Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Microbiome-Based Therapies in Parkinson’s Disease: Can Tuning the Microbiota Become a Viable Therapeutic Strategy?

Author(s): Adejoke Y. Onaolapo, Folusho O. Ojo, Anthony T. Olofinnade, Joshua Falade, Ismail A. Lawal and Olakunle J. Onaolapo*

Volume 22, Issue 9, 2023

Published on: 03 October, 2022

Page: [1355 - 1368] Pages: 14

DOI: 10.2174/1871527321666220903114559

open access plus

Abstract

Progressive neurodegenerative disorders such as Parkinson’s disease (PD) have continued to baffle medical science, despite strides in the understanding of their pathology. The inability of currently available therapies to halt disease progression is a testament to an incomplete understanding of pathways crucial to disease initiation, progression and management. Science has continued to link the activities and equilibrium of the gut microbiome to the health and proper functioning of brain neurons. They also continue to stir interest in the potential applications of technologies that may shift the balance of the gut microbiome towards achieving a favourable outcome in PD management. There have been suggestions that an improved understanding of the roles of the gut microbiota is likely to lead to the emergence of an era where their manipulation becomes a recognized strategy for PD management. This review examines the current state of our journey in the quest to understand how gut microbiota can influence several aspects of PD. We highlight the relationship between the gut microbiome/ microbiota and PD pathogenesis, as well as preclinical and clinical evidence evaluating the effect of postbiotics, probiotics and prebiotics in PD management. This is with a view to ascertaining if we are at the threshold of discovering the application of a usable tool in our quest for disease modifying therapies in PD.

Keywords: Alpha-synuclein, dietary fibre, gut-brain axis, prebiotics, postbiotics, synbiotics.

Graphical Abstract

[1]
Chen ZJ, Liang CY, Yang LQ, et al. Association of Parkinson’s disease with microbes and microbiological therapy. Front Cell Infect Microbiol 2021; 11: 619354.
[http://dx.doi.org/10.3389/fcimb.2021.619354] [PMID: 33763383]
[2]
Lorente-Picón M, Laguna A. New avenues for Parkinson’s disease therapeutics: Disease-modifying strategies based on the gut microbiota. Biomolecules 2021; 11(3): 433.
[http://dx.doi.org/10.3390/biom11030433] [PMID: 33804226]
[3]
Onaolapo OJ, Odeniyi AO, Jonathan SO, et al. An investigation of the anti-parkinsonism potential of Co-enzyme Q10 and Co-enzyme Q10/Levodopa-carbidopa combination in mice. Curr Aging Sci 2021; 14(1): 62-75.
[http://dx.doi.org/10.2174/1874609812666191023153724] [PMID: 31702498]
[4]
Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna) 2017; 124(8): 901-5.
[http://dx.doi.org/10.1007/s00702-017-1686-y] [PMID: 28150045]
[5]
Beitz JM. Parkinson s disease a review. Front Biosci (Schol Ed) 2014; S6(1): 65-74.
[http://dx.doi.org/10.2741/S415] [PMID: 24389262]
[6]
Onaolapo OJ, Omotoso SA, Olofinnade AT, Onaolapo AY. Anti-inflammatory, anti-oxidant and anti-lipaemic effects of daily dietary coenzyme-Q10 supplement in a mouse model of metabolic syndrome. Antiinflamm Antiallergy Agents Med Chem 2021; 20(4): 380-8.
[http://dx.doi.org/10.2174/1871523020666210427111328] [PMID: 33906592]
[7]
Perez-Pardo P, Kliest T, Dodiya HB, et al. The gut-brain axis in Parkinson’s disease: Possibilities for food-based therapies. Eur J Pharmacol 2017; 817: 86-95.
[http://dx.doi.org/10.1016/j.ejphar.2017.05.042] [PMID: 28549787]
[8]
Gao X, Chen H, Schwarzschild MA, Ascherio A. A prospective study of bowel movement frequency and risk of Parkinson’s disease. Am J Epidemiol 2011; 174(5): 546-51.
[http://dx.doi.org/10.1093/aje/kwr119] [PMID: 21719744]
[9]
Aarsland D, Creese B, Politis M, et al. Cognitive decline in Parkinson disease. Nat Rev Neurol 2017; 13(4): 217-31.
[http://dx.doi.org/10.1038/nrneurol.2017.27] [PMID: 28257128]
[10]
Kaiserova M, Grambalova Z, Kurcova S, et al. Premotor Parkinson’s disease: Overview of clinical symptoms and current diagnostic methods. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165(2): 103-12.
[http://dx.doi.org/10.5507/bp.2021.002] [PMID: 33542542]
[11]
Walker IM, Fullard ME, Morley JF, Duda JE. Olfaction as an early marker of Parkinson’s disease and Alzheimer’s disease. Handb Clin Neurol 2021; 182: 317-29.
[http://dx.doi.org/10.1016/B978-0-12-819973-2.00030-7] [PMID: 34266602]
[12]
Patel T, Chang F. Parkinson Society Canada. Parkinson’s disease guidelines for pharmacists. Can Pharm J 2014; 147(3): 161-70.
