res., 2020, 193, 106276.
[http://dx.doi.org/10.1016/j.smallrumres.2020.106276]
[14]
Mohammadabadi, M.; Masoudzadeh, S.H.; Khezri, A.; Kalashnyk, O.; Stavetska, R.V.; Klopenko, N.I.; Oleshko, V.P.; Tkachenko, S.V. Fennel (Foeniculum vulgare) seed powder increases delta-like non-canonical notch ligand 1 gene expression in testis, liver, and humeral muscle tissues of growing lambs. Heliyon, 2021, 7(12), e08542.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08542] [PMID: 34917815]
[15]
Amirteymoori, E.; Khezri, A.; Dayani, O.; Mohammadabadi, M.; Khorasani, S. Effects of linseed processing method (ground versus extruded) and dietary crude protein content on performance, digestibility, ruminal fermentation pattern, and rumen protozoa. Ital. J. Anim. Sci., 2021, 20(1), 1506-1517.
[http://dx.doi.org/10.1080/1828051X.2021.1984324]
[16]
Vahabzadeh, M.; Chamani, M.; Dayani, O.; Sadeghi, A.A. Effect of Origanum majorana leaf (Sweet marjoram) feeding on lamb’s growth, carcass characteristics and blood biochemical parameters. Small Rumin. Res., 2020, 192, 106233.
[http://dx.doi.org/10.1016/j.smallrumres.2020.106233]
[17]
Trepanowski, J.F.; Kroeger, C.M.; Barnosky, A.; Klempel, M.C.; Bhutani, S.; Hoddy, K.K.; Gabel, K.; Freels, S.; Rigdon, J.; Rood, J.; Ravussin, E.; Varady, K.A. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: A randomized clinical trial. JAMA Intern. Med., 2017, 177(7), 930-938.
[http://dx.doi.org/10.1001/jamainternmed.2017.0936] [PMID: 28459931]
[18]
Lowe, D.A.; Wu, N.; Rohdin-Bibby, L.; Moore, A.H.; Kelly, N.; Liu, Y.E.; Philip, E.; Vittinghoff, E.; Heymsfield, S.B.; Olgin, J.E.; Shepherd, J.A.; Weiss, E.J. Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity: The treat randomized clinical trial. JAMA Intern. Med. 2020, 180(11), 1491-1499. [Erratum in: JAMA Intern Med. 2020 Nov 1;180]. [11]. [:1555. Erratum in: JAMA Intern Med. 2021 Jun 1;181]. [6]. [:883. PMID: 32986097; PMCID: PMC7522780].
[http://dx.doi.org/10.1001/jamainternmed.2020.4153] [PMID: 32986097]
[19]
Sarebanhassanabadi, M.; Shahriari Kalantari, M.; Boffetta, P.; Beiki, O.; Pakseresht, M.; Sarrafzadegan, N.; Mirzaei, M.; Kraemer, A.; Seyedhosseini, S.; Mali, S.; Namayandeh, S.M.; Razavi, S.K.; Alipour, M.R.; Emami, M.; Ahmad Abad, M.S.; Hosseini, H.A.; Salehi-Abargouei, A. Dietary habits and the 10-year risk of overweight and obesity in urban adult population: A cohort study predicated on Yazd Healthy Heart Project. Diabetes Metab. Syndr., 2020, 14(5), 1391-1397.
[20]
Naghshi, S.; Sadeghi, O.; Willett, W.C.; Esmaillzadeh, A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ, 2020, 370, m2412.
[http://dx.doi.org/10.1136/bmj.m2412] [PMID: 32699048]
[21]
Catenacci, V.A.; Pan, Z.; Ostendorf, D.; Brannon, S.; Gozansky, W.S.; Mattson, M.P.; Martin, B.; MacLean, P.S.; Melanson, E.L.; Troy Donahoo, W. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity (Silver Spring), 2016, 24(9), 1874-1883.
[http://dx.doi.org/10.1002/oby.21581] [PMID: 27569118]
[22]
Parr, E.B.; Devlin, B.L.; Radford, B.E.; Hawley, J.A. A delayed morning and earlier evening time-restricted feeding protocol for improving glycemic control and dietary adherence in men with overweight/obesity: A randomized controlled trial. Nutrients, 2020, 12(2), 505.
[http://dx.doi.org/10.3390/nu12020505] [PMID: 32079327]
[23]
Samdal, G.B.; Eide, G.E.; Barth, T.; Williams, G.; Meland, E. Effective behaviour change techniques for physical activity and healthy eating in overweight and obese adults; systematic review and meta-regression analyses. Int. J. Behav. Nutr. Phys. Act., 2017, 14(1), 42.
[http://dx.doi.org/10.1186/s12966-017-0494-y] [PMID: 28351367]
[24]
Poli, V.F.S.; Sanches, R.B.; Moraes, A.D.S.; Fidalgo, J.P.N.; Nascimento, M.A.; Bresciani, P.; Andrade-Silva, S.G.; Cipullo, M.A.T.; Clemente, J.C.; Caranti, D.A. The excessive caloric intake and micronutrient deficiencies related to obesity after a long-term interdisciplinary therapy. Nutrition, 2017, 38, 113-119.
[http://dx.doi.org/10.1016/j.nut.2017.01.012] [PMID: 28526376]
[25]
García, O.P. Effect of vitamin A deficiency on the immune response in obesity. Proc. Nutr. Soc., 2012, 71(2), 290-297.
[http://dx.doi.org/10.1017/S0029665112000079] [PMID: 22369848]
[26]
Major, G.C.; Alarie, F.P.; Doré, J.; Tremblay, A. Calcium plus vitamin D supplementation and fat mass loss in female very low-calcium consumers: Potential link with a calcium-specific appetite control. Br. J. Nutr., 2009, 101(5), 659-663.
[http://dx.doi.org/10.1017/S0007114508030808] [PMID: 19263591]
[27]
Li, Y.; Wang, C.; Zhu, K.; Feng, R.N.; Sun, C.H. Effects of multivitamin and mineral supplementation on adiposity, energy expenditure and lipid profiles in obese Chinese women. Int. J. Obes., 2010, 34(6), 1070-1077.
[http://dx.doi.org/10.1038/ijo.2010.14] [PMID: 20142823]
[28]
Bhagavan, N.V.; Ha, C.E. Vitamin metabolism. In: Bhagavan, N.V.; Ha, C-E., Eds.; Essentials of Medical Biochemistry, 2nd ed; Academic Press: Amsterdam, 2015, pp. 683-699.
[http://dx.doi.org/10.1016/B978-0-12-416687-5.00036-1]
[29]
Panchal, S.K.; Wanyonyi, S.; Brown, L. Selenium, vanadium, and chromium as micronutrients to improve metabolic syndrome. Curr. Hypertens. Rep., 2017, 19(3), 10.
[http://dx.doi.org/10.1007/s11906-017-0701-x] [PMID: 28197835]
[30]
Robberecht, H.; Bruyne, T.; Hermans, N. Biomarkers of the metabolic syndrome: Influence of minerals, oligo and trace elements. J. Trace Elem. Med. Biol., 2017, 43, 23-28.
[http://dx.doi.org/10.1016/j.jtemb.2016.10.005] [PMID: 28277234]
[31]
Skalnaya, M.G.; Skalny, A.V.; Grabeklis, A.R.; Serebryansky, E.P.; Demidov, V.A.; Tinkov, A.A. Hair trace elements in overweight and obese adults in association with metabolic parameters. Biol. Trace Elem. Res., 2018, 186(1), 12-20.
[http://dx.doi.org/10.1007/s12011-018-1282-5] [PMID: 29497998]
[32]
Shi, Y.; Zou, Y.; Shen, Z.; Xiong, Y.; Zhang, W.; Liu, C.; Chen, S. Trace elements, PPARs, and metabolic syndrome. Int. J. Mol. Sci., 2020, 21(7), 2612.
[http://dx.doi.org/10.3390/ijms21072612] [PMID: 32283758]
[33]
Kaidar-Person, O.; Person, B.; Szomstein, S.; Rosenthal, R.J. Nutritional deficiencies in morbidly obese patients: A new form of malnutrition? Part A: Vitamins. Obes. Surg., 2008, 18(7), 870-876.
[http://dx.doi.org/10.1007/s11695-007-9349-y] [PMID: 18465178]
[34]
Astrup, A.; Bugel, S. Overfed but undernourished: Recognizing nutritional inadequacies/deficiencies in patients with overweight or obesity. Int. J. Obes., 2019, 43(2), 219-232.
