Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Circular RNAs in Alzheimer’s Disease: A New Perspective of Diagnostic and Therapeutic Targets

Author(s): Omid Vakili, Pooria Asili, Zeinab Babaei, Maryam Mirahmad, Atoosa Keshavarzmotamed, Zatollah Asemi* and Alireza Mafi*

Volume 22, Issue 9, 2023

Published on: 27 September, 2022

Page: [1335 - 1354] Pages: 20

DOI: 10.2174/1871527321666220829164211

open access plus

conference banner
Abstract

Background: Circular RNAs (circRNAs), as covalently closed single-stranded noncoding RNA molecules, have been recently identified to involve in several biological processes, principally through targeting microRNAs. Among various neurodegenerative diseases (NDs), accumulating evidence has proposed key roles for circRNAs in the pathogenesis of Alzheimer’s disease (AD); although the exact relationship between these RNA molecules and AD progression is not clear, they have been believed to mostly act as miRNA sponges or gene transcription modulators through the correlating with multiple proteins, involved in the accumulation of Amyloid β (Aβ) peptides, as well as tau protein, as AD’s pathological hallmark. More interestingly, circRNAs have also been reported to play diagnostic and therapeutic roles during the AD progression.

Objective: The literature review indicated that circRNAs could essentially contribute to the onset and development of AD. Thus, in the current review, the circRNAs’ biogenesis and functions are addressed at first, and then the interplay between particular circRNAs and AD is comprehensively discussed. Eventually, the diagnostic and therapeutic significance of these noncoding RNAs is briefly highlighted.

Results: A large number of circRNAs are expressed in the brain. Thereby, these RNA molecules are noticed as potential regulators of neural functions in healthy circumstances, as well as in neurological disorders. Moreover, circRNAs have also been reported to have potential diagnostic and therapeutic capacities in relation to AD, the most prevalent ND.

Conclusion: CircRNAs have been shown to act as sponges for miRNAs, thereby regulating the function of related miRNAs, including oxidative stress, reduction of neuroinflammation, and the formation and metabolism of Aβ, all of which developed in AD. CircRNAs have also been proposed as biomarkers that have potential diagnostic capacities in AD. Despite these characteristics, the use of circRNAs as therapeutic targets and promising diagnostic biomarkers will require further investigation and characterization of the function of these RNA molecules in AD.

Keywords: Circular RNAs, Alzheimer's disease, MicroRNAs, nerve degeneration, aging, targeted therapy.

Graphical Abstract

[1]
Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sci 2018; 8(9): 177.
[http://dx.doi.org/10.3390/brainsci8090177] [PMID: 30223579]
[2]
Heemels MT. Neurodegenerative diseases. Nature 2016; 539(7628): 179-80.
[http://dx.doi.org/10.1038/539179a] [PMID: 27830810]
[3]
Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis Model Mech 2017; 10(5): 499-502.
[4]
Movahedpour A, Khatami SH, Khorsand M, et al. Exosomal noncoding RNAs: Key players in glioblastoma drug resistance. Mol Cell Biochem 2021; 476(11): 4081-92.
[http://dx.doi.org/10.1007/s11010-021-04221-2] [PMID: 34273059]
[5]
Abeliovich A, Gitler AD. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature 2016; 539(7628): 207-16.
[http://dx.doi.org/10.1038/nature20414] [PMID: 27830778]
[6]
Canter RG, Penney J, Tsai LH. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 2016; 539(7628): 187-96.
[http://dx.doi.org/10.1038/nature20412] [PMID: 27830780]
[7]
Taylor JP, Brown RH Jr, Cleveland DW. Decoding ALS: From genes to mechanism. Nature 2016; 539(7628): 197-206.
[http://dx.doi.org/10.1038/nature20413] [PMID: 27830784]
[8]
Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature 2016; 539(7628): 180-6.
[http://dx.doi.org/10.1038/nature20411] [PMID: 27830812]
[9]
Lauretti E, Dabrowski K, Praticò D. The neurobiology of non-coding RNAs and Alzheimer’s disease pathogenesis: Pathways, mechanisms and translational opportunities. Ageing Res Rev 2021; 71: 101425.
[http://dx.doi.org/10.1016/j.arr.2021.101425] [PMID: 34384901]
[10]
Battaglia S, Harrison BJ, Fullana MA. Does the human ventromedial prefrontal cortex support fear learning, fear extinction or both? A commentary on subregional contributions. Mol Psychiatry 2022; 27(2): 784-6.
[http://dx.doi.org/10.1038/s41380-021-01326-4] [PMID: 34667263]
[11]
Chen G, Xu T, Yan Y, et al. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38(9): 1205-35.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[12]
Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004; 430(7000): 631-9.
[http://dx.doi.org/10.1038/nature02621] [PMID: 15295589]
[13]
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 2020; 15(1): 40.
[http://dx.doi.org/10.1186/s13024-020-00391-7] [PMID: 32677986]
[14]
Tanaka M, Vécsei L. Editorial of Special Issue “Crosstalk between depression, anxiety, and dementia: Comorbidity in behavioral neurology and neuropsychiatry”. Multidisciplinary Digital Publishing Institute 2021; p. 517.
[15]
Idda ML, Munk R, Abdelmohsen K, Gorospe M. Noncoding RNAs in Alzheimer’s disease. Wiley Interdiscip Rev RNA 2018; 9(2): e1463.
[http://dx.doi.org/10.1002/wrna.1463] [PMID: 29327503]
[16]
Wang M, Qin L, Tang B. MicroRNAs in Alzheimer’s disease. Front Genet 2019; 10: 153.
[http://dx.doi.org/10.3389/fgene.2019.00153] [PMID: 30881384]
[17]
Peplow PV, Martinez B. MicroRNAs as diagnostic and therapeutic tools for Alzheimer’s disease: Advances and limitations. Neural Regen Res 2019; 14(2): 242-55.
[http://dx.doi.org/10.4103/1673-5374.244784] [PMID: 30531004]
[18]
Zhang Y, Zhao Y, Liu Y, Wang M, Yu W, Zhang L. Exploring the regulatory roles of circular RNAs in Alzheimer’s disease. Transl Neurodegener 2020; 9(1): 35.
[http://dx.doi.org/10.1186/s40035-020-00216-z] [PMID: 32951610]
[19]
Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 2015; 58(5): 870-85.
[http://dx.doi.org/10.1016/j.molcel.2015.03.027] [PMID: 25921068]
[20]
Westholm JO, Miura P, Olson S, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 2014; 9(5): 1966-80.