[http://dx.doi.org/10.1177/1715163514529740] [PMID: 24847369]
[13]
Olofinnade AT, Alawode A, Onaolapo AY, Onaolapo OJ. Lepidium Meyenii supplemented diet modulates neurobehavioral and biochemical parameters in mice fed high-fat-high-sugar diet. Endocr Metab Immune Disord Drug Targets 2021; 21(7): 1333-43.
[http://dx.doi.org/10.2174/1871530320666200821155005] [PMID: 32955007]
[14]
Onaolapo AY, Onaolapo AY, Olowe AO. The neurobehavioral implications of the brain and microbiota interaction. Front Biosci 2020; 25(2): 363-97.
[http://dx.doi.org/10.2741/4810] [PMID: 31585893]
[15]
Gazerani P. Probiotics for Parkinson’s disease. Int J Mol Sci 2019; 20(17): 4121.
[http://dx.doi.org/10.3390/ijms20174121] [PMID: 31450864]
[16]
Zeuner KE, Schäffer E, Hopfner F, Brüggemann N, Berg D. Progress of pharmacological approaches in Parkinson’s disease. Clin Pharmacol Ther 2019; 105(5): 1106-20.
[http://dx.doi.org/10.1002/cpt.1374] [PMID: 30661251]
[17]
Park A, Stacy M. Disease-modifying drugs in Parkinson’s disease. Drugs 2015; 75(18): 2065-71.
[http://dx.doi.org/10.1007/s40265-015-0497-4] [PMID: 26581672]
[18]
Perez-Lloret S, Otero-Losada M, Toblli JE, Capani F. Renin-angiotensin system as a potential target for new therapeutic approaches in Parkinson’s disease. Expert Opin Investig Drugs 2017; 26(10): 1163-73.
[http://dx.doi.org/10.1080/13543784.2017.1371133] [PMID: 28836869]
[19]
Ghaisas S, Maher J, Kanthasamy A. Gut microbiome in health and disease: Linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther 2016; 158: 52-62.
[http://dx.doi.org/10.1016/j.pharmthera.2015.11.012] [PMID: 26627987]
[20]
Cox LM, Abou-El-Hassan H, Maghzi AH, Vincentini J, Weiner HL. The sex-specific interaction of the microbiome in neurodegenerative diseases. Brain Res 2019; 1724: 146385.
[http://dx.doi.org/10.1016/j.brainres.2019.146385] [PMID: 31419428]
[21]
Chandra S, Alam MT, Dey J, et al. Healthy gut, healthy brain: The gut microbiome in neurodegenerative disorders. Curr Top Med Chem 2020; 20(13): 1142-53.
[http://dx.doi.org/10.2174/1568026620666200413091101] [PMID: 32282304]
[22]
Sánchez-Ferro Á, Rábano A, Catalán MJ, et al. In vivo gastric detection of α-synuclein inclusions in Parkinson’s disease. Mov Disord 2015; 30(4): 517-24.
[http://dx.doi.org/10.1002/mds.25988] [PMID: 25113060]
[23]
Gill SR, Pop M, DeBoy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312(5778): 1355-9.
[http://dx.doi.org/10.1126/science.1124234] [PMID: 16741115]
[24]
Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev 2012; 70 (Suppl 1): S38-44.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00493.x]
[25]
Fong W, Li Q, Yu J. Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer. Oncogene 2020; 39(26): 4925-43.
[http://dx.doi.org/10.1038/s41388-020-1341-1] [PMID: 32514151]
[26]
Kroemer G, Zitvogel L. The breakthrough of the microbiota. Nat Rev Immunol 2018; 18(2): 87-8.
[http://dx.doi.org/10.1038/nri.2018.4] [PMID: 29379189]
[27]
Mimee M, Citorik RJ, Lu TK. Microbiome therapeutics-advances and challenges. Adv Drug Deliv Rev. 2016; 105((Pt A)): 44-54.
[http://dx.doi.org/10.1016/j.addr.2016.04.032]
[28]
Wong AC, Levy M. New approaches to microbiome-based therapies. mSystems 2019; 4(3): e00122-19.
[http://dx.doi.org/10.1128/mSystems.00122-19] [PMID: 31164406]
[29]
Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015; 11(10): 577-91.
[http://dx.doi.org/10.1038/nrendo.2015.128] [PMID: 26260141]
[30]
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016; 7(3): 189-200.
[http://dx.doi.org/10.1080/19490976.2015.1134082] [PMID: 26963409]
[31]
Lee H, Shen H, Hwang I, et al. Targeted approaches for in situ gut microbiome manipulation. Genes 2018; 9(7): 351.
[http://dx.doi.org/10.3390/genes9070351] [PMID: 30002345]
[32]
Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health, Nutrients 2017; 9(9): 1021.
[http://dx.doi.org/10.3390/nu9091021] [PMID: 28914794]
[33]
Wei Y, Gao J, Kou Y, et al. Commensal bacteria impact a protozoan’s integration into the murine gut microbiota in a dietary nutrient-dependent manner. Appl Environ Microbiol 2020; 86(11): e00303-20.
[http://dx.doi.org/10.1128/AEM.00303-20] [PMID: 32198171]
[34]
Yadav M, Chauhan NS. Overview of the rules of the microbial engagement in the gut microbiome: A step towards microbiome therapeutics. J Appl Microbiol 2021; 130(5): 1425-41.