[http://dx.doi.org/10.1038/s41366-018-0143-9] [PMID: 29980762]
[35]
Tinkov, A.A. Bogdański, P.; Skrypnik, D.; Skrypnik, K.; Skalny, A.V.; Aaseth, J.; Skalnaya, M.G.; Suliburska, J. Trace element and mineral levels in serum, hair, and urine of obese women in relation to body composition, blood pressure, lipid profile, and insulin resistance. Biomolecules, 2021, 11(5), 689.
[http://dx.doi.org/10.3390/biom11050689] [PMID: 34064348]
[36]
WHO Vitamin and mineral requirements in human nutrition: report of a joint FAO/WHO expert consultation, Bangkok, Thailand, 21-30 September 1998; World Health Organization: Geneva, Switzerland, 2004.
[37]
Ofoedu, C.E.; Iwouno, J.O.; Ofoedu, E.O.; Ogueke, C.C.; Igwe, V.S.; Agunwah, I.M.; Ofoedum, A.F.; Chacha, J.S.; Muobike, O.P.; Agunbiade, A.O.; Njoku, N.E.; Nwakaudu, A.A.; Odimegwu, N.E.; Ndukauba, O.E.; Ogbonna, C.U.; Naibaho, J.; Korus, M.; Okpala, C.O.R. Revisiting food-sourced vitamins for consumer diet and health needs: A perspective review, from vitamin classification, metabolic functions, absorption, utilization, to balancing nutritional requirements. PeerJ, 2021, 9, e11940.
[http://dx.doi.org/10.7717/peerj.11940] [PMID: 34557342]
[38]
Maguire, D.; Talwar, D.; Shiels, P.G.; McMillan, D. The role of thiamine dependent enzymes in obesity and obesity related chronic disease states: A systematic review. Clin. Nutr. ESPEN, 2018, 25, 8-17.
[http://dx.doi.org/10.1016/j.clnesp.2018.02.007] [PMID: 29779823]
[39]
Keogh, J.B.; Cleanthous, X.; Wycherley, T.P.; Brinkworth, G.D.; Noakes, M.; Clifton, P.M. Increased thiamine intake may be required to maintain thiamine status during weight loss in patients with type 2 diabetes. Diabetes Res. Clin. Pract., 2012, 98(3), e40-e42.
[http://dx.doi.org/10.1016/j.diabres.2012.09.032] [PMID: 23026514]
[40]
Remie, C.M.E.; Roumans, K.H.M.; Moonen, M.P.B.; Connell, N.J.; Havekes, B.; Mevenkamp, J.; Lindeboom, L.; de Wit, V.H.W.; van de Weijer, T.; Aarts, S.A.B.M.; Lutgens, E.; Schomakers, B.V.; Elfrink, H.L.; Zapata-Pérez, R.; Houtkooper, R.H.; Auwerx, J.; Hoeks, J.; Schrauwen-Hinderling, V.B.; Phielix, E.; Schrauwen, P. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am. J. Clin. Nutr., 2020, 112(2), 413-426.
[http://dx.doi.org/10.1093/ajcn/nqaa072] [PMID: 32320006]
[41]
Dollerup, O.L.; Christensen, B.; Svart, M.; Schmidt, M.S.; Sulek, K.; Ringgaard, S.; Stødkilde-Jørgensen, H.; Møller, N.; Brenner, C.; Treebak, J.T.; Jessen, N. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: Safety, insulin-sensitivity, and lipid-mobilizing effects. Am. J. Clin. Nutr., 2018, 108(2), 343-353.
[http://dx.doi.org/10.1093/ajcn/nqy132] [PMID: 29992272]
[42]
Dollerup, O.L.; Chubanava, S.; Agerholm, M.; Søndergård, S.D. Altıntaş A.; Møller, A.B.; Høyer, K.F.; Ringgaard, S.; Stødkilde-Jørgensen, H.; Lavery, G.G.; Barrès, R.; Larsen, S.; Prats, C.; Jessen, N.; Treebak, J.T. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J. Physiol., 2020, 598(4), 731-754.
[http://dx.doi.org/10.1113/JP278752] [PMID: 31710095]
[43]
Thomas-Valdés, S.; Tostes, M.D.G.V.; Anunciação, P.C.; da Silva, B.P.; Sant’Ana, H.M.P. Association between vitamin deficiency and metabolic disorders related to obesity. Crit. Rev. Food Sci. Nutr., 2017, 57(15), 3332-3343.
[http://dx.doi.org/10.1080/10408398.2015.1117413] [PMID: 26745150]
[44]
Bradbury, K.E.; Williams, S.M.; Mann, J.I.; Brown, R.C.; Parnell, W.; Skeaff, C.M. Estimation of serum and erythrocyte folate concentrations in the New Zealand adult population within a background of voluntary folic acid fortification. J. Nutr., 2014, 144(1), 68-74.
[http://dx.doi.org/10.3945/jn.113.182105] [PMID: 24174623]
[45]
Gargari, B.P.; Aghamohammadi, V.; Aliasgharzadeh, A. Effect of folic acid supplementation on biochemical indices in overweight and obese men with type 2 diabetes. Diabetes Res. Clin. Pract., 2011, 94(1), 33-38.
[http://dx.doi.org/10.1016/j.diabres.2011.07.003] [PMID: 21802161]
[46]
Bird, J.K.; Ronnenberg, A.G.; Choi, S.W.; Du, F.; Mason, J.B.; Liu, Z. Obesity is associated with increased red blood cell folate despite lower dietary intakes and serum concentrations. J. Nutr., 2015, 145(1), 79-86.
[http://dx.doi.org/10.3945/jn.114.199117] [PMID: 25527662]
[47]
Li, Z.; Gueant-Rodriguez, R.M.; Quilliot, D.; Sirveaux, M.A.; Meyre, D.; Gueant, J.L.; Brunaud, L. Folate and vitamin B12 status is associated with insulin resistance and metabolic syndrome in morbid obesity. Clin. Nutr., 2018, 37(5), 1700-1706.
[http://dx.doi.org/10.1016/j.clnu.2017.07.008] [PMID: 28780990]
[48]
Baltaci, D.; Kutlucan, A.; Turker, Y.; Yilmaz, A.; Karacam, S.; Deler, H.; Ucgun, T.; Kara, I.H. Association of vitamin B12 with obesity, overweight, insulin resistance and metabolic syndrome, and body fat composition; primary care-based study. Med. Glas., 2013, 10(2), 203-210.
[PMID: 23892832]
[49]
Baltaci, D.; Deler, M.H.; Turker, Y.; Ermis, F.; Iliev, D.; Velioglu, U. Evaluation of serum vitamin B12 level and related nutritional status among apparently healthy obese female individuals. Niger. J. Clin. Pract., 2017, 20(1), 99-105.
[http://dx.doi.org/10.4103/1119-3077.181401] [PMID: 27958255]
[50]
Oliai Araghi, S.; Braun, K.V.E.; van der Velde, N.; van Dijk, S.C.; van Schoor, N.M.; Zillikens, M.C.; de Groot, L.C.P.G.M.; Uitterlinden, A.G.; Stricker, B.H.; Voortman, T.; Kiefte-de Jong, J.C. B-vitamins and body composition: Integrating observational and experimental evidence from the B-PROOF study. Eur. J. Nutr., 2020, 59(3), 1253-1262.
[http://dx.doi.org/10.1007/s00394-019-01985-8] [PMID: 31076856]
[51]
Wiebe, N.; Field, C.J.; Tonelli, M. A systematic review of the vitamin B12, folate and homocysteine triad across body mass index. Obes. Rev., 2018, 19(11), 1608-1618.
[http://dx.doi.org/10.1111/obr.12724] [PMID: 30074676]
[52]
Scientific opinion on dietary reference values for vitamin C. EFSA J., 2013, 11(11), 3418.
[http://dx.doi.org/10.2903/j.efsa.2013.3418]
[53]
Hathcock, J.N.; Azzi, A.; Blumberg, J.; Bray, T.; Dickinson, A.; Frei, B.; Jialal, I.; Johnston, C.S.; Kelly, F.J.; Kraemer, K.; Packer, L.; Parthasarathy, S.; Sies, H.; Traber, M.G.; Vitamins, E. Vitamins E and C are safe across a broad range of intakes. Am. J. Clin. Nutr., 2005, 81(4), 736-745.
[http://dx.doi.org/10.1093/ajcn/81.4.736] [PMID: 15817846]
[54]
Garcia-Diaz, D.F.; Lopez-Legarrea, P.; Quintero, P.; Martinez, J.A. Vitamin C in the treatment and/or prevention of obesity. J. Nutr. Sci. Vitaminol. (Tokyo), 2014, 60(6), 367-379.