[http://dx.doi.org/10.1016/j.celrep.2014.10.062] [PMID: 25544350]
[21]
Akhter R. Circular RNA and Alzheimer’s disease. Circular RNAs 2018; 239-43.
[http://dx.doi.org/10.1007/978-981-13-1426-1_19]
[22]
Dube U, Del-Aguila JL, Li Z, et al. An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci 2019; 22(11): 1903-12.
[http://dx.doi.org/10.1038/s41593-019-0501-5] [PMID: 31591557]
[23]
Huang JL, Su M, Wu DP. Functional roles of circular RNAs in Alzheimer’s disease. Ageing Res Rev 2020; 60: 101058.
[http://dx.doi.org/10.1016/j.arr.2020.101058] [PMID: 32234545]
[24]
Alcendor DJ. Interactions between amyloid-β proteins and human brain pericytes: Implications for the pathobiology of Alzheimer’s disease. J Clin Med 2020; 9(5): 1490.
[http://dx.doi.org/10.3390/jcm9051490]
[25]
Lu Y, Tan L, Wang X. Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s disease. Neurosci Bull 2019; 35(5): 877-88.
[http://dx.doi.org/10.1007/s12264-019-00361-0] [PMID: 30887246]
[26]
Hippius H, Neundörfer G. The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 2003; 5(1): 101-8.
[http://dx.doi.org/10.31887/DCNS.2003.5.1/hhippius] [PMID: 22034141]
[27]
Lobello K, Ryan JM, Liu E, Rippon G, Black R. Targeting beta amyloid: A clinical review of immunotherapeutic approaches in Alzheimer’s disease. J Alzheimers Dis 2012; 2012: 628070.
[28]
Fan L, Mao C, Hu X, et al. New insights into the pathogenesis of Alzheimer’s disease. Front Neurol 2020; 10: 1312.
[http://dx.doi.org/10.3389/fneur.2019.01312] [PMID: 31998208]
[29]
Leandro P, Gomes C. Protein misfolding in conformational disorders: Rescue of folding defects and chemical chaperoning. Mini Rev Med Chem 2008; 8(9): 901-11.
[http://dx.doi.org/10.2174/138955708785132783] [PMID: 18691147]
[30]
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14: 5541-54.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[31]
Horwich A. Protein aggregation in disease: A role for folding intermediates forming specific multimeric interactions. J Clin Invest 2002; 110(9): 1221-32.
[http://dx.doi.org/10.1172/JCI0216781] [PMID: 12417558]
[32]
Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MG. Alzheimer’s disease: Risk factors and potentially protective measures. J Biomed Sci 2019; 26(1): 33.
[http://dx.doi.org/10.1186/s12929-019-0524-y] [PMID: 31072403]
[33]
Tappe A, Klugmann M, Luo C, et al. Synaptic scaffolding protein Homer1a protects against chronic inflammatory pain. Nat Med 2006; 12(6): 677-81.
[http://dx.doi.org/10.1038/nm1406] [PMID: 16715092]
[34]
Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol 2018; 17(11): 1016-24.
[http://dx.doi.org/10.1016/S1474-4422(18)30318-1] [PMID: 30353860]
[35]
Hansson O, Lehmann S, Otto M, Zetterberg H, Lewczuk P. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s Disease. Alzheimers Res Ther 2019; 11(1): 34.
[http://dx.doi.org/10.1186/s13195-019-0485-0] [PMID: 31010420]
[36]
Palmqvist S, Insel PS, Stomrud E, et al. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer’s disease. EMBO Mol Med 2019; 11(12): e11170.
[http://dx.doi.org/10.15252/emmm.201911170] [PMID: 31709776]
[37]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[38]
Shankar GM, Li S, Mehta TH, et al. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 2008; 14(8): 837-42.
[http://dx.doi.org/10.1038/nm1782] [PMID: 18568035]
[39]
Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 2016; 17(12): 777-92.
[http://dx.doi.org/10.1038/nrn.2016.141] [PMID: 27829687]
[40]
Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D. Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 2009; 62(6): 788-801.
[http://dx.doi.org/10.1016/j.neuron.2009.05.012] [PMID: 19555648]
[41]
Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 2008; 28(33): 8354-60.
[http://dx.doi.org/10.1523/JNEUROSCI.0616-08.2008] [PMID: 18701698]
[42]
Tejera D, Heneka MT. In vivo phagocytosis analysis of amyloid beta. Methods Mol Biol 2019; 2034: 287-92.
[http://dx.doi.org/10.1007/978-1-4939-9658-2_21] [PMID: 31392693]
[43]
Chiarini A, Armato U, Hu P, Dal Prà I. Danger-sensing/patten recognition receptors and neuroinflammation in Alzheimer’s disease. Int J Mol Sci 2020; 21(23): 9036.
[http://dx.doi.org/10.3390/ijms21239036] [PMID: 33261147]
[44]
Khan SS, Bloom GS. Tau: The center of a signaling nexus in Alzheimer’s disease. Front Neurosci 2016; 10: 31.
[http://dx.doi.org/10.3389/fnins.2016.00031] [PMID: 26903798]
[45]
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15(2): 73-88.
[http://dx.doi.org/10.1038/s41582-018-0116-6] [PMID: 30610216]
[46]
Vos SJB, Xiong C, Visser PJ, et al. Preclinical Alzheimer’s disease and its outcome: A longitudinal cohort study. Lancet Neurol 2013; 12(10): 957-65.
[http://dx.doi.org/10.1016/S1474-4422(13)70194-7] [PMID: 24012374]
[47]
Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: A follow-up study. Lancet Neurol 2006; 5(3): 228-34.
[http://dx.doi.org/10.1016/S1474-4422(06)70355-6] [PMID: 16488378]
[48]
Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: Current status and prospects for the future. J Intern Med 2018; 284(6): 643-63.
[http://dx.doi.org/10.1111/joim.12816] [PMID: 30051512]
[49]
Mattsson N, Schöll M, Strandberg O, et al. 18 F‐AV‐1451 and CSF T‐tau and P‐tau as biomarkers in Alzheimer’s disease EMBO Mol Med 2017; 9(9): 1212-23.
[http://dx.doi.org/10.15252/emmm.201707809] [PMID: 28743782]
[50]
Callahan LM, Vaules WA, Coleman PD. Quantitative decrease in synaptophysin message expression and increase in cathepsin D message expression in Alzheimer disease neurons containing neurofibrillary tangles. J Neuropathol Exp Neurol 1999; 58(3): 275-87.