[http://dx.doi.org/10.1111/jam.14883] [PMID: 33022786]
[35]
Liu J, Wang F, Liu S, et al. Sodium butyrate exerts protective effect against Parkinson’s disease in mice via stimulation of glucagon like peptide-1. J Neurol Sci 2017; 381: 176-81.
[http://dx.doi.org/10.1016/j.jns.2017.08.3235] [PMID: 28991675]
[36]
Koss-Mikołajczyk I, Baranowska M, Todorovic V, et al. Prophylaxis of non-communicable diseases: Why fruits and vegetablesmay be better chemopreventive agents than dietary supplements based on isolated phytochemicals? Curr Pharm Des. 2019; 25(16): 1847-60.
[http://dx.doi.org/10.2174/1381612825666190702093301] [PMID: 31267861]
[37]
Onaolapo AY, Onaolapo OJ. Nutraceuticals and diet-based phytochemicals in type 2 diabetes mellitus: From whole food to components with defined roles and mechanisms. Curr Diabetes Rev 2019; 16(1): 12-25.
[http://dx.doi.org/10.2174/1573399814666181031103930] [PMID: 30378500]
[38]
Onaolapo OJ, Jegede OR, Adegoke O, Ayinde MO, Akeredolu OM, Onaolapo AY. Dietary zinc supplement militates against ketamine-induced behaviours by age-dependent modulation of oxidative stress and acetylcholinesterase activity in mice. Pharmacol Rep 2020; 72(1): 55-66.
[http://dx.doi.org/10.1007/s43440-019-00003-2] [PMID: 32016846]
[39]
Makkar R, Behl T, Bungau S, et al. Nutraceuticals in neurological disorders. Int J Mol Sci 2020; 21(12): 4424.
[http://dx.doi.org/10.3390/ijms21124424] [PMID: 32580329]
[40]
Olofinnade AT, Onaolapo AY, Onaolapo OJ, Olowe OA. Hazelnut modulates neurobehaviour and ameliorates ageing-induced oxidative stress, and caspase-3-mediated apoptosis in mice. Curr Aging Sci 2021; 14(2): 154-62.
[http://dx.doi.org/10.2174/1874609813666201228112349] [PMID: 33371863]
[41]
Olofinnade AT, Onaolapo AY, Onaolapo OJ, et al. Corylus avellana L. modulates neurobehaviour and brain chemistry following high-fat diet. Front Biosci 2021; 26(3): 537-51.
[http://dx.doi.org/10.2741/4906] [PMID: 33049682]
[42]
Olofinnade AT, Onaolapo AY, Onaolapo OJ. Concentration-dependent effects of dietary L-ascorbic acid fortification in the brain of healthy mice. Cent Nerv Syst Agents Med Chem 2021; 21(2): 104-13.
[http://dx.doi.org/10.2174/1871524921666210315130023] [PMID: 33719957]
[43]
Elkhalifa AEO, Alshammari E, Adnan M, et al. Okra (Abelmoschus Esculentus) as a potential dietary medicine with nutraceutical importance for sustainable health applications. Molecules 2021; 26(3): 696.
[http://dx.doi.org/10.3390/molecules26030696] [PMID: 33525745]
[44]
Romano KA, Vivas EI, Amador-Noguez D, Rey FE. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio 2015; 6(2): e02481-14.
[http://dx.doi.org/10.1128/mBio.02481-14] [PMID: 25784704]
[45]
Aron-Wisnewsky J, Clément K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol 2016; 12(3): 169-81.
[http://dx.doi.org/10.1038/nrneph.2015.191] [PMID: 26616538]
[46]
Yan H, Lu J, Wang Y, Gu W, Yang X, Yu J. Intake of total saponins and polysaccharides from Polygonatum kingianum affects the gut microbiota in diabetic rats. Phytomedicine 2017; 26: 45-54.
[http://dx.doi.org/10.1016/j.phymed.2017.01.007] [PMID: 28257664]
[47]
Walker AW, Ince J, Duncan SH, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011; 5(2): 220-30.
[http://dx.doi.org/10.1038/ismej.2010.118] [PMID: 20686513]
[48]
Davani-Davari D, Negahdaripour M, Karimzadeh I, et al. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 2019; 8(3): 92.
[http://dx.doi.org/10.3390/foods8030092] [PMID: 30857316]
[49]
Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr 1995; 125(6): 1401-12.
[http://dx.doi.org/10.1093/jn/125.6.1401] [PMID: 7782892]
[50]
Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr Res Rev 2004; 17(2): 259-75.
[http://dx.doi.org/10.1079/NRR200479] [PMID: 19079930]
[51]
de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 2008; 111: 1-66.
[http://dx.doi.org/10.1007/10_2008_097] [PMID: 18461293]
[52]
Gupta V, Garg R. Probiotics. Indian J Med Microbiol 2009; 27(3): 202-9.
[http://dx.doi.org/10.4103/0255-0857.53201] [PMID: 19584499]
[53]
van Zanten GC, Knudsen A, Röytiö H, et al. The effect of selected synbiotics on microbial composition and short-chain fatty acid production in a model system of the human colon. PLoS One 2012; 7(10): e47212.
[http://dx.doi.org/10.1371/journal.pone.0047212] [PMID: 23082149]
[54]
Żółkiewicz J, Marzec A, Ruszczyński M. Feleszko W. Postbioticsa step beyond pre- and probiotics. Nutrients 2020; 12(8): 2189.