[http://dx.doi.org/10.3177/jnsv.60.367] [PMID: 25866299]
[55]
Johnston, C.S.; Beezhold, B.L.; Mostow, B.; Swan, P.D. Plasma vitamin C is inversely related to body mass index and waist circumference but not to plasma adiponectin in nonsmoking adults. J. Nutr., 2007, 137(7), 1757-1762.
[http://dx.doi.org/10.1093/jn/137.7.1757] [PMID: 17585027]
[56]
Ellulu, M.S.; Rahmat, A.; Patimah, I.; Khaza’ai, H.; Abed, Y. Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: A randomized controlled trial. Drug Des. Devel. Ther., 2015, 9, 3405-3412.
[http://dx.doi.org/10.2147/DDDT.S83144] [PMID: 26170625]
[57]
Hartwich, J.; Góralska, J.; Siedlecka, D.; Gruca, A.; Trzos, M.; Dembinska-Kiec, A. Effect of supplementation with vitamin E and C on plasma hsCRP level and cobalt-albumin binding score as markers of plasma oxidative stress in obesity. Genes Nutr., 2007, 2(1), 151-154.
[http://dx.doi.org/10.1007/s12263-007-0041-6] [PMID: 18850168]
[58]
Godala, M. Materek-Kuśmierkiewicz, I.; Moczulski, D.; Rutkowski, M.; Szatko, F.; Gaszyńska, E.; Tokarski, S.; Kowalski, J. The risk of plasma vitamin A, C, E and D deficiency in patients with metabolic syndrome: A case-control study. Adv. Clin. Exp. Med., 2017, 26(4), 581-586.
[http://dx.doi.org/10.17219/acem/62453] [PMID: 28691410]
[59]
Farag, H.A.M.; Hosseinzadeh-Attar, M.J.; Muhammad, B.A. Effects of vitamin C supplementation with and without endurance physical activity on components of metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. Exp., 2019, 26, 23-33.
[http://dx.doi.org/10.1016/j.yclnex.2019.05.003]
[60]
Wong, S.K.; Chin, K.Y.; Ima-Nirwana, S.; Vitamin, C.; Vitamin, C. A review on its role in the management of metabolic syndrome. Int. J. Med. Sci., 2020, 17(11), 1625-1638.
[http://dx.doi.org/10.7150/ijms.47103] [PMID: 32669965]
[61]
Limberg, J.K.; Harrell, J.W.; Johansson, R.E.; Eldridge, M.W.; Proctor, L.T.; Sebranek, J.J.; Schrage, W.G. Microvascular function in younger adults with obesity and metabolic syndrome: Role of oxidative stress. Am. J. Physiol. Heart Circ. Physiol., 2013, 305(8), H1230-H1237.
[http://dx.doi.org/10.1152/ajpheart.00291.2013] [PMID: 23934859]
[62]
Kurl, S.; Tuomainen, T.P.; Laukkanen, J.A.; Nyyssönen, K.; Lakka, T.; Sivenius, J.; Salonen, J.T. Plasma vitamin C modifies the association between hypertension and risk of stroke. Stroke, 2002, 33(6), 1568-1573.
[http://dx.doi.org/10.1161/01.STR.0000017220.78722.D7] [PMID: 12052992]
[63]
Chen, G.C.; Lu, D.B.; Pang, Z.; Liu, Q.F. Vitamin C intake, circulating vitamin C and risk of stroke: A meta-analysis of prospective studies. J. Am. Heart Assoc., 2013, 2(6), e000329.
[http://dx.doi.org/10.1161/JAHA.113.000329] [PMID: 24284213]
[64]
Myint, P.K.; Luben, R.N.; Welch, A.A.; Bingham, S.A.; Wareham, N.J.; Khaw, K.T. Plasma vitamin C concentrations predict risk of incident stroke over 10 y in 20 649 participants of the European prospective investigation into cancer norfolk prospective population study. Am. J. Clin. Nutr., 2008, 87(1), 64-69.
[http://dx.doi.org/10.1093/ajcn/87.1.64] [PMID: 18175738]
[65]
Zinder, R.; Cooley, R.; Vlad, L.G.; Molnar, J.A. Vitamin A and wound healing. Nutr. Clin. Pract., 2019, 34(6), 839-849.
[http://dx.doi.org/10.1002/ncp.10420] [PMID: 31697447]
[66]
Scientific opinion on dietary reference values for vitamin A. EFSA J., 2015, 13(3), 4028.
[http://dx.doi.org/10.2903/j.efsa.2015.4028]
[67]
Delaney, K.Z.; Barker, L. More about vitamins. In: Delaney, K.Z.; Barker, L.; Eds. Fundamentals of Health and Physical Activity; Concordia University Library: Montreal, QC, Canada, 2017.
[68]
Conaway, H.H.; Henning, P.; Lerner, U.H.; Vitamin, A. Vitamin A metabolism, action, and role in skeletal homeostasis. Endocr. Rev., 2013, 34(6), 766-797.
[http://dx.doi.org/10.1210/er.2012-1071] [PMID: 23720297]
[69]
Ross, C.; Harrison, E.H. Vitamin A: Nutritional aspects of retinoids and carotenoids. In: Zempleni, J.; Sutties, J.W.; Gregory, J.F.; Stover, P.J., Eds.; Handbook of Vitamins, 5th Ed; CRC Press, Taylor & Francis Group: New York, 2014.
[70]
Maurya, V.K.; Aggarwal, M.; Ranjan, V.; Gothandam, K.M. Improving bioavailability of vitamin A in food by encapsulation: An update. Nanosci. Med., 2020, 1, 117-145.
[http://dx.doi.org/10.1007/978-3-030-29207-2_4]
[71]
Gomes, C.C.; Passos, T.S.; Morais, A.H.A.; Vitamin, A. Vitamin A status improvement in obesity: Findings and perspectives using encapsulation techniques. Nutrients, 2021, 13(6), 1921.
[http://dx.doi.org/10.3390/nu13061921] [PMID: 34204998]
[72]
Trasino, S.E.; Tang, X-H.; Jessurun, J.; Gudas, L.J. Obesity leads to tissue, but not serum vitamin A deficiency. Sci. Rep., 2015, 5, 15893.
[http://dx.doi.org/10.1038/srep15893] [PMID: 26522079]
[73]
Beydoun, M.A.; Chen, X.; Jha, K.; Beydoun, H.A.; Zonderman, A.B.; Canas, J.A. Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis. Nutr. Rev., 2019, 77(1), 32-45.
[http://dx.doi.org/10.1093/nutrit/nuy044] [PMID: 30202882]
[74]
Villaça Chaves, G.; Gonçalves de Souza, G.; Cardoso de Matos, A.; Abrantes Peres, W.; Pereira, S.E.; Saboya, C.J.; D’Almeida, C.A.; Ramalho, A. Serum retinol and β-carotene levels and risk factors for cardiovascular disease in morbid obesity. Int. J. Vitam. Nutr. Res., 2010, 80(3), 159-167.
[http://dx.doi.org/10.1024/0300-9831/a000018] [PMID: 21234857]
[75]
Östh, M.; Öst, A.; Kjolhede, P.; Strålfors, P. The concentration of β-carotene in human adipocytes, but not the whole-body adipocyte stores, is reduced in obesity. PLoS One, 2014, 9(1), e85610.
[http://dx.doi.org/10.1371/journal.pone.0085610] [PMID: 24416432]
[76]
Silverman, J.F.; O’Brien, K.F.; Long, S.; Leggett, N.; Khazanie, P.G.; Pories, W.J.; Norris, H.T.; Caro, J.F. Liver pathology in morbidly obese patients with and without diabetes. Am. J. Gastroenterol., 1990, 85(10), 1349-1355.
[PMID: 2220728]
[77]
Villaça Chaves, G.; Pereira, S.E.; Saboya, C.J.; Ramalho, A. Non-alcoholic fatty liver disease and its relationship with the nutritional status of vitamin A in individuals with class III obesity. Obes. Surg., 2008, 18(4), 378-385.
[http://dx.doi.org/10.1007/s11695-007-9361-2] [PMID: 18264740]
[78]
Fotbolcu, H.; Zorlu, E. Nonalcoholic fatty liver disease as a multi-systemic disease. World J. Gastroenterol., 2016, 22(16), 4079-4090.
[http://dx.doi.org/10.3748/wjg.v22.i16.4079] [PMID: 27122660]
[79]
Yang, Q.; Graham, T.E.; Mody, N.; Preitner, F.; Peroni, O.D.; Zabolotny, J.M.; Kotani, K.; Quadro, L.; Kahn, B.B. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 2005, 436(7049), 356-362.