[http://dx.doi.org/10.1097/00005072-199903000-00007] [PMID: 10197819]
[51]
Duyckaerts C, Delatour B, Potier MC. Classification and basic pathology of Alzheimer disease. Acta Neuropathol 2009; 118(1): 5-36.
[http://dx.doi.org/10.1007/s00401-009-0532-1] [PMID: 19381658]
[52]
Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 2005; 25(22): 5446-54.
[http://dx.doi.org/10.1523/JNEUROSCI.4637-04.2005] [PMID: 15930395]
[53]
Ohno S. So much “junk” DNA in our genome. Brookhaven Symp Biol 1972; 23: 366-70.
[PMID: 5065367]
[54]
Sana J, Faltejskova P, Svoboda M, Slaby O. Novel classes of non-coding RNAs and cancer. J Transl Med 2012; 10(1): 103.
[http://dx.doi.org/10.1186/1479-5876-10-103] [PMID: 22613733]
[55]
Amaral PP, Mattick JS. Noncoding RNA in development. Mamm Genome 2008; 19(7-8): 454-92.
[http://dx.doi.org/10.1007/s00335-008-9136-7] [PMID: 18839252]
[56]
Szymański M, Barciszewska MZ, Zywicki M, Barciszewski J. Noncoding RNA transcripts. J Appl Genet 2003; 44(1): 1-19.
[PMID: 12590177]
[57]
Bratkovič T, Rogelj B. Biology and applications of small nucleolar RNAs. Cell Mol Life Sci 2011; 68(23): 3843-51.
[http://dx.doi.org/10.1007/s00018-011-0762-y] [PMID: 21748470]
[58]
Liang J, Wen J, Huang Z, Chen X, Zhang B, Chu L. Small nucleolar RNAs: Insight into their function in cancer. Front Oncol 2019; 9(587): 587.
[http://dx.doi.org/10.3389/fonc.2019.00587] [PMID: 31338327]
[59]
Gusic M, Prokisch H. NcRNAs: New players in mitochondrial health and disease? Front Genet 2020; 11: 95.
[60]
Amin N, McGrath A, Chen YPP. Evaluation of deep learning in non-coding RNA classification. Nat Mach Intell 2019; 1(5): 246-56.
[http://dx.doi.org/10.1038/s42256-019-0051-2]
[61]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[62]
Mafi A, Aghadavod E, Mirhosseini N, Mobini M, Asemi Z. The effects of expression of different microRNAs on insulin secretion and diabetic nephropathy progression. J Cell Physiol 2019; 234(1): 42-50.
[http://dx.doi.org/10.1002/jcp.26895] [PMID: 30078212]
[63]
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136(4): 642-55.
[http://dx.doi.org/10.1016/j.cell.2009.01.035] [PMID: 19239886]
[64]
Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: The vanguard of genome defence. Nat Rev Mol Cell Biol 2011; 12(4): 246-58.
[http://dx.doi.org/10.1038/nrm3089] [PMID: 21427766]
[65]
Cabili MN, Dunagin MC, McClanahan PD, et al. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 2015; 16(1): 20.
[http://dx.doi.org/10.1186/s13059-015-0586-4] [PMID: 25630241]
[66]
Carlevaro-Fita J, Rahim A. Guigó R, Vardy LA, Johnson R. Cytoplasmic long noncoding RNAs are frequently bound to and degraded at ribosomes in human cells. RNA 2016; 22(6): 867-82.
[http://dx.doi.org/10.1261/rna.053561.115] [PMID: 27090285]
[67]
Fernandes J. Acuña S, Aoki J, Floeter-Winter L, Muxel S. Long non-coding RNAs in the regulation of gene expression: Physiology and disease. Noncoding RNA 2019; 5(1): 17.
[http://dx.doi.org/10.3390/ncrna5010017] [PMID: 30781588]
[68]
Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012; 7(2): e30733.
[http://dx.doi.org/10.1371/journal.pone.0030733] [PMID: 22319583]
[69]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141-57.
[http://dx.doi.org/10.1261/rna.035667.112] [PMID: 23249747]
[70]
Mafi A, Yadegar N, Salami M, Salami R, Vakili O, Aghadavod E. Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol Res Pract 2021; 227: 153618.
[http://dx.doi.org/10.1016/j.prp.2021.153618] [PMID: 34649056]
[71]
Dorostgou Z, Yadegar N, Dorostgou Z, Khorvash F, Vakili O. Novel insights into the role of circular RNAs in Parkinson disease: An emerging renaissance in the management of neurodegenerative diseases. J Neurosci Res 2022. Online ahead of Print
[72]
Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol 2015; 12(4): 381-8.
[http://dx.doi.org/10.1080/15476286.2015.1020271] [PMID: 25746834]
[73]
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019; 20(11): 675-91.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[74]
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell 2014; 159(1): 134-47.
[http://dx.doi.org/10.1016/j.cell.2014.09.001] [PMID: 25242744]
[75]
Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev 2014; 28(20): 2233-47.
[http://dx.doi.org/10.1101/gad.251926.114] [PMID: 25281217]
[76]
Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014; 56(1): 55-66.
[http://dx.doi.org/10.1016/j.molcel.2014.08.019] [PMID: 25242144]
[77]
Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015; 160(6): 1125-34.
[http://dx.doi.org/10.1016/j.cell.2015.02.014] [PMID: 25768908]
[78]
Errichelli L, Dini Modigliani S, Laneve P, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun 2017; 8(1): 14741.
[http://dx.doi.org/10.1038/ncomms14741] [PMID: 28358055]
[79]
Ivanov A, Memczak S, Wyler E, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 2015; 10(2): 170-7.
[http://dx.doi.org/10.1016/j.celrep.2014.12.019] [PMID: 25558066]
[80]
Barrett SP, Wang PL, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. eLife 2015; 4: e07540.
[http://dx.doi.org/10.7554/eLife.07540] [PMID: 26057830]
[81]
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell 2013; 51(6): 792-806.
[http://dx.doi.org/10.1016/j.molcel.2013.08.017] [PMID: 24035497]
[82]
Moreno-García L , López-Royo T, Calvo AC, et al. Competing endogenous RNA networks as biomarkers in neurodegenerative diseases. Int J Mol Sci 2020; 21(24): 9582.
[http://dx.doi.org/10.3390/ijms21249582] [PMID: 33339180]
[83]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495(7441): 384-8.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[84]
Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015; 22(3): 256-64.