[http://dx.doi.org/10.3390/nu12082189] [PMID: 32717965]
[55]
Wang J, Ye F, Cheng X, et al. The effects of LW-AFC on intestinal microbiome in senescence-accelerated mouse prone 8 strain, a mouse model of Alzheimer’s disease. J Alzheimers Dis 2016; 53(3): 907-19.
[http://dx.doi.org/10.3233/JAD-160138] [PMID: 27340848]
[56]
Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 2017; 17(12): 94.
[http://dx.doi.org/10.1007/s11910-017-0802-6] [PMID: 29039142]
[57]
Cui B, Su D, Li W, et al. Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: Implications for Alzheimer’s disease. J Neuroinflammation 2018; 15(1): 190.
[http://dx.doi.org/10.1186/s12974-018-1223-4] [PMID: 29933742]
[58]
Ambrosini YM, Borcherding D, Kanthasamy A, et al. The gut-brain axis in neurodegenerative diseases and relevance of the canine model: A review. Front Aging Neurosci 2019; 11: 130.
[http://dx.doi.org/10.3389/fnagi.2019.00130] [PMID: 31275138]
[59]
Onaolapo AY, Onaolapo OJ. Glutamate and depression: Reflecting a deepening knowledge of the gut and brain effects of a ubiquitous molecule. World J Psychiatry 2021; 11(7): 297-315.
[http://dx.doi.org/10.5498/wjp.v11.i7.297] [PMID: 34327123]
[60]
Deng SM, Chen CJ, Lin HL, Cheng IH. The beneficial effect of synbiotics consumption on Alzheimer’s disease mouse model via reducing local and systemic inflammation. IUBMB Life 2022; 74(8): 748-53.
[http://dx.doi.org/10.1002/iub.2589] [PMID: 34962691]
[61]
Peterson CT, Pourang A, Dhaliwal S, et al. Modulatory effects of triphala and manjistha dietary supplementation on human gut microbiota: A double-blind, randomized, placebo-controlled pilot study. J Altern Complement Med 2020; 26(11): 1015-24.
[http://dx.doi.org/10.1089/acm.2020.0148] [PMID: 32955913]
[62]
Sun M, Ma K, Wen J, et al. A review of the brain-gut-microbiome axis and the potential role of microbiota in Alzheimer’s Disease. J Alzheimers Dis 2020; 73(3): 849-65.
[http://dx.doi.org/10.3233/JAD-190872] [PMID: 31884474]
[63]
Usuda H, Okamoto T, Wada K. Leaky gut: Effect of dietary fiber and fats on microbiome and intestinal barrier. Int J Mol Sci 2021; 22(14): 7613.
[http://dx.doi.org/10.3390/ijms22147613] [PMID: 34299233]
[64]
Wu S, Liu X, Jiang R, Yan X, Ling Z. Roles and mechanisms of gut microbiota in patients With Alzheimer’s disease. Front Aging Neurosci 2021; 13: 650047.
[http://dx.doi.org/10.3389/fnagi.2021.650047] [PMID: 34122039]
[65]
Kincaid HJ, Nagpal R, Yadav H. Diet-microbiota-brain axis in Alzheimer’s disease. Ann Nutr Metab 2021; 77 (Suppl. 2): 21-7.
[http://dx.doi.org/10.1159/000515700] [PMID: 33906194]
[66]
Onaolapo OJ, Odeniyi AO, Onaolapo AY. Parkinson’s disease: Is there a role for dietary and herbal supplements? CNS Neurol Disord Drug Targets 2021; 20(4): 343-65.
[http://dx.doi.org/10.2174/1871527320666210218082954] [PMID: 33602107]
[67]
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7(1): 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[68]
Alonso R, Pisa D, Fernández-Fernández AM, Carrasco L. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front Aging Neurosci 2018; 10: 159.
[http://dx.doi.org/10.3389/fnagi.2018.00159] [PMID: 29881346]
[69]
Minato T, Maeda T, Fujisawa Y, et al. Progression of Parkinson’s disease is associated with gut dysbiosis: Two-year follow-up study. PLoS One 2017; 12(11): e0187307.
[http://dx.doi.org/10.1371/journal.pone.0187307] [PMID: 29091972]
[70]
Dogra N, Mani RJ, Katare DP. The gut-brain axis: Two ways signaling in Parkinson’s disease. Cell Mol Neurobiol 2022; 42(2): 315-32.
[http://dx.doi.org/10.1007/s10571-021-01066-7] [PMID: 33649989]
[71]
Caputi V, Giron M. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int J Mol Sci 2018; 19(6): 1689.
[http://dx.doi.org/10.3390/ijms19061689] [PMID: 29882798]
[72]
Hill-Burns EM, Debelius JW, Morton JT, et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 2017; 32(5): 739-49.
[http://dx.doi.org/10.1002/mds.26942] [PMID: 28195358]
[73]
Peterson CT, Sharma V, Uchitel S, et al. Prebiotic potential of herbal medicines used in digestive health and disease. J Altern Complement Med 2018; 24(7): 656-65.