[http://dx.doi.org/10.1038/nature03711] [PMID: 16034410]
[80]
Graham, T.E.; Yang, Q.; Blüher, M.; Hammarstedt, A.; Ciaraldi, T.P.; Henry, R.R.; Wason, C.J.; Oberbach, A.; Jansson, P.A.; Smith, U.; Kahn, B.B. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N. Engl. J. Med., 2006, 354(24), 2552-2563.
[http://dx.doi.org/10.1056/NEJMoa054862] [PMID: 16775236]
[81]
Sun, Q.; Kiernan, U.A.; Shi, L.; Phillips, D.A.; Kahn, B.B.; Hu, F.B.; Manson, J.E.; Albert, C.M.; Rexrode, K.M. Plasma retinol-binding protein 4 (RBP4) levels and risk of coronary heart disease: A prospective analysis among women in the nurses’ health study. Circulation, 2013, 127(19), 1938-1947.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002073] [PMID: 23584360]
[82]
Janke, J.; Engeli, S.; Boschmann, M.; Adams, F.; Böhnke, J.; Luft, F.C.; Sharma, A.M.; Jordan, J. Retinol-binding protein 4 in human obesity. Diabetes, 2006, 55(10), 2805-2810.
[http://dx.doi.org/10.2337/db06-0616] [PMID: 17003346]
[83]
Kos, K.; Wong, S.; Tan, B.K.; Kerrigan, D.; Randeva, H.S.; Pinkney, J.H.; Wilding, J.P.H. Human RBP4 adipose tissue expression is gender specific and influenced by leptin. Clin. Endocrinol. (Oxf.), 2011, 74(2), 197-205.
[http://dx.doi.org/10.1111/j.1365-2265.2010.03892.x] [PMID: 21039728]
[84]
Blaner, W.S. Vitamin A signaling and homeostasis in obesity, diabetes, and metabolic disorders. Pharmacol. Ther., 2019, 197, 153-178.
[http://dx.doi.org/10.1016/j.pharmthera.2019.01.006] [PMID: 30703416]
[85]
Graham, T.E.; Wason, C.J.; Blüher, M.; Kahn, B.B. Shortcomings in methodology complicate measurements of serum retinol binding protein (RBP4) in insulin-resistant human subjects. Diabetologia, 2007, 50(4), 814-823.
[http://dx.doi.org/10.1007/s00125-006-0557-0] [PMID: 17294166]
[86]
Aguilera-Méndez, A.; Boone-Villa, D.; Nieto-Aguilar, R.; Villafaña-Rauda, S.; Molina, A.S.; Sobrevilla, J.V. Role of vitamins in the metabolic syndrome and cardiovascular disease. Pflugers Arch., 2021, 474(1), 117-140.
[http://dx.doi.org/10.1007/s00424-021-02619-x] [PMID: 34518916]
[87]
Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; Kovacs, C.S.; Mayne, S.T.; Rosen, C.J.; Shapses, S.A. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metab., 2011, 96(1), 53-58.
[http://dx.doi.org/10.1210/jc.2010-2704] [PMID: 21118827]
[88]
Pereira-Santos, M.; Costa, P.R.; Assis, A.M.; Santos, C.A.; Santos, D.B. Obesity and vitamin D deficiency: A systematic review and meta analysis. Obes. Rev., 2015, 16(4), 341-349.
[http://dx.doi.org/10.1111/obr.12239] [PMID: 25688659]
[89]
Vranić, L.; Mikolašević, I.; Milić, S. Vitamin D deficiency: Consequence or cause of obesity? Medicina (Kaunas), 2019, 55(9), 541.
[http://dx.doi.org/10.3390/medicina55090541] [PMID: 31466220]
[90]
Afzal, S.; Brøndum-Jacobsen, P.; Bojesen, S.E.; Nordestgaard, B.G. Vitamin D concentration, obesity, and risk of diabetes: A mendelian randomisation study. Lancet Diabetes Endocrinol., 2014, 2(4), 298-306.
[http://dx.doi.org/10.1016/S2213-8587(13)70200-6] [PMID: 24703048]
[91]
Vimaleswaran, K.S.; Berry, D.J.; Lu, C.; Tikkanen, E.; Pilz, S.; Hiraki, L.T.; Cooper, J.D.; Dastani, Z.; Li, R.; Houston, D.K.; Wood, A.R.; Michaëlsson, K.; Vandenput, L.; Zgaga, L.; Yerges-Armstrong, L.M.; McCarthy, M.I.; Dupuis, J.; Kaakinen, M.; Kleber, M.E.; Jameson, K.; Arden, N.; Raitakari, O.; Viikari, J.; Lohman, K.K.; Ferrucci, L.; Melhus, H.; Ingelsson, E.; Byberg, L.; Lind, L.; Lorentzon, M.; Salomaa, V.; Campbell, H.; Dunlop, M.; Mitchell, B.D.; Herzig, K.H.; Pouta, A.; Hartikainen, A.L.; Streeten, E.A.; Theodoratou, E.; Jula, A.; Wareham, N.J.; Ohlsson, C.; Frayling, T.M.; Kritchevsky, S.B.; Spector, T.D.; Richards, J.B.; Lehtimäki, T.; Ouwehand, W.H.; Kraft, P.; Cooper, C.; März, W.; Power, C.; Loos, R.J.; Wang, T.J.; Järvelin, M.R.; Whittaker, J.C.; Hingorani, A.D.; Hyppönen, E. Causal relationship between obesity and vitamin D status: Bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med., 2013, 10(2), e1001383.
[http://dx.doi.org/10.1371/journal.pmed.1001383] [PMID: 23393431]
[92]
Aliashrafi, S.; Ebrahimi-Mameghani, M.; Jafarabadi, M.A.; Lotfi-Dizaji, L.; Vaghef-Mehrabany, E.; Arefhosseini, S.R. Effect of high-dose vitamin D supplementation in combination with weight loss diet on glucose homeostasis, insulin resistance, and matrix metalloproteinases in obese subjects with vitamin D deficiency: A double-blind, placebo-controlled, randomized clinical trial. Appl. Physiol. Nutr. Metab., 2020, 45(10), 1092-1098.
[http://dx.doi.org/10.1139/apnm-2018-0773] [PMID: 31874050]
[93]
Wamberg, L.; Kampmann, U.; Stødkilde-Jørgensen, H.; Rejnmark, L.; Pedersen, S.B.; Richelsen, B. Effects of vitamin D supplementation on body fat accumulation, inflammation, and metabolic risk factors in obese adults with low vitamin D levels - results from a randomized trial. Eur. J. Intern. Med., 2013, 24(7), 644-649.
[http://dx.doi.org/10.1016/j.ejim.2013.03.005] [PMID: 23566943]
[94]
Cefalo, C.M.A.; Conte, C.; Sorice, G.P.; Moffa, S.; Sun, V.A.; Cinti, F.; Salomone, E.; Muscogiuri, G.; Brocchi, A.A.G.; Pontecorvi, A.; Mezza, T.; Giaccari, A. Effect of vitamin D supplementation on obesity-induced insulin resistance: A double-blind, randomized, placebo-controlled trial. Obesity (Silver Spring), 2018, 26(4), 651-657.
[http://dx.doi.org/10.1002/oby.22132] [PMID: 29504254]
[95]
Niroomand, M.; Fotouhi, A.; Irannejad, N.; Hosseinpanah, F. Does high-dose vitamin D supplementation impact insulin resistance and risk of development of diabetes in patients with pre-diabetes? A double-blind randomized clinical trial. Diabetes Res. Clin. Pract., 2019, 148, 1-9.
[http://dx.doi.org/10.1016/j.diabres.2018.12.008] [PMID: 30583032]
[96]
Bhatt, S.P.; Misra, A.; Pandey, R.M.; Upadhyay, A.D.; Gulati, S.; Singh, N. Vitamin D supplementation in overweight/obese Asian Indian women with prediabetes reduces glycemic measures and truncal subcutaneous fat: A 78 weeks randomized placebo-controlled trial (PREVENT-WIN Trial). Sci. Rep., 2020, 10(1), 1-13.
[http://dx.doi.org/10.1038/s41598-019-56904-y] [PMID: 31937856]
[97]
Ebadi, S.A.; Sharifi, L.; Rashidi, E.; Ebadi, S.S.; Khalili, S.; Sadeghi, S. Supplementation with vitamin D and insulin homeostasis in healthy overweight and obese adults: A randomized clinical trial. Obes. Res. Clin. Pract., 2021, 15(3), 256-261.