[http://dx.doi.org/10.1038/nsmb.2959] [PMID: 25664725]
[85]
Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 2017; 66(1): 22-37.
[http://dx.doi.org/10.1016/j.molcel.2017.02.017]
[86]
Meyer KD, Patil DP, Zhou J, et al. 5′ UTR m6A promotes cap-independent translation. Cell 2015; 163(4): 999-1010.
[http://dx.doi.org/10.1016/j.cell.2015.10.012] [PMID: 26593424]
[87]
Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. EMBO J 2019; 38(16): e100836.
[http://dx.doi.org/10.15252/embj.2018100836] [PMID: 31343080]
[88]
Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics 2020; 10(8): 3503-17.
[http://dx.doi.org/10.7150/thno.42174] [PMID: 32206104]
[89]
Zeng Y, Du WW, Wu Y, et al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 2017; 7(16): 3842-55.
[http://dx.doi.org/10.7150/thno.19764] [PMID: 29109781]
[90]
Chen N, Zhao G, Yan X, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol 2018; 19(1): 218.
[http://dx.doi.org/10.1186/s13059-018-1594-y] [PMID: 30537986]
[91]
Gu Q, Liu H, Ma J, Yuan J, Li X, Qiao L. A narrative review of circular RNAs in brain development and diseases of preterm infants. Front Pediatr 2021; 9: 706012.
[http://dx.doi.org/10.3389/fped.2021.706012] [PMID: 34621711]
[92]
Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One 2015; 10(10): e0141214.
[http://dx.doi.org/10.1371/journal.pone.0141214] [PMID: 26485708]
[93]
Venø MT, Hansen TB, Venø ST, et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development Genome Biol 2015; 16(1): 245.
[http://dx.doi.org/ 10.1186/s13059-015-0801-3] [PMID: 26541409]
[94]
Guerra BS, Lima J, Araujo BHS, et al. Biogenesis of circular RNAs and their role in cellular and molecular phenotypes of neurological disorders. Semin Cell Dev Biol 2021; 114: 1-10.
[http://dx.doi.org/10.1016/j.semcdb.2020.08.003] [PMID: 32893132]
[95]
You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 2015; 18(4): 603-10.
[http://dx.doi.org/10.1038/nn.3975] [PMID: 25714049]
[96]
Xia S, Feng J, Lei L, et al. Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief Bioinform 2017; 18(6): 984-92.
[PMID: 27543790]
[97]
Dang Y, Yan L, Hu B, et al. Tracing the expression of circular RNAs in human pre-implantation embryos. Genome Biol 2016; 17(1): 130.
[http://dx.doi.org/10.1186/s13059-016-0991-3] [PMID: 27315811]
[98]
Liu Z, Ran Y, Tao C, Li S, Chen J, Yang E. Detection of circular RNA expression and related quantitative trait loci in the human dorsolateral prefrontal cortex. Genome Biol 2019; 20(1): 99.
[http://dx.doi.org/10.1186/s13059-019-1701-8] [PMID: 31109370]
[99]
Cai H, Li Y, Niringiyumukiza JD, Su P, Xiang W. Circular RNA involvement in aging: An emerging player with great potential. Mech Ageing Dev 2019; 178: 16-24.
[http://dx.doi.org/10.1016/j.mad.2018.11.002] [PMID: 30513309]
[100]
Thomas B, Beal MF. Parkinson’s disease. Hum Mol Genet 2007; 16(2): R183-94.
[101]
Lim KL, Dawson VL, Dawson TM. The cast of molecular characters in Parkinson’s disease: Felons, conspirators, and suspects. Ann N Y Acad Sci 2003; 991(1): 80-92.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb07465.x] [PMID: 12846976]
[102]
Kragh CL, Ubhi K, Wyss-Corey T, Masliah E. Autophagy in dementias. Brain Pathol 2012; 22(1): 99-109.
[http://dx.doi.org/10.1111/j.1750-3639.2011.00545.x] [PMID: 22150925]
[103]
McMillan KJ, Murray TK, Bengoa-Vergniory N, et al. Loss of MicroRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo. Mol Ther 2017; 25(10): 2404-14.
[http://dx.doi.org/10.1016/j.ymthe.2017.08.017]
[104]
Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 2009; 10(12): 1252-9.
[http://dx.doi.org/10.1038/ni.1798] [PMID: 19838199]
[105]
Zurawska A, Mycko MP, Selmaj KW. Circular RNAs as a novel layer of regulatory mechanism in multiple sclerosis. J Neuroimmunol 2019; 334: 576971.
[http://dx.doi.org/10.1016/j.jneuroim.2019.576971] [PMID: 31163273]
[106]
Iparraguirre L. Muñoz-Culla M, Prada-Luengo I, Castillo-Triviño T, Olascoaga J, Otaegui D. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Hum Mol Genet 2017; 26(18): 3564-72.
[http://dx.doi.org/10.1093/hmg/ddx243] [PMID: 28651352]
[107]
Oberacher H, Whitley G, Berger B. Evaluation of the sensitivity of the ‘Wiley registry of tandem mass spectral data, MSforID’ with MS/MS data of the ‘NIST/NIH/EPA mass spectral library’. J Mass Spectrom 2013; 48(4): 487-96.
[http://dx.doi.org/10.1002/jms.3184] [PMID: 23584942]
[108]
Gong GH, An FM, Wang Y, Bian M, Wang D, Wei CX. Comprehensive circular RNA profiling reveals the regulatory role of the CircRNA-0067835/miR-155 pathway in temporal lobe epilepsy. Cell Physiol Biochem 2018; 51(3): 1399-409.
[109]
Li J, Lin H, Sun Z, et al. High-throughput data of circular RNA profiles in human temporal cortex tissue reveals novel insights into temporal lobe epilepsy. Cell Physiol Biochem 2018; 45(2): 677-91.
[http://dx.doi.org/10.1159/000487161] [PMID: 29428937]
[110]
Zheng D, Li M, Li G, et al. Circular RNA circ_DROSHA alleviates the neural damage in a cell model of temporal lobe epilepsy through regulating miR-106b-5p/MEF2C axis. Cell Signal 2021; 80: 109901.
[http://dx.doi.org/10.1016/j.cellsig.2020.109901] [PMID: 33370579]
[111]
Gomes-Duarte A, Bauer S. Venø MT, et al. Enrichment of circular RNA expression deregulation at the transition to recurrent spontaneous seizures in experimental temporal lobe epilepsy. Front Genet 2021; 12: 627907.