[http://dx.doi.org/ 10.1089/acm.2017.0422] [PMID: 29565634]
[74]
Bonfili L, Cecarini V, Gogoi O, et al. Microbiota modulation as preventative and therapeutic approach in Alzheimer’s disease. FEBS J 2021; 288(9): 2836-55. 2020 Federation of European Biochemical Societies
[75]
La Rosa SL, Kachrimanidou V, Buffetto F, et al. Wood-derived dietary fibers promote beneficial human gut microbiota. MSphere 2019; 4(1): e00554-18.
[http://dx.doi.org/10.1128/mSphere.00554-18] [PMID: 30674645]
[76]
Peterson CT. Dysfunction of the microbiota-gut-brain axis in neurodegenerative disease: The promise of therapeutic modulation with prebiotics, medicinal herbs, probiotics, and synbiotics. J Evid Based Integr Med 2020; 25: 2515690-20957225.
[http://dx.doi.org/10.1177/2515690X20957225]
[77]
Brown EG, Goldman SM. Modulation of the microbiome in Parkinson’s disease: Diet, drug, stool transplant, and beyond. Neurotherapeutics 2020; 17: 1406-17.
[http://dx.doi.org/10.1007/s13311-020-00942-2]
[78]
Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 2018; 18(1): 83-90.
[http://dx.doi.org/10.1080/14737175.2018.1400909] [PMID: 29095058]
[79]
Arora K, Green M, Prakash S. The microbiome and Alzheimer’s disease: Potential and limitations of prebiotic, synbiotic, and probiotic formulations. Front Bioeng Biotechnol 2020; 8: 537847.
[http://dx.doi.org/10.3389/fbioe.2020.537847] [PMID: 33384986]
[80]
Savignac HM, Corona G, Mills H, et al. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem Int 2013; 63(8): 756-64.
[http://dx.doi.org/10.1016/j.neuint.2013.10.006] [PMID: 24140431]
[81]
Dong XL, Wang X, Liu F, et al. Polymannuronic acid prevents dopaminergic neuronal loss via brain-gut-microbiota axis in Parkinson’s disease model. Int J Biol Macromol 2020; 164: 994-1005.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.180] [PMID: 32710966]
[82]
Krishna G. Muralidhara. Oral supplements of inulin during gestation offsets rotenone-induced oxidative impairments and neurotoxicity in maternal and prenatal rat brain. Biomed Pharmacother 2018; 104: 751-62.
[http://dx.doi.org/10.1016/j.biopha.2018.05.107] [PMID: 29807225]
[83]
Chen D, Yang X, Yang J, et al. Prebiotic effect of fructooligosaccharides from Morinda officinalis on Alzheimer’s Disease in rodent models by targeting the microbiota-gut-brain axis. Front Aging Neurosci 2017; 9: 403.
[http://dx.doi.org/10.3389/fnagi.2017.00403] [PMID: 29276488]
[84]
Sun J, Liu S, Ling Z, et al. Fructooligosaccharides ameliorating cognitive deficits and neurodegeneration in APP/PS1 transgenic mice through modulating gut microbiota. J Agric Food Chem 2019; 67(10): 3006-17.
[http://dx.doi.org/10.1021/acs.jafc.8b07313] [PMID: 30816709]
[85]
Astarloa R, Mena MA, Sánchez V, de la Vega L, de Yébenes JG. Clinical and pharmacokinetic effects of a diet rich in insoluble fiber on Parkinson disease. Clin Neuropharmacol 1992; 15(5): 375-80.
[http://dx.doi.org/10.1097/00002826-199210000-00004]
[86]
Yadav SK, Prakash J, Chouhan S, et al. Comparison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Neurochem Int 2014; 65: 1-13.
[http://dx.doi.org/10.1016/j.neuint.2013.12.001] [PMID: 24333323]
[87]
Amro MS, Teoh SL, Norzana AG, Srijit D. The potential role of herbal products in the treatment of Parkinson’s disease. Clin Ter 2018; 169(1): e23-33.
[http://dx.doi.org/10.7417/T.2018.2050] [PMID: 29446788]
[88]
Onaolapo AY, Obelawo AY, Onaolapo OJ. Brain ageing, cognition and diet: A review of the emerging roles of food-based nootropics in mitigating age-related memory decline. Curr Aging Sci 2019; 12(1): 2-14.
[http://dx.doi.org/10.2174/1874609812666190311160754] [PMID: 30864515]
[89]
Olofinnade AT, Onaolapo TM, Oladimeji S, et al. An evaluation of the effects of pyridoxal phosphate in chlorpromazineinduced parkinsonism using mice. Cent Nerv Syst Agents Med Chem 2020; 20(1): 13-25.
[http://dx.doi.org/10.2174/1871524920666200120142508] [PMID: 31987026]
[90]
Chen TJ, Feng Y, Liu T, et al. Fisetin regulates gut microbiota and exerts neuroprotective effect on mouse model of Parkinson’s disease. Front Neurosci 2020; 14: 549037.
[http://dx.doi.org/10.3389/fnins.2020.549037] [PMID: 33381005]
[91]
Xu Y, Xie M, Xue J, et al. EGCG ameliorates neuronal and behavioral defects by remodeling gut microbiota and TotM expression in Drosophila models of Parkinson’s disease. FASEB J 2020; 34(4): 5931-50.