[http://dx.doi.org/10.1016/j.orcp.2021.03.004] [PMID: 33744225]
[98]
Safarpour, P.; Daneshi-Maskooni, M.; Vafa, M.; Nourbakhsh, M.; Janani, L.; Maddah, M. Vitamin D supplementation improves SIRT1, Irisin, and glucose indices in overweight or obese type 2 diabetic patients: A double-blind randomized placebo-controlled clinical trial. BMC Fam. Pract., 2020, 21(1), 1-10.
[http://dx.doi.org/10.1186/s12875-020-1096-3] [PMID: 31901226]
[99]
Bagheri, M.; Djazayery, A.; Qi, L.; Yekaninejad, M.S.; Chamari, M.; Naderi, M.; Ebrahimi, Z.; Koletzko, B.; Uhl, O.; Farzadfar, F. Effectiveness of vitamin D therapy in improving metabolomic biomarkers in obesity phenotypes: Two randomized clinical trials. Int. J. Obes., 2018, 42(10), 1782-1796.
[http://dx.doi.org/10.1038/s41366-018-0107-0] [PMID: 29892041]
[100]
Sukumar, D.; Shapses, S.A.; Schneider, S.H. Vitamin D supplementation during short-term caloric restriction in healthy overweight/obese older women: Effect on glycemic indices and serum osteocalcin levels. Mol. Cell. Endocrinol., 2015, 410, 73-77.
[http://dx.doi.org/10.1016/j.mce.2015.01.002] [PMID: 25576857]
[101]
Lerchbaum, E.; Trummer, C.; Theiler-Schwetz, V.; Kollmann, M.; Wölfler, M.; Pilz, S.; Obermayer-Pietsch, B. Effects of vitamin D supplementation on body composition and metabolic risk factors in men: A randomized controlled trial. Nutrients, 2019, 11(8), 1894.
[http://dx.doi.org/10.3390/nu11081894] [PMID: 31416155]
[102]
Mousa, A.; Naderpoor, N.; de Courten, M.P.; Teede, H.; Kellow, N.; Walker, K.; Scragg, R.; de Courten, B. Vitamin D supplementation has no effect on insulin sensitivity or secretion in vitamin D-deficient, overweight or obese adults: A randomized placebo-controlled trial. Am. J. Clin. Nutr., 2017, 105(6), 1372-1381.
[http://dx.doi.org/10.3945/ajcn.117.152736] [PMID: 28490514]
[103]
Agbaht, K.; Mercan, Y.; Kutlu, S.; Alpdemir, M.F.; Sezgin, T. Obesity with and without metabolic syndrome: Do vitamin D and thyroid autoimmunity have a role? Diabetes Res. Clin. Pract., 2014, 106(1), 27-34.
[http://dx.doi.org/10.1016/j.diabres.2014.08.001] [PMID: 25172520]
[104]
Naderpoor, N.; Mousa, A.; de Courten, M.; Scragg, R.; de Courten, B. The relationship between 25-hydroxyvitamin D concentration and liver enzymes in overweight or obese adults: Cross-sectional and interventional outcomes. J. Steroid Biochem. Mol. Biol., 2018, 177, 193-199.
[http://dx.doi.org/10.1016/j.jsbmb.2017.09.009] [PMID: 28899715]
[105]
DellaPenna, D. Progress in dissection and manipulation of vitamin E synthesis. Trends Plant Sci., 2005, 10(12), 574-579.
[http://dx.doi.org/10.1016/j.tplants.2005.10.007] [PMID: 16290217]
[106]
Reboul, E. Vitamin E bioavailability: Mechanisms of intestinal absorption in the spotlight. Antioxidants, 2017, 6(4), 1-11.
[http://dx.doi.org/10.3390/antiox6040095] [PMID: 29165370]
[107]
Wong, S.K.; Chin, K.Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. Vitamin E as a potential interventional treatment for metabolic syndrome: Evidence from animal and human studies. Front. Pharmacol., 2017, 8, 44.
[http://dx.doi.org/10.3389/fphar.2017.00444] [PMID: 29165370]
[108]
Scientific opinion on dietary reference values for vitamin E as α-tocopherol. EFSA J., 2015, 13(7), 4149.
[http://dx.doi.org/10.2903/j.efsa.2015.4149]
[109]
Hs, C.Y.; Wang, P.W.; Alalaiwe, A.; Lin, Z.C.; Fang, J.Y. Use of lipid nanocarriers to improve oral delivery of vitamin. Nutrients, 2019, 11(68), 1-30.
[http://dx.doi.org/10.3390/nu11010068]
[110]
Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med., 2014, 72, 76-90.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.035] [PMID: 24704972]
[111]
Azzi, A. Tocopherols, tocotrienols and tocomonoenols: Many similar molecules but only one vitamin E. Redox Biol., 2019, 26, 101259.
[http://dx.doi.org/10.1016/j.redox.2019.101259] [PMID: 31254734]
[112]
Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(1), 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[113]
Jones, D.P.; Go, Y.M. Redox compartmentalization and cellular stress. Diabetes Obes. Metab., 2010, 12(Suppl. 2), 116-125.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01266.x] [PMID: 21029308]
[114]
Amini, B.M.; Khorramruz, F.; Ghazizadeh, H.; Sahebi, R.; Bajgyran, M.M.; Ardabili, M.H.; Tayefi, M.; Darroudi, S.; Moohebati, M.; Bakavoli, H.A.; Mohammadi, A.; Reza Sadeghnia, H.; Ferns, G.A.; Javad Hoseini, S.J.; Mobarhan, M.G. Association between serum Vitamin E concentrations and the presence of metabolic syndrome: A population-based cohort study. Acta Biomed., 2021, 92(3), e2021047.
[http://dx.doi.org/10.23750/abm.v92i3.9173]
[115]
Younossi, Z.M.; Stepanova, M.; Afendy, M.; Fang, Y.; Younossi, Y.; Mir, H.; Srishord, M. Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin. Gastroenterol. Hepatol., 2011, 9(6), 524-530.e1.
[http://dx.doi.org/10.1016/j.cgh.2011.03.020] [PMID: 21440669]
[116]
Szanto, K.B.; Li, J.; Cordero, P.; Oben, J.A. Ethnic differences and heterogeneity in genetic and metabolic makeup contributing to nonalcoholic fatty liver disease. Diabetes Metab. Syndr. Obes., 2019, 12, 357-367.
[http://dx.doi.org/10.2147/DMSO.S182331] [PMID: 30936733]
[117]
Magosso, E.; Ansari, M.A.; Gopalan, Y.; Shuaib, I.L.; Wong, J.W.; Khan, N.A.; Abu Bakar, M.R.; Ng, B.H.; Yuen, K.H. Tocotrienols for normalisation of hepatic echogenic response in nonalcoholic fatty liver: A randomised placebo-controlled clinical trial. Nutr. J., 2013, 12(1), 166.
[http://dx.doi.org/10.1186/1475-2891-12-166] [PMID: 24373555]
[118]
Shah, S.; Shiekh, Y.; Lawrence, J.A.; Ezekwueme, F.; Alam, M.; Kunwar, S.; Gordon, D.K. A systematic review of effects of vitamin E on the cardiovascular system. Cureus, 2021, 13(6), e15616.
[http://dx.doi.org/10.7759/cureus.15616] [PMID: 34277234]
[119]
Wallert, M.; Börmel, L.; Lorkowski, S. Inflammatory diseases and vitamin E what do we know and where do we go? Mol. Nutr. Food Res., 2021, 65(1), e2000097.
[http://dx.doi.org/10.1002/mnfr.202000097] [PMID: 32692879]
[120]
Weinborn, V.; Valenzuela, C.; Olivares, M.; Arredondo, M.; Weill, R.; Pizarro, F. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans. Food Funct., 2017, 8(5), 1994-1999.
[http://dx.doi.org/10.1039/C6FO01833E] [PMID: 28485415]
[121]
Scientific opinion on dietary reference values for iron. EFSA J., 2015, 13(10), 4254.
[http://dx.doi.org/10.2903/j.efsa.2015.4254]
[122]
Zhao, L.; Zhang, X.; Shen, Y.; Fang, X.; Wang, Y.; Wang, F. Obesity and iron deficiency: A quantitative meta-analysis. Obes. Rev., 2015, 16(12), 1081-1093.
[http://dx.doi.org/10.1111/obr.12323] [PMID: 26395622]
[123]
Menzie, C.M.; Yanoff, L.B.; Denkinger, B.I.; McHugh, T.; Sebring, N.G.; Calis, K.A.; Yanovski, J.A. Obesity-related hypoferremia is not explained by differences in reported intake of heme and nonheme iron or intake of dietary factors that can affect iron absorption. J. Am. Diet. Assoc., 2008, 108(1), 145-148.