[http://dx.doi.org/10.3389/fgene.2021.627907] [PMID: 33584828]
[112]
Barrett SP, Salzman J. Circular RNAs: Analysis, expression and potential functions. Development 2016; 143(11): 1838-47.
[http://dx.doi.org/10.1242/dev.128074] [PMID: 27246710]
[113]
Shao Y, Chen Y. Roles of circular RNAs in neurologic disease. Front Mol Neurosci 2016; 9: 25.
[http://dx.doi.org/10.3389/fnmol.2016.00025] [PMID: 27147959]
[114]
Salami R, Salami M, Mafi A, Vakili O, Asemi Z. Circular RNAs and glioblastoma multiforme: Focus on molecular mechanisms. Cell Commun Signal 2022; 20(1): 13.
[http://dx.doi.org/10.1186/s12964-021-00809-9] [PMID: 35090496]
[115]
Zhang F, Mai SR, Zhang L. Circ-ZNF264 promotes the growth of glioma cells by upregulating the expression of miR-4493 target gene apelin. J Mol Neurosci 2019; 69(1): 75-82.
[http://dx.doi.org/10.1007/s12031-019-01334-8]
[116]
Long N, Chu L, Jia J, et al. CircPOSTN/miR-361-5p/TPX2 axis regulates cell growth, apoptosis and aerobic glycolysis in glioma cells. Cancer Cell Int 2020; 20(1): 374.
[http://dx.doi.org/10.1186/s12935-020-01454-x] [PMID: 32774168]
[117]
Battaglia S. Neurobiological advances of learned fear in humans. Adv Clin Exp Med 2022; 31(3): 217-21.
[http://dx.doi.org/10.17219/acem/146756] [PMID: 35195964]
[118]
Yang H, Wang H, Shang H, et al. Circular RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer’s disease. Cell Cycle 2019; 18(18): 2197-214.
[http://dx.doi.org/10.1080/15384101.2019.1629773] [PMID: 31373242]
[119]
Cheng Q, Cao X, Xue L, Xia L, Xu Y. CircPRKCI-miR-545/589-E2F7 axis dysregulation mediates hydrogen peroxide-induced neuronal cell injury. Biochem Biophys Res Commun 2019; 514(2): 428-35.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.131] [PMID: 31053300]
[120]
Zhang N, Gao Y, Yu S, Sun X, Shen K. Berberine attenuates Aβ42-induced neuronal damage through regulating circHDAC9/miR-142-5p axis in human neuronal cells. Life Sci 2020; 252: 117637.
[http://dx.doi.org/10.1016/j.lfs.2020.117637] [PMID: 32251633]
[121]
Diling C, Yinrui G, Longkai Q, et al. Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding dynamin-1 and Adaptor protein 2 B1 in AD-like mice. Aging (Albany NY) 2019; 11(24): 12002-31.
[http://dx.doi.org/10.18632/aging.102529] [PMID: 31860870]
[122]
Zhao Y, Alexandrov P, Jaber V, Lukiw W. Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer’s Disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7). Genes (Basel) 2016; 7(12): 116.
[http://dx.doi.org/10.3390/genes7120116] [PMID: 27929395]
[123]
Shi Z, Zhang K, Chen T, et al. Transcriptional factor ATF3 promotes liver fibrosis via activating hepatic stellate cells. Cell Death Dis 2020; 11(12): 1066.
[http://dx.doi.org/10.1038/s41419-020-03271-6] [PMID: 33311456]
[124]
Guo Z, Cao Q, Zhao Z, Song C. Biogenesis, features, functions, and disease relationships of a specific circular RNA: CDR1as. Aging Dis 2020; 11(4): 1009-20.
[http://dx.doi.org/10.14336/AD.2019.0920] [PMID: 32765960]
[125]
Guglielmotto M, Monteleone D, Boido M, et al. Aβ1-42-mediated down-regulation of Uch-L1 is dependent on NF-κB activation and impaired BACE1 lysosomal degradation. Aging Cell 2012; 11(5): 834-44.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00854.x] [PMID: 22726800]
[126]
Shi Z, Chen T, Yao Q, et al. The circular RNA ciRS ‐7 promotes APP and BACE 1 degradation in an NF ‐κB‐dependent manner. FEBS J 2017; 284(7): 1096-109.
[http://dx.doi.org/10.1111/febs.14045] [PMID: 28296235]
[127]
Zhang H, Sun Y, Hu R, et al. The regulation of the UCH-L1 gene by transcription factor NF-κB in podocytes. Cell Signal 2013; 25(7): 1574-85.
[http://dx.doi.org/10.1016/j.cellsig.2013.03.018] [PMID: 23567262]
[128]
Choi J, Levey AI, Weintraub ST, et al. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol Chem 2004; 279(13): 13256-64.
[http://dx.doi.org/10.1074/jbc.M314124200] [PMID: 14722078]
[129]
Chen CH, Zhou W, Liu S, et al. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 2012; 15(1): 77-90.
[http://dx.doi.org/10.1017/S1461145711000149] [PMID: 21329555]
[130]
WJ L Circular RNA (circRNA) in Alzheimer’s disease (AD) Front Genet 2013; 4(307): 103389.
[131]
Yang H, Wang H, Shu Y, Li X. MiR-103 promotes neurite outgrowth and suppresses cells apoptosis by targeting prostaglandin-endoperoxide synthase 2 in cellular models of Alzheimer’s disease. Front Cell Neurosci 2018; 12: 91.
[http://dx.doi.org/10.3389/fncel.2018.00091] [PMID: 29674956]
[132]
Wang P, Guan PP, Wang T, Yu X, Guo JJ, Wang ZY. Aggravation of Alzheimer’s disease due to the COX‐2‐mediated reciprocal regulation of IL ‐1β and A β between glial and neuron cells. Aging Cell 2014; 13(4): 605-15.
[http://dx.doi.org/10.1111/acel.12209] [PMID: 24621265]
[133]
Yao J, Hennessey T, Flynt A, Lai E, Beal MF, Lin MT. MicroRNA-related cofilin abnormality in Alzheimer’s disease. PLoS One 2010; 5(12): e15546.
[http://dx.doi.org/10.1371/journal.pone.0015546] [PMID: 21179570]
[134]
Liu CM, Wang RY. Saijilafu, Jiao ZX, Zhang BY, Zhou FQ. MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration. Genes Dev 2013; 27(13): 1473-83.
[http://dx.doi.org/10.1101/gad.209619.112] [PMID: 23796896]
[135]
Song J, Kim YK. Identification of the role of miR-142-5p in Alzheimer’s disease by comparative bioinformatics and cellular analysis. Front Mol Neurosci 2017; 10: 227.