[http://dx.doi.org/10.1096/fj.201903125RR] [PMID: 32157731]
[92]
Khan N, Syed DN, Ahmad N, Mukhtar H. Fisetin: A dietary antioxidant for health promotion. Antioxid Redox Signal 2013; 19(2): 151-62.
[http://dx.doi.org/10.1089/ars.2012.4901] [PMID: 23121441]
[93]
Pal HC, Pearlman RL, Afaq F. Fisetin and its role in chronic diseases. Adv Exp Med Biol 2016; 928: 213-44.
[http://dx.doi.org/10.1007/978-3-319-41334-1_10] [PMID: 27671819]
[94]
Patel MY, Panchal HV, Ghribi O, Benzeroual KE. The neuroprotective effect of fisetin in the MPTP model of Parkinson’s disease. J Parkinsons Dis 2012; 2(4): 287-302.
[http://dx.doi.org/10.3233/JPD-012110] [PMID: 23938259]
[95]
Ahmad A, Ali T, Park HY, Badshah H, Rehman SU, Kim MO. Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol Neurobiol 2017; 54(3): 2269-85.
[http://dx.doi.org/10.1007/s12035-016-9795-4] [PMID: 26944285]
[96]
Maher P. Protective effects of fisetin and other berry flavonoids in Parkinson’s disease. Food Funct 2017; 8(9): 3033-42.
[http://dx.doi.org/10.1039/C7FO00809K] [PMID: 28714503]
[97]
Alikatte K, Palle S, Rajendra Kumar J, Pathakala N. Fisetin improved rotenone-induced behavioral deficits, oxidative changes, and mitochondrial dysfunctions in rat model of Parkinson’s disease. J Diet Suppl 2021; 18(1): 57-71.
[http://dx.doi.org/10.1080/19390211.2019.1710646] [PMID: 31992104]
[98]
Lin A, Zheng W, He Y, et al. Gut microbiota in patients with Parkinson’s disease in southern China. Parkinsonism Relat Disord 2018; 53: 82-8.
[http://dx.doi.org/10.1016/j.parkreldis.2018.05.007] [PMID: 29776865]
[99]
Weinreb O, Mandel S, Amit T, Youdim MBH. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 2004; 15(9): 506-16.
[http://dx.doi.org/10.1016/j.jnutbio.2004.05.002] [PMID: 15350981]
[100]
Tan LC, Koh WP, Yuan JM, et al. Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am J Epidemiol 2007; 167(5): 553-60.
[http://dx.doi.org/10.1093/aje/kwm338] [PMID: 18156141]
[101]
Bitu Pinto N, da Silva Alexandre B, Neves KRT, Silva AH, Leal LKAM, Viana GSB. Neuroprotective properties of the standardized extract from Camellia sinensis (Green Tea) and its main bioactive components, epicatechin and epigallocatechin gallate, in the 6-OHDA model of Parkinson’s disease. Evid Based Complement Alternat Med 2015; 2015: 1-12.
[http://dx.doi.org/10.1155/2015/161092] [PMID: 26167188]
[102]
Xu Q, Langley M, Kanthasamy AG, Reddy MB. Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson disease. J Nutr 2017; 147(10): 1926-31.
[http://dx.doi.org/10.3945/jn.117.255034] [PMID: 28835392]
[103]
Zhou T, Zhu M, Liang Z. (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson’s disease. Mol Med Rep 2018; 17(4): 4883-8.
[http://dx.doi.org/10.3892/mmr.2018.8470] [PMID: 29363729]
[104]
Cassani E, Privitera G, Pezzoli G, et al. Use of probiotics for the treatment of constipation in Parkinson’s disease patients. Minerva Gastroenterol Dietol 2011; 57(2): 117-21.
[PMID: 21587143]
[105]
Barichella M, Pacchetti C, Bolliri C, et al. Probiotics and prebiotic fiber for constipation associated with Parkinson disease. Neurology 2016; 87(12): 1274-80.
[http://dx.doi.org/10.1212/WNL.0000000000003127] [PMID: 27543643]
[106]
Ibrahim A, Ali RAR, Manaf MRA, et al. Multi-strain probiotics (Hexbio) containing MCP BCMC strains improved constipation and gut motility in Parkinson’s disease: A randomised controlled trial. PLoS One 2020; 15(12): e0244680.
[http://dx.doi.org/10.1371/journal.pone.0244680] [PMID: 33382780]
[107]
Tan AH, Lim SY, Chong KK, et al. Probiotics for constipation in Parkinson’s disease: A randomized placebo-controlled study. Neurology 2020; 96(5): 10.1212/WNL.0000000000010998.
[http://dx.doi.org/10.1212/WNL.0000000000010998] [PMID: 33046607]
[108]
Sun J, Li H, Jin Y, et al. Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson’s disease via gut microbiota-GLP-1 pathway. Brain Behav Immun 2021; 91: 703-15.
[http://dx.doi.org/10.1016/j.bbi.2020.10.014] [PMID: 33148438]
[109]
Sung HY, Park JW, Kim JS. The frequency and severity of gastrointestinal symptoms in patients with early Parkinson’s disease. J Mov Disord 2014; 7(1): 7-12.