[http://dx.doi.org/10.1016/j.jada.2007.10.034] [PMID: 18156002]
[124]
Cepeda-Lopez, A.C.; Melse-Boonstra, A.; Zimmermann, M.B.; Herter-Aeberli, I. In overweight and obese women, dietary iron absorption is reduced and the enhancement of iron absorption by ascorbic acid is one-half that in normal-weight women. Am. J. Clin. Nutr., 2015, 102(6), 1389-1397.
[http://dx.doi.org/10.3945/ajcn.114.099218] [PMID: 26561622]
[125]
Fraenkel, P.G. Anemia of inflammation: A review. Med. Clin. North Am., 2017, 101(2), 285-296.
[http://dx.doi.org/10.1016/j.mcna.2016.09.005] [PMID: 28189171]
[126]
Stoffel, N.U.; El-Mallah, C.; Herter-Aeberli, I.; Bissani, N.; Wehbe, N.; Obeid, O.; Zimmermann, M.B. The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women. Int. J. Obes., 2020, 44(6), 1291-1300.
[http://dx.doi.org/10.1038/s41366-020-0522-x] [PMID: 31974407]
[127]
Alshwaiyat, N.M.; Ahmad, A.; Wan Hassan, W.M.R.; Al-Jamal, H.A.N. Association between obesity and iron deficiency. (Review). Exp. Ther. Med., 2021, 22(5), 1268.
[http://dx.doi.org/10.3892/etm.2021.10703] [PMID: 34594405]
[128]
Reinhart, R.A. Magnesium metabolism. A review with special reference to the relationship between intracellular content and serum levels. Arch. Intern. Med., 1988, 148(11), 2415-2420.
[http://dx.doi.org/10.1001/archinte.1988.00380110065013] [PMID: 3056314]
[129]
EFSA Panel on Dietetic Products. Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for magnesium. EFSA J., 2015, 13(7), 4186.
[http://dx.doi.org/10.2903/j.efsa.2015.4186]
[130]
Piuri, G.; Zocchi, M.; Della Porta, M.; Ficara, V.; Manoni, M.; Zuccotti, G.V.; Pinotti, L.; Maier, J.A.; Cazzola, R. Magnesium in obesity, metabolic syndrome, and type 2 diabetes. Nutrients, 2021, 13(2), 320.
[http://dx.doi.org/10.3390/nu13020320] [PMID: 33499378]
[131]
Reddy, P.; Edwards, L.R. Magnesium supplementation in vitamin D deficiency. Am. J. Ther., 2017, 26(1), e124-e132.
[PMID: 28471760]
[132]
Nielsen, F.H. Magnesium deficiency and increased inflammation: Current perspectives. J. Inflamm. Res., 2018, 11, 25-34.
[http://dx.doi.org/10.2147/JIR.S136742] [PMID: 29403302]
[133]
Lu, L.; Chen, C.; Yang, K.; Zhu, J.; Xun, P.; Shikany, J.M.; He, K. Magnesium intake is inversely associated with risk of obesity in a 30-year prospective follow-up study among American young adults. Eur. J. Nutr., 2020, 59(8), 3745-3753.
[http://dx.doi.org/10.1007/s00394-020-02206-3] [PMID: 32095867]
[134]
Durmaz, Z.H.; Demir, A.D.; Demir, O.; Tiryaki, M. A study to access the impact of magnesium deficiency in the obese individuals. East. J. Med. Sci., 2019, 4(1), 33-38.
[http://dx.doi.org/10.32677/EJMS.2019.v04.i01.007]
[135]
Veronese, N.; Dominguez, L.J.; Pizzol, D.; Demurtas, J.; Smith, L.; Barbagallo, M. Oral magnesium supplementation for treating glucose metabolism parameters in people with or at risk of diabetes: A systematic review and meta-analysis of double-blind randomized controlled trials. Nutrients, 2021, 13(11), 4074.
[http://dx.doi.org/10.3390/nu13114074] [PMID: 34836329]
[136]
Barbagallo, M.; Dominguez, L.J.; Galioto, A.; Ferlisi, A.; Cani, C.; Malfa, L.; Pineo, A.; Busardo’, A.; Paolisso, G. Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol. Aspects Med., 2003, 24(1-3), 39-52.
[http://dx.doi.org/10.1016/S0098-2997(02)00090-0] [PMID: 12537988]
[137]
Workinger, J.L.; Doyle, R.P.; Bortz, J. Challenges in the diagnosis of magnesium status. Nutrients, 2018, 10(9), 1202.
[http://dx.doi.org/10.3390/nu10091202] [PMID: 30200431]
[138]
Cavedon, E.; Manso, J.; Negro, I.; Censi, S.; Serra, R.; Busetto, L.; Vettor, R.; Plebani, M.; Pezzani, R.; Nacamulli, D.; Mian, C. Selenium supplementation, body mass composition, and leptin levels in patients with obesity on a balanced mildly hypocaloric diet: A pilot study. Int. J. Endocrinol., 2020, 2020, 4802739.
[http://dx.doi.org/10.1155/2020/4802739] [PMID: 32565792]
[139]
Combs, G.F., Jr Review article Selenium in global food systems. Br. J. Nutr., 2019, 85(5), 517-547.
[140]
Tinkov, A.A.; Ajsuvakova, O.P.; Filippini, T.; Zhou, J.C.; Lei, X.G.; Gatiatulina, E.R.; Michalke, B.; Skalnaya, M.G.; Vinceti, M.; Aschner, M.; Skalny, A.V. Selenium and selenoproteins in adipose tissue physiology and obesity. Biomolecules, 2020, 10(4), 658.
[http://dx.doi.org/10.3390/biom10040658] [PMID: 32344656]
[141]
Santos, A.C.; Passos, A.F.F.; Holzbach, L.C.; Cominetti, C. Selenium intake and glycemic control in young adults with normal-weight obesity syndrome. Front. Nutr., 2021, 8, 696325.
[http://dx.doi.org/10.3389/fnut.2021.696325] [PMID: 34490321]
[142]
Ogawa-Wong, A.N.; Berry, M.J.; Seale, L.A. Selenium and metabolic disorders: An emphasis on type 2 diabetes risk. Nutrients, 2016, 8(2), 80.
[http://dx.doi.org/10.3390/nu8020080] [PMID: 26861388]
[143]
Mahdavi Gorabi, A.; Hasani, M.; Djalalinia, S.; Zarei, M.; Ejtahed, H.; Abdar, M.E.; Asayesh, H.; Azimzadeh, M.; Qorbani, M.; Noroozi, M. Effect of selenium supplementation on glycemic indices: A meta-analysis of randomized controlled trials. J. Diabetes Metab. Disord., 2019, 18(2), 349-362.
[http://dx.doi.org/10.1007/s40200-019-00419-w] [PMID: 31890660]
[144]
Wang, Y.; Lin, M.; Gao, X.; Pedram, P.; Du, J.; Vikram, C.; Gulliver, W.; Zhang, H.; Sun, G. High dietary selenium intake is associated with less insulin resistance in the Newfoundland population. PLoS One, 2017, 12(4), e0174149.
[http://dx.doi.org/10.1371/journal.pone.0174149] [PMID: 28380029]
[145]
Retondario, A.; Fernandes, R.; Rockenbach, G.; Alves, M.A.; Bricarello, L.P.; Trindade, E.B.S.M.; Vasconcelos, F.A.G. Selenium intake and metabolic syndrome: A systematic review. Clin. Nutr., 2019, 38(2), 603-614.
[http://dx.doi.org/10.1016/j.clnu.2018.02.021] [PMID: 29530547]
[146]
Fukunaka, A.; Fujitani, Y. Role of zinc homeostasis in the pathogenesis of diabetes and obesity. Int. J. Mol. Sci., 2018, 19(2), 476.
[http://dx.doi.org/10.3390/ijms19020476] [PMID: 29415457]
[147]
Scientific opinion on dietary reference values for zinc. EFSA J., 2014, 12(10), 3844.
[http://dx.doi.org/10.2903/j.efsa.2014.3844]
[148]
Prasad, A.S. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp. Gerontol., 2008, 43(5), 370-377.
[http://dx.doi.org/10.1016/j.exger.2007.10.013] [PMID: 18054190]
[149]
Rios-Lugo, M.J.; Madrigal-Arellano, C.; Gaytán-Hernández, D.; Hernández-Mendoza, H.; Romero-Guzmán, E.T. Association of serum zinc levels in overweight and obesity. Biol. Trace Elem. Res., 2020, 198(1), 51-57.