[http://dx.doi.org/10.3389/fnmol.2017.00227] [PMID: 28769761]
[136]
Kong C, Jia L, Jia J. γ-mangostin attenuates amyloid-β42-induced neuroinflammation and oxidative stress in microglia-like BV2cells via the mitogen-activated protein kinases signaling pathway.Eur J Pharmacol 2022; 917: 174744.
[http://dx.doi.org/10.1016/j.ejphar.2022.174744] [PMID: 34998794]
[137]
Lammens T, Li J, Leone G, De Veylder L. Atypical E2Fs: New players in the E2F transcription factor family. Trends Cell Biol 2009; 19(3): 111-8.
[http://dx.doi.org/10.1016/j.tcb.2009.01.002] [PMID: 19201609]
[138]
Liu B, Shats I, Angus SP, Gatza ML, Nevins JR. Interaction of E2F7 transcription factor with E2F1 and C-terminal-binding protein (CtBP) provides a mechanism for E2F7-dependent transcription repression. J Biol Chem 2013; 288(34): 24581-9.
[http://dx.doi.org/10.1074/jbc.M113.467506] [PMID: 23853115]
[139]
Ma N, Pan J, Wen Y, Wu Q, Yu B, Chen X, et al. CircTulp4 functions in Alzheimer's disease pathogenesis by regulating its parental gene, Tulp4. Mol Ther 2021; 29(6): 2167-81.
[140]
Bigarré IM, Trombetta BA, Guo Y, Arnold SE, Carlyle BC. I GF2R circular RNA hsa_circ_0131235 expression in the middle temporal cortex is associated with AD pathology. Brain Behav 2021; 11(4): e02048.
[http://dx.doi.org/10.1002/brb3.2048] [PMID: 33704916]
[141]
Huang JL, Qin MC, Zhou Y, et al. Comprehensive analysis of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in an Alzheimer’s disease mouse model. Aging (Albany NY) 2018; 10(2): 253-65.
[http://dx.doi.org/10.18632/aging.101387] [PMID: 29448241]
[142]
Szymanski M, Wang R, Bassett SS, Avramopoulos D. Alzheimer’s risk variants in the clusterin gene are associated with alternative splicing. Transl Psychiatry 2011; 1(7): e18.
[http://dx.doi.org/10.1038/tp.2011.17] [PMID: 21892414]
[143]
Yao PJ, Zhu M, Pyun EI, et al. Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer’s disease. Neurobiol Dis 2003; 12(2): 97-109.
[http://dx.doi.org/10.1016/S0969-9961(02)00009-8] [PMID: 12667465]
[144]
Li Q, Liu Y, Sun M. Autophagy and Alzheimer’s disease. Cell Mol Neurobiol 2017; 37(3): 377-88.
[http://dx.doi.org/10.1007/s10571-016-0386-8] [PMID: 27260250]
[145]
Zhang Y, Yu F, Bao S, Sun J. Systematic characterization of circular RNA-associated CeRNA network identified novel circRNA biomarkers in Alzheimer’s disease. Front Bioeng Biotechnol 2019; 7: 222.
[http://dx.doi.org/10.3389/fbioe.2019.00222] [PMID: 31572720]
[146]
Vilardo E, Barbato C, Ciotti M, Cogoni C, Ruberti F. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J Biol Chem 2010; 285(24): 18344-51.
[http://dx.doi.org/10.1074/jbc.M110.112664] [PMID: 20395292]
[147]
Hébert SS, Horré K, Nicolaï L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci USA 2008; 105(17): 6415-20.
[http://dx.doi.org/10.1073/pnas.0710263105] [PMID: 18434550]
[148]
Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 2008; 118(6): 2190-9.
[PMID: 18497889]
[149]
Morawski M, Brückner G. Jäger C, Seeger G, Arendt T. Neurons associated with aggrecan-based perineuronal nets are protected against tau pathology in subcortical regions in Alzheimer’s disease. Neuroscience 2010; 169(3): 1347-63.
[http://dx.doi.org/10.1016/j.neuroscience.2010.05.022] [PMID: 20497908]
[150]
Goedert M, Cohen ES, Jakes R, Cohen P. p42 map kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1 implications for Alzheimer’s disease. FEBS Lett 1992; 312(1): 95-9.
[http://dx.doi.org/10.1016/0014-5793(92)81418-L] [PMID: 1330687]
[151]
Boonen RACM, van Tijn P, Zivkovic D. Wnt signaling in Alzheimer’s disease: Up or down, that is the question. Ageing Res Rev 2009; 8(2): 71-82.
[http://dx.doi.org/10.1016/j.arr.2008.11.003] [PMID: 19101658]
[152]
Li Y, Fan H, Sun J, et al. Circular RNA expression profile of Alzheimer’s disease and its clinical significance as biomarkers for the disease risk and progression. Int J Biochem Cell Biol 2020; 123: 105747.
[http://dx.doi.org/10.1016/j.biocel.2020.105747] [PMID: 32315771]
[153]
Wang X, Tan L, Lu Y, et al. MicroRNA-138 promotes tau phosphorylation by targeting retinoic acid receptor alpha. FEBS Lett 2015; 589(6): 726-9.
[http://dx.doi.org/10.1016/j.febslet.2015.02.001] [PMID: 25680531]
[154]
Ray AK, DuBois JC, Gruber RC, et al. Loss of Gas6 and Axl signaling results in extensive axonal damage, motor deficits, prolonged neuroinflammation, and less remyelination following cuprizone exposure. Glia 2017; 65(12): 2051-69.
[http://dx.doi.org/10.1002/glia.23214] [PMID: 28925029]
[155]
Zhang S, Chen S, Liu A, et al. Inhibition of BDNF production by MPP + through up-regulation of miR-210-3p contributes to dopaminergic neuron damage in MPTP model. Neurosci Lett 2018; 675: 133-9.
[http://dx.doi.org/10.1016/j.neulet.2017.10.014] [PMID: 29030221]
[156]
Hales CM, Rees H, Seyfried NT, et al. Abnormal gephyrin immunoreactivity associated with Alzheimer disease pathologic changes. J Neuropathol Exp Neurol 2013; 72(11): 1009-15.
[http://dx.doi.org/10.1097/01.jnen.0000435847.59828.db] [PMID: 24128675]
[157]
Huang J, Wu D, Wang J, et al. Effects of Panax notoginseng saponin on α, β, and γ secretase involved in Aβ deposition in SAMP8 mice. Neuroreport 2014; 25(2): 89-93.