[http://dx.doi.org/10.14802/jmd.14002] [PMID: 24926404]
[110]
Qin X, Li X, Xin Z, Li Z. Gastrointestinal dysfunction in Chinese patients with Parkinson’s disease. Parkinsons Dis 2019; 2019: 1-6.
[http://dx.doi.org/10.1155/2019/3897315] [PMID: 31531219]
[111]
Dimidi E, Christodoulides S, Scott SM, Whelan K. Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Adv Nutr 2017; 8(3): 484-94.
[http://dx.doi.org/10.3945/an.116.014407] [PMID: 28507013]
[112]
Srivastav S, Neupane S, Bhurtel S, et al. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J Nutr Biochem 2019; 69: 73-86.
[http://dx.doi.org/10.1016/j.jnutbio.2019.03.021] [PMID: 31063918]
[113]
Liao JF, Cheng YF, You ST, et al. Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson’s disease. Brain Behav Immun 2020; 90: 26-46.
[http://dx.doi.org/10.1016/j.bbi.2020.07.036] [PMID: 32739365]
[114]
Lu CS, Chang HC, Weng YH, Chen CC, Kuo YS, Tsai YC. The add-on effect of Lactobacillus plantarum PS128 in patients with Parkinson’s disease: A pilot study. Front Nutr 2021; 8: 650053.
[http://dx.doi.org/10.3389/fnut.2021.650053] [PMID: 34277679]
[115]
Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics-a review. J Food Sci Technol 2015; 52(12): 7577-87.
[http://dx.doi.org/10.1007/s13197-015-1921-1] [PMID: 26604335]
[116]
Malik JK, Ahmad AH, Kalpana S, Prakash A. Synbiotics: Safety and toxicity considerations. In: Gupta RC, Ed. Nutraceuticals. Cambridge, Massachusetts: Academic Press 2016; pp. 811-22.
[http://dx.doi.org/10.1016/B978-0-12-802147-7.00057-7]
[117]
Gyawali R, Nwamaioha N, Fiagbor R, Zimmerman T, Newman RH. the role of prebiotics in disease prevention and health promotion In Ronald RR, Victor RP, Eds. Interventions in Gastrointestinal Diseases. Cambridge, Massachusetts: Academic Press 2019; pp. 151-67.
[http://dx.doi.org/10.1016/B978-0-12-814468-8.00012-0]
[118]
Anzawa D, Mawatari T, Tanaka Y, et al. Effects of synbiotics containing Bifidobacterium animalis subsp. lactis GCL2505 and inulin on intestinal bifidobacteria: A randomized, placebocontrolled, crossover study. Food Sci Nutr 2019; 7(5): 1828-37.
[http://dx.doi.org/10.1002/fsn3.1033] [PMID: 31139397]
[119]
Neyrinck AM, Rodriguez J, Taminiau B, et al. Improvement of gastrointestinal discomfort and inflammatory status by a synbiotic in middle-aged adults: A double-blind randomized placebo-controlled trial. Sci Rep 2021; 11(1): 2627.
[http://dx.doi.org/10.1038/s41598-020-80947-1] [PMID: 33514774]
[120]
Cantu-Jungles TM, Rasmussen HE, Hamaker BR. Potential of prebiotic butyrogenic fibers in Parkinson’s Disease. Front Neurol 2019; 10: 663.
[http://dx.doi.org/10.3389/fneur.2019.00663] [PMID: 31281287]
[121]
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013; 54(9): 2325-40.
[http://dx.doi.org/10.1194/jlr.R036012] [PMID: 23821742]
[122]
Oleskin AV, Shenderov BA. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb Ecol Health Dis 2016; 27(0): 30971.
[http://dx.doi.org/10.3402/mehd.v27.30971] [PMID: 27389418]
[123]
Hoyles L, Snelling T, Umlai UK, et al. Microbiome–host systems interactions: Protective effects of propionate upon the blood–brain barrier. Microbiome 2018; 6(1): 55.
[http://dx.doi.org/10.1186/s40168-018-0439-y] [PMID: 29562936]
[124]
Unger MM, Spiegel J, Dillmann KU, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 2016; 32: 66-72.
[http://dx.doi.org/10.1016/j.parkreldis.2016.08.019] [PMID: 27591074]
[125]
Mirzaei R, Bouzari B, Hosseini-Fard SR, et al. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed Pharmacother 2021; 139: 111661.
[http://dx.doi.org/10.1016/j.biopha.2021.111661] [PMID: 34243604]
[126]
Zhou W, Bercury K, Cummiskey J, Luong N, Lebin J, Freed CR. Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease. J Biol Chem 2011; 286(17): 14941-51.
[http://dx.doi.org/10.1074/jbc.M110.211029] [PMID: 21372141]
[127]
St Laurent R, O’Brien LM, Ahmad ST. Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience 2013; 246: 382-90.
[http://dx.doi.org/10.1016/j.neuroscience.2013.04.037] [PMID: 23623990]
[128]
Liu J, Xu F, Nie Z, Shao L. Gut microbiota approach-a new strategy to treat Parkinson’s disease. Front Cell Infect Microbiol 2020; 10: 570658.
[http://dx.doi.org/10.3389/fcimb.2020.570658] [PMID: 33194809]
[129]
Val-Laillet D, Guérin S, Coquery N, et al. Oral sodium butyrate impacts brain metabolism and hippocampal neurogenesis, with limited effects on gut anatomy and function in pigs. FASEB J 2018; 32(4): 2160-71.