[http://dx.doi.org/10.1007/s12011-020-02060-8] [PMID: 32020525]
[150]
Khorsandi, H.; Nikpayam, O.; Yousefi, R.; Parandoosh, M.; Hosseinzadeh, N.; Saidpour, A.; Ghorbani, A. Zinc supplementation improves body weight management, inflammatory biomarkers and insulin resistance in individuals with obesity: A randomized, placebo-controlled, double-blind trial. Diabetol. Metab. Syndr., 2019, 11, 101.
[http://dx.doi.org/10.1186/s13098-019-0497-8] [PMID: 31827626]
[151]
Ranasinghe, P.; Wathurapatha, W.S.; Ishara, M.H.; Jayawardana, R.; Galappatthy, P.; Katulanda, P.; Constantine, G.R. Effects of Zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutr. Metab. (Lond.), 2015, 12(1), 26.
[http://dx.doi.org/10.1186/s12986-015-0023-4] [PMID: 26244049]
[152]
Morais, S.J.B.; Severo, S.J.; Beserra, J.B.; Oiveira, A.R.S.; Cruz, K.J.C.; Melo, S.R.S.; Nascimento, G.V.R.; Macedo, G.F.S.; Marreiro, D.N. Association between cortisol, insulin resistance and zinc in obesity: A mini-review. Biol. Trace Elem. Res., 2019, 191(2), 323-330.
[http://dx.doi.org/10.1007/s12011-018-1629-y] [PMID: 30617901]
[153]
Knez, M.; Pantovic, A.; Zekovic, M.; Pavlovic, Z.; Glibetic, M.; Zec, M. Is there a link between zinc intake and status with plasma fatty acid profile and desaturase activities in dyslipidemic subjects? Nutrients, 2019, 12(1), 93.
[http://dx.doi.org/10.3390/nu12010093] [PMID: 31905662]
[154]
Suliburska, J.; Cofta, S.; Gajewska, E.; Kalmus, G.; Sobieska, M.; Samborski, W.; Krejpcio, Z.; Drzymala-Czyz, S.; Bogdanski, P. The evaluation of selected serum mineral concentrations and their association with insulin resistance in obese adolescents. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(17), 2396-2400.
[PMID: 24065235]
[155]
Banaszak, M.; Górna, I. Przysławski, J. Zinc and the innovative zinc-α2-glycoprotein adipokine play an important role in lipid metabolism: A critical review. Nutrients, 2021, 13(6), 2023.
[http://dx.doi.org/10.3390/nu13062023] [PMID: 34208404]
[156]
Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr., 2012, 3(4), 506-516.
[http://dx.doi.org/10.3945/an.112.002154] [PMID: 22797986]
[157]
Taguchi, M.; Douglas Beed, F.; Telemans, B. Fruit and vegetables - your dietary essentials. The International Year of Fruits and Vegetables, 2021. Food and Agriculture Organization of the United Nations, 2020, pp, 1-82.
[http://dx.doi.org/10.4060/cb2395en]
[158]
Amiot, M-J.; Latgé, C.; Plumey, L.; Raynal, S. Intake estimation of phytochemicals in a French well-balanced diet. Nutrients, 2021, 13(10), 3628.
[http://dx.doi.org/10.3390/nu13103628] [PMID: 34684628]
[159]
Poulsen, N.B.; Lambert, M.N.T.; Jeppesen, P.B. The effect of plant derived bioactive compounds on inflammation: A systematic review and meta-analysis. Mol. Nutr. Food Res., 2020, 64(18), e2000473.
[http://dx.doi.org/10.1002/mnfr.202000473] [PMID: 32761736]
[160]
Vitaglione, P.; Mennella, I.; Ferracane, R.; Rivellese, A.A.; Giacco, R.; Ercolini, D.; Gibbons, S.M.; La Storia, A.; Gilbert, J.A.; Jonnalagadda, S.; Thielecke, F.; Gallo, M.A.; Scalfi, L.; Fogliano, V. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: Role of polyphenols bound to cereal dietary fiber. Am. J. Clin. Nutr., 2015, 101(2), 251-261.
[http://dx.doi.org/10.3945/ajcn.114.088120] [PMID: 25646321]
[161]
Mullins, A.P.; Arjmandi, B.H. Health benefits of plant-based nutrition: Focus on beans in cardiometabolic diseases. Nutrients, 2021, 13(2), 519.
[http://dx.doi.org/10.3390/nu13020519] [PMID: 33562498]
[162]
Hermsdorff, H.H.; Zulet, M.Á.; Abete, I.; Martínez, J.A. A legume-based hypocaloric diet reduces proinflammatory status and improves metabolic features in overweight/obese subjects. Eur. J. Nutr., 2011, 50(1), 61-69.
[http://dx.doi.org/10.1007/s00394-010-0115-x] [PMID: 20499072]
[163]
Fu, C.; Jiang, Y.; Guo, J.; Su, Z. Natural products with anti-obesity effects and different mechanisms of action. J. Agric. Food Chem., 2016, 64(51), 9571-9585.
[http://dx.doi.org/10.1021/acs.jafc.6b04468] [PMID: 27931098]
[164]
Seyedan, A.; Alshawsh, M.A.; Alshagga, M.A.; Koosha, S.; Mohamed, Z. Medicinal plants and their inhibitory activities against pancreatic lipase: A review. Evid. Based Complement. Alternat. Med., 2015, 2015, 973143.
[http://dx.doi.org/10.1155/2015/973143] [PMID: 26640503]
[165]
Saad, B.; Ghareeb, B.; Kmail, A. Metabolic and epigenetics action mechanisms of antiobesity medicinal plants and phytochemicals. Evid. Based Complement. Alternat. Med., 2021, 2021, 9995903.
[http://dx.doi.org/10.1155/2021/9995903] [PMID: 34211580]
[166]
Joven, J.; Micol, V.; Segura-Carretero, A.; Alonso-Villaverde, C.; Menéndez, J.A. Polyphenols and the modulation of gene expression pathways: Can we eat our way out of the danger of chronic disease? Crit. Rev. Food Sci. Nutr., 2014, 54(8), 985-1001.
[http://dx.doi.org/10.1080/10408398.2011.621772] [PMID: 24499117]
[167]
Wang, S.; Moustaid-Moussa, N.; Chen, L.; Mo, H.; Shastri, A.; Su, R.; Bapat, P.; Kwun, I.; Shen, C.L. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem., 2014, 25(1), 1-18.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.001] [PMID: 24314860]
[168]
McCrea, C.E.; West, S.G.; Kris-Etherton, P.M.; Lambert, J.D.; Gaugler, T.L.; Teeter, D.L.; Sauder, K.A.; Gu, Y.; Glisan, S.L.; Skulas-Ray, A.C. Effects of culinary spices and psychological stress on postprandial lipemia and lipase activity: Results of a randomized crossover study and in vitro experiments. J. Transl. Med., 2015, 13, 7.
[http://dx.doi.org/10.1186/s12967-014-0360-5] [PMID: 25592751]
[169]
Kobayashi, M.; Magishi, N.; Matsushita, H.; Hashimoto, T.; Fujimoto, M.; Suzuki, M.; Tsuji, K.; Saito, M.; Inoue, E.; Yoshikawa, Y.; Matsuura, T. Hypolipidemic effect of Shoyu polysaccharides from soy sauce in animals and humans. Int. J. Mol. Med., 2008, 22(4), 565-570.
[http://dx.doi.org/10.3892/ijmm_00000057] [PMID: 18813866]
[170]
Barber, E.; Houghton, M.J.; Williamson, G. Flavonoids as human intestinal α-glucosidase inhibitors. Foods, 2021, 10(8), 1939.
[http://dx.doi.org/10.3390/foods10081939] [PMID: 34441720]
[171]
Dostal, A.M.; Samavat, H.; Espejo, L.; Arikawa, A.Y.; Stendell-Hollis, N.R.; Kurzer, M.S. Green tea extract and catechol-o-methyltransferase genotype modify fasting serum insulin and plasma adiponectin concentrations in a randomized controlled trial of overweight and obese postmenopausal women. J. Nutr., 2016, 146(1), 38-45.
[http://dx.doi.org/10.3945/jn.115.222414] [PMID: 26581683]
[172]
Barrett, M.L.; Udani, J.K. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): A review of clinical studies on weight loss and glycemic control. Nutr. J., 2011, 10, 24.
[http://dx.doi.org/10.1186/1475-2891-10-24] [PMID: 21414227]
[173]
Wang, S.; Chen, L.; Yang, H.; Gu, J.; Wang, J.; Ren, F. Regular intake of white kidney beans extract (Phaseolus vulgaris L.) induces weight loss compared to placebo in obese human subjects. Food Sci. Nutr., 2020, 8(3), 1315-1324.