[http://dx.doi.org/10.1097/WNR.0000000000000048] [PMID: 24165110]
[158]
Grothe MJ, Sepulcre J, Gonzalez-Escamilla G, et al. Molecular properties underlying regional vulnerability to Alzheimer’s disease pathology. Brain 2018; 141(9): 2755-71.
[http://dx.doi.org/10.1093/brain/awy189] [PMID: 30016411]
[159]
Nobili A, Latagliata EC, Viscomi MT, et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun 2017; 8(1): 14727.
[http://dx.doi.org/10.1038/ncomms14727] [PMID: 28367951]
[160]
Zheng C, Geetha T, Gearing M, Ramesh Babu J. Amyloid β-abrogated TrkA ubiquitination in PC12 cells analogous to Alzheimer’s disease. J Neurochem 2015; 133(6): 919-25.
[http://dx.doi.org/10.1111/jnc.13076] [PMID: 25708205]
[161]
Ledesma MD, Dotti CG. Peripheral cholesterol metabolic disorders and Alzheimer s disease. Front Biosci (Elite Ed) 2012; E4(1): 181-94.
[http://dx.doi.org/10.2741/e368] [PMID: 22201863]
[162]
Huang JL, Xu ZH, Yang SM, et al. Identification of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in a panax notoginseng saponins-treated Alzheimer’s disease mouse model. Comput Struct Biotechnol J 2018; 16: 523-31.
[http://dx.doi.org/10.1016/j.csbj.2018.10.010] [PMID: 30524667]
[163]
Vitvitsky VM, Garg SK, Keep RF, Albin RL, Banerjee R. Na+ and K+ ion imbalances in Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822(11): 1671-81.
[http://dx.doi.org/10.1016/j.bbadis.2012.07.004]
[164]
Zhang W, Wang GM, Wang PJ, Zhang Q, Sha SH. Effects of neural stem cells on synaptic proteins and memory in a mouse model of Alzheimer’s disease. J Neurosci Res 2014; 92(2): 185-94.
[http://dx.doi.org/10.1002/jnr.23299] [PMID: 24265160]
[165]
Moreira P, Pereira C, Santos MS, Oliveira C. Effect of zinc ions on the cytotoxicity induced by the amyloid β-peptide. Antioxid Redox Signal 2000; 2(2): 317-25.
[http://dx.doi.org/10.1089/ars.2000.2.2-317] [PMID: 11229535]
[166]
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4: e05005.
[http://dx.doi.org/10.7554/eLife.05005] [PMID: 26267216]
[167]
Kondo MA, Mohan A, Mather KA. Going around in circles. Curr Opin Psychiatry 2020; 33(2): 141-7.
[http://dx.doi.org/10.1097/YCO.0000000000000582] [PMID: 31895158]
[168]
Castillo E, Leon J, Mazzei G, et al. Comparative profiling of cortical gene expression in Alzheimer’s disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Sci Rep 2017; 7(1): 17762.
[http://dx.doi.org/10.1038/s41598-017-17999-3] [PMID: 29259249]
[169]
Smith R, Wibom M, Olsson T, et al. Posterior accumulation of tau and concordant hypometabolism in an early-onset Alzheimer’s disease patient with presenilin-1 mutation. J Alzheimers Dis 2016; 51(2): 339-43.
[http://dx.doi.org/10.3233/JAD-151004] [PMID: 26836192]
[170]
Kljajevic V, Grothe MJ, Ewers M, Teipel S. Distinct pattern of hypometabolism and atrophy in preclinical and predementia Alzheimer’s disease. Neurobiol Aging 2014; 35(9): 1973-81.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.04.006] [PMID: 24811241]
[171]
Lu D, Xu AD. Mini review: Circular RNAs as potential clinical biomarkers for disorders in the central nervous system. Front Genet 2016; 7: 53.
[http://dx.doi.org/10.3389/fgene.2016.00053] [PMID: 27092176]
[172]
Fei F, Rao W, Zhang L, et al. Downregulation of Homer1b/c improves neuronal survival after traumatic neuronal injury. Neuroscience 2014; 267: 187-94.
[http://dx.doi.org/10.1016/j.neuroscience.2014.02.037] [PMID: 24607348]
[173]
Zhao Z, Li X, Gao C, et al. Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep 2017; 7(1): 39918.
[http://dx.doi.org/10.1038/srep39918] [PMID: 28045102]
[174]
Chen Y, Xu X, Li X, et al. Identification of circular RNAs hsa_circ_0140271 in peripheral blood mononuclear cells as a novel diagnostic biomarker for female rheumatoid arthritis. J Orthop Surg Res 2021; 16(1): 647.
[http://dx.doi.org/10.1186/s13018-021-02794-8] [PMID: 34717684]
[175]
Zhao Z, Li X, Jian D, Hao P, Rao L, Li M. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol 2017; 54(3): 237-45.
[http://dx.doi.org/10.1007/s00592-016-0943-0] [PMID: 27878383]
[176]
Wu Z, Liu B, Ma Y, Chen H, Wu J, Wang J. Discovery and validation of hsa_circ_0001953 as a potential biomarker for proliferative diabetic retinopathy in human blood. Acta Ophthalmol 2021; 99(3): 306-13.
[http://dx.doi.org/10.1111/aos.14585] [PMID: 32914551]
[177]
Li Z, Yanfang W, Li J, et al. Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett 2018; 432: 237-50.
[http://dx.doi.org/10.1016/j.canlet.2018.04.035] [PMID: 29709702]
[178]
Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res 2015; 25(8): 981-4.
[http://dx.doi.org/10.1038/cr.2015.82] [PMID: 26138677]
[179]
Lee S, Mankhong S, Kang JH. Extracellular vesicle as a source of Alzheimer’s biomarkers: Opportunities and challenges. Int J Mol Sci 2019; 20(7): 1728.
[http://dx.doi.org/10.3390/ijms20071728] [PMID: 30965555]
[180]
Cui X, Niu W, Kong L, et al. hsa_circRNA_103636: Potential novel diagnostic and therapeutic biomarker in Major depressive disorder. Biomarkers Med 2016; 10(9): 943-52.
[http://dx.doi.org/10.2217/bmm-2016-0130] [PMID: 27404501]
[181]
Armakola M, Higgins MJ, Figley MD, et al. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet 2012; 44(12): 1302-9.
[http://dx.doi.org/10.1038/ng.2434] [PMID: 23104007]
[182]
Hua Y, Sahashi K, Hung G, et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 2010; 24(15): 1634-44.
[http://dx.doi.org/10.1101/gad.1941310] [PMID: 20624852]
[183]
Mathis S, Le Masson G. RNA-targeted therapies and amyotrophic lateral sclerosis. Biomedicines 2018; 6(1): 9.
[http://dx.doi.org/10.3390/biomedicines6010009] [PMID: 29342921]
[184]
DeVos SL, Miller RL, Schoch KM, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med 2017; 9(374): eaag0481.
[http://dx.doi.org/10.1126/scitranslmed.aag0481] [PMID: 28123067]
[185]
Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: A phase 2, open-label, dose-escalation study. Lancet 2016; 388(10063): 3017-26.
[http://dx.doi.org/10.1016/S0140-6736(16)31408-8] [PMID: 27939059]
[186]
Miller TM, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: A phase 1, randomised, first-in-man study. Lancet Neurol 2013; 12(5): 435-42.
[http://dx.doi.org/10.1016/S1474-4422(13)70061-9] [PMID: 23541756]
[187]
López-Gambero AJ, Sanjuan C, Serrano-Castro PJ, Suلrez J, Rodrيguez de Fonseca F. The biomedical uses of inositols: A nutraceutical approach to metabolic dysfunction in aging and neurodegenerative diseases. Biomedicines 2020; 8(9): 295.
[http://dx.doi.org/10.3390/biomedicines8090295] [PMID: 32825356]
[188]
Fitzgerald PB, Brown TL, Daskalakis ZJ. The application of transcranial magnetic stimulation in psychiatry and neurosciences research. Acta Psychiatr Scand 2002; 105(5): 324-40.
[http://dx.doi.org/10.1034/j.1600-0447.2002.1r179.x] [PMID: 11942939]
[189]
Lisanby SH, Kinnunen LH, Crupain MJ. Applications of TMS to therapy in psychiatry. J Clin Neurophysiol 2002; 19(4): 344-60.
[http://dx.doi.org/10.1097/00004691-200208000-00007] [PMID: 12436089]
[190]
Kim DR, Pesiridou A, O’Reardon JP. Transcranial magnetic stimulation in the treatment of psychiatric disorders. Curr Psychiatry Rep 2009; 11(6): 447-52.
[http://dx.doi.org/10.1007/s11920-009-0068-z] [PMID: 19909666]
[191]
Sanches C, Stengel C, Godard J, et al. Past, present, and future of non-invasive brain stimulation approaches to treat cognitive impairment in neurodegenerative diseases: Time for a comprehensive critical review. Front Aging Neurosci 2021; 12: 578339.
[http://dx.doi.org/10.3389/fnagi.2020.578339] [PMID: 33551785]
[192]
Ziemann U, Paulus W, Nitsche MA, et al. Consensus: Motor cortex plasticity protocols. Brain Stimul 2008; 1(3): 164-82.
[http://dx.doi.org/10.1016/j.brs.2008.06.006] [PMID: 20633383]
[193]
Alam M, Truong DQ, Khadka N, Bikson M. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Phys Med Biol 2016; 61(12): 4506-21.
[http://dx.doi.org/10.1088/0031-9155/61/12/4506] [PMID: 27223853]
[194]
Reis J, John D, Heimeroth A, et al. Modulation of human motor cortex excitability by single doses of amantadine. Neuropsychopharmacology 2006; 31(12): 2758-66.
[http://dx.doi.org/10.1038/sj.npp.1301122] [PMID: 16794570]
[195]
Nardone R, Tezzon F. Höller Y, Golaszewski S, Trinka E, Brigo F. Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer’s disease. Acta Neurol Scand 2014; 129(6): 351-66.
[http://dx.doi.org/10.1111/ane.12223] [PMID: 24506061]
[196]
Meinzer M, Lindenberg R, Phan MT, Ulm L, Volk C. Flِöel A. Transcranial direct current stimulation in mild cognitive impairment: Behavioral effects and neural mechanisms. Alzheimers Dement 2015; 11(9): 1032-40.
[http://dx.doi.org/10.1016/j.jalz.2014.07.159] [PMID: 25449530]
[197]
Hsu WY, Ku Y, Zanto TP, Gazzaley A. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: A systematic review and meta-analysis. Neurobiol Aging 2015; 36(8): 2348-59.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.04.016] [PMID: 26022770]
[198]
Hanan M, Soreq H, Kadener S. CircRNAs in the brain. RNA Biol 2017; 14(8): 1028-34.
[http://dx.doi.org/10.1080/15476286.2016.1255398] [PMID: 27892769]
[199]
Zhang M, Xin Y. Circular RNAs: A new frontier for cancer diagnosis and therapy. J Hematol Oncol 2018; 11(1): 21.
[http://dx.doi.org/10.1186/s13045-018-0569-5] [PMID: 29433541]
[200]
Petkovic S, Müller S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res 2015; 43(4): 2454-65.
[http://dx.doi.org/10.1093/nar/gkv045] [PMID: 25662225]
[201]
Lavenniah A, Luu TDA, Li YP, et al. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol Ther 2020; 28(6): 1506-17.
[http://dx.doi.org/10.1016/j.ymthe.2020.04.006] [PMID: 32304667]
[202]
Ucar A, Gupta SK, Fiedler J, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 2012; 3(1): 1078.
[http://dx.doi.org/10.1038/ncomms2090] [PMID: 23011132]
[203]
He AT, Liu J, Li F, Yang BB. Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduct Target Ther 2021; 6(1): 185.
[http://dx.doi.org/10.1038/s41392-021-00569-5] [PMID: 34016945]
[204]
Wilkins HM, Swerdlow RH. Amyloid precursor protein processing and bioenergetics. Brain Res Bull 2017; 133: 71-9.
[http://dx.doi.org/10.1016/j.brainresbull.2016.08.009] [PMID: 27545490]
[205]
Taylor JM, Moore Z, Minter MR, Crack PJ. Type-I interferon pathway in neuroinflammation and neurodegeneration: Focus on Alzheimer’s disease. J Neural Transm 2018; 125(5): 797-807.
[http://dx.doi.org/10.1007/s00702-017-1745-4]
[206]
Qu S, Zhong Y, Shang R, et al. The emerging landscape of circular RNA in life processes. RNA Biol 2017; 14(8): 992-9.
[http://dx.doi.org/10.1080/15476286.2016.1220473] [PMID: 27617908]
[207]
Chen Y, Li Z