[http://dx.doi.org/10.1096/fj.201700547RR] [PMID: 29242276]
[130]
Dalile B, Vervliet B, Bergonzelli G, Verbeke K, Van Oudenhove L. Colon-delivered short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: A randomized, placebo-controlled trial. Neuropsychopharmacology 2020; 45(13): 2257-66.
[http://dx.doi.org/10.1038/s41386-020-0732-x] [PMID: 32521538]
[131]
Qiao CM, Sun MF, Jia XB, et al. Sodium butyrate exacerbates Parkinson’s disease by aggravating neuroinflammation and colonic inflammation in MPTP-Induced mice model. Neurochem Res 2020; 45(9): 2128-42.
[http://dx.doi.org/10.1007/s11064-020-03074-3] [PMID: 32556930]
[132]
He H, Xu H, Xu J, et al. Sodium Butyrate ameliorates gut microbiota dysbiosis in lupus-like mice. Front Nutr 2020; 7: 604283.
[http://dx.doi.org/10.3389/fnut.2020.604283] [PMID: 33262998]
[133]
Hou YF, Shan C, Zhuang SY, et al. Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a mouse model of Parkinson’s disease. Microbiome 2021; 9(1): 34.
[http://dx.doi.org/10.1186/s40168-020-00988-6]
[134]
Hou Y, Li X, Liu C, et al. Neuroprotective effects of short-chain fatty acids in MPTP induced mice model of Parkinson’s disease. Exp Gerontol 2021; 150: 111376.
[http://dx.doi.org/10.1016/j.exger.2021.111376] [PMID: 33905875]
[135]
Obri A, Khrimian L, Karsenty G, Oury F. Osteocalcin in the brain: From embryonic development to age-related decline in cognition. Nat Rev Endocrinol 2018; 14(3): 174-82.
[http://dx.doi.org/10.1038/nrendo.2017.181] [PMID: 29376523]
[136]
Shan C, Ghosh A, Guo X, et al. Roles for osteocalcin in brain signalling: Implications in cognition- and motor-related disorders. Mol Brain 2019; 12(1): 23.
[http://dx.doi.org/10.1186/s13041-019-0444-5] [PMID: 30909971]
[137]
Lin Y, Zhou M, Dai W, et al. Bone-derived factors as potential biomarkers for Parkinson’s disease. Front Aging Neurosci 2021; 13: 634213.
[http://dx.doi.org/10.3389/fnagi.2021.634213] [PMID: 33732138]
[138]
Guo X, Shan C, Hou Y, et al. Osteocalcin ameliorates motor dysfunction in a 6-Hydroxydopamine-Induced Parkinson’s disease rat model through AKT/GSK3β signaling. Front Mol Neurosci 2018; 11: 343.
[http://dx.doi.org/10.3389/fnmol.2018.00343] [PMID: 30319352]
[139]
Zhou ZL, Jia XB, Sun MF, et al. Neuroprotection of fasting mimicking diet on MPTP-Induced Parkinson’s disease mice via gut microbiota and metabolites. Neurotherapeutics 2019; 16(3): 741-60.
[http://dx.doi.org/10.1007/s13311-019-00719-2] [PMID: 30815845]
[140]
Kaźmierczak-Siedlecka K, Daca A, Fic M, van de Wetering T, Folwarski M, Makarewicz W. Therapeutic methods of gut microbiota modification in colorectal cancer management - fecal microbiota transplantation, prebiotics, probiotics, and synbiotics. Gut Microbes 2020; 11(6): 1518-30.
[http://dx.doi.org/10.1080/19490976.2020.1764309] [PMID: 32453670]
[141]
Li HY, Zhou DD, Gan RY, et al. Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: A narrative review. Nutrients 2021; 13(9): 3211.
[http://dx.doi.org/10.3390/nu13093211] [PMID: 34579087]
[142]
Kim KO, Gluck M. Fecal microbiota transplantation: An update on clinical practice. Clin Endosc 2019; 52(2): 137-43.
[http://dx.doi.org/10.5946/ce.2019.009] [PMID: 30909689]
[143]
Mehmood K, Moin A, Hussain T, et al. Can manipulation of gut microbiota really be transformed into an intervention strategy for cardiovascular disease management? Folia Microbiol (Praha) 2021; 66(6): 897-916.
[http://dx.doi.org/10.1007/s12223-021-00926-5] [PMID: 34699042]
[144]
Lyu M, Wang Y, Fan G, Wang X, Xu S, Zhu Y. Balancing herbal medicine and functional food for prevention and treatment of cardiometabolic diseases through modulating gut microbiota. Front Microbiol 2017; 8: 2146.
[http://dx.doi.org/10.3389/fmicb.2017.02146] [PMID: 29167659]
[145]
Vieira AT, Fukumori C, Ferreira CM. New insights into therapeutic strategies for gut microbiota modulation in inflammatory diseases. Clin Transl Immunology 2016; 5(6): e87.
[http://dx.doi.org/10.1038/cti.2016.38] [PMID: 27757227]
[146]
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007; 449(7164): 804-10.
[http://dx.doi.org/10.1038/nature06244] [PMID: 17943116]

© 2024 Bentham Science Publishers | Privacy Policy