[http://dx.doi.org/10.1002/fsn3.1299] [PMID: 32180941]
[174]
Nolan, R.; Shannon, O.M.; Robinson, N.; Joel, A.; Houghton, D.; Malcomson, F.C. It’s no has bean: A review of the effects of white kidney bean extract on body composition and metabolic health. Nutrients, 2020, 12(5), 1398.
[http://dx.doi.org/10.3390/nu12051398] [PMID: 32414090]
[175]
Pimpley, V.; Patil, S.; Srinivasan, K.; Desai, N.; Murthy, P.S. The chemistry of chlorogenic acid from green coffee and its role in attenuation of obesity and diabetes. Prep. Biochem. Biotechnol., 2020, 50(10), 969-978.
[http://dx.doi.org/10.1080/10826068.2020.1786699] [PMID: 32633686]
[176]
Peron, G.; Santarossa, D.; Voinovich, D.; Dall’Acqua, S.; Sut, S. Urine metabolomics shows an induction of fatty acids metabolism in healthy adult volunteers after supplementation with green coffee (Coffea robusta L.) bean extract. Phytomedicine, 2018, 38, 74-83.
[http://dx.doi.org/10.1016/j.phymed.2017.11.002] [PMID: 29425657]
[177]
Kumar, R.; Sharma, A.; Iqbal, M.S.; Srivastava, J.K. Therapeutic promises of chlorogenic acid with special emphasis on its anti-obesity property. Curr. Mol. Pharmacol., 2020, 13(1), 7-16.
[http://dx.doi.org/10.2174/1874467212666190716145210] [PMID: 31333144]
[178]
Oliveira, H.; Fernandes, A.F.; Brás, N.; Mateus, N.; de Freitas, V.; Fernandes, I. Anthocyanins as antidiabetic agents in vitro and in silico approaches of preventive and therapeutic effects. Molecules, 2020, 25(17), 3813.
[http://dx.doi.org/10.3390/molecules25173813] [PMID: 32825758]
[179]
Solverson, P.M.; Rumpler, W.V.; Leger, J.L.; Redan, B.W.; Ferruzzi, M.G.; Baer, D.J.; Castonguay, T.W.; Novotny, J.A. Blackberry feeding increases fat oxidation and improves insulin sensitivity in overweight and obese males. Nutrients, 2018, 10(8), 1048.
[http://dx.doi.org/10.3390/nu10081048] [PMID: 30096878]
[180]
Khajebishak, Y.; Payahoo, L.; Alivand, M.; Hamishehkar, H.; Mobasseri, M.; Ebrahimzadeh, V.; Alipour, M.; Alipour, B. Effect of pomegranate seed oil supplementation on the GLUT-4 gene expression and glycemic control in obese people with type 2 diabetes: A randomized controlled clinical trial. J. Cell. Physiol., 2019, 234(11), 19621-19628.
[http://dx.doi.org/10.1002/jcp.28561] [PMID: 30945297]
[181]
Hosseini, B.; Saedisomeolia, A.; Wood, L.G.; Yaseri, M.; Tavasoli, S. Effects of pomegranate extract supplementation on inflammation in overweight and obese individuals: A randomized controlled clinical trial. Complement. Ther. Clin. Pract., 2016, 22, 44-50.
[http://dx.doi.org/10.1016/j.ctcp.2015.12.003] [PMID: 26850805]
[182]
Rayalam, S.; Della-Fera, M.A.; Baile, C.A. Phytochemicals and regulation of the adipocyte life cycle. J. Nutr. Biochem., 2008, 19(11), 717-726.
[http://dx.doi.org/10.1016/j.jnutbio.2007.12.007] [PMID: 18495457]
[183]
Andersen, C.; Rayalam, S.; Della-Fera, M.A.; Baile, C.A. Phytochemicals and adipogenesis. Biofactors, 2010, 36(6), 415-422.
[http://dx.doi.org/10.1002/biof.115] [PMID: 20803522]
[184]
Li, Q.; Hagberg, C.E.; Silva Cascales, H.; Lang, S.; Hyvönen, M.T.; Salehzadeh, F.; Chen, P.; Alexandersson, I.; Terezaki, E.; Harms, M.J.; Kutschke, M.; Arifen, N.; Krämer, N.; Aouadi, M.; Knibbe, C.; Boucher, J.; Thorell, A.; Spalding, K.L. Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce. Nat. Med., 2021, 27(11), 1941-1953.
[http://dx.doi.org/10.1038/s41591-021-01501-8] [PMID: 34608330]
[185]
Williams, E.J.; Baines, K.J.; Berthon, B.S.; Wood, L.G. Effects of an encapsulated fruit and vegetable juice concentrate on obesity-induced systemic inflammation: A randomised controlled trial. Nutrients, 2017, 9(2), 116.
[http://dx.doi.org/10.3390/nu9020116] [PMID: 28208713]
[186]
Most, J.; Timmers, S.; Warnke, I.; Jocken, J.W.; van Boekschoten, M.; de Groot, P.; Bendik, I.; Schrauwen, P.; Goossens, G.H.; Blaak, E.E. Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: A randomized controlled trial. Am. J. Clin. Nutr., 2016, 104(1), 215-227.
[http://dx.doi.org/10.3945/ajcn.115.122937] [PMID: 27194304]
[187]
Casanova, E.; Salvadó, J.; Crescenti, A.; Gibert-Ramos, A. Epigallocatechin gallate modulates muscle homeostasis in type 2 diabetes and obesity by targeting energetic and redox pathways: A narrative review. Int. J. Mol. Sci., 2019, 20(3), 532.
[http://dx.doi.org/10.3390/ijms20030532] [PMID: 30691224]
[188]
Khan, N.A.; Edwards, C.G.; Thompson, S.V.; Hannon, B.A.; Burke, S.K.; Walk, A.D.M.; Mackenzie, R.W.A.; Reeser, G.E.; Fiese, B.H.; Burd, N.A.; Holscher, H.D. Avocado consumption, abdominal adiposity, and oral glucose tolerance among persons with overweight and obesity. J. Nutr., 2021, 151(9), 2513-2521.
[http://dx.doi.org/10.1093/jn/nxab187] [PMID: 34191028]
[189]
Roshanravan, N.; Mansouri, P.; Yang, G.; Ardeshirlarijani, E.; Ayati, M.H.; Namazi, N. The effects of supplementation with green tea on energy expenditure rate and thermal energy expenditure in adult individuals: A systematic review of clinical trials. J. Herb. Med., 2021, 28, 100455.
[http://dx.doi.org/10.1016/j.hermed.2021.100455]
[190]
Rondanelli, M.; Riva, A.; Petrangolini, G.; Allegrini, P.; Perna, S.; Faliva, M.A.; Peroni, G.; Naso, M.; Nichetti, M.; Perdoni, F.; Gasparri, C. Effect of acute and chronic dietary supplementation with green tea catechins on resting metabolic rate, energy expenditure and respiratory quotient: A systematic review. Nutrients, 2021, 13(2), 644.
[http://dx.doi.org/10.3390/nu13020644] [PMID: 33671139]
[191]
Kapoor, M.P.; Sugita, M.; Fukuzawa, Y.; Okubo, T. Physiological effects of epigallocatechin-3-gallate (EGCG) on energy expenditure for prospective fat oxidation in humans: A systematic review and meta-analysis. J. Nutr. Biochem., 2017, 43, 1-10.
[http://dx.doi.org/10.1016/j.jnutbio.2016.10.013] [PMID: 27883924]
[192]
Frühbeck, G.; Méndez-Giménez, L.; Fernández-Formoso, J.A.; Fernández, S.; Rodríguez, A. Regulation of adipocyte lipolysis. Nutr. Res. Rev., 2014, 27(1), 63-93.
[http://dx.doi.org/10.1017/S095442241400002X] [PMID: 24872083]
[193]
Lovegrove, A.; Edwards, C.H.; De Noni, I.; Patel, H.; El, S.N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P.J.; Ellis, P.R.; Shewry, P.R. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food Sci. Nutr., 2017, 57(2), 237-253.
[http://dx.doi.org/10.1080/10408398.2014.939263] [PMID: 25921546]
[194]
Ahmadi, S.; Mainali, R.; Nagpal, R.; Zeinoddin, M.S.; Zad, S.S.; Wang, S.; Deep, G.; Mishra, S.K.; Yadav, H. Dietary polysaccharides in the amelioration of gut microbiome dysbiosis and metabolic diseases. Obes. Control Ther., 2017, 4(3), 10.
[http://dx.doi.org/10.15226/2374-8354/4/2/00140] [PMID: 30474051]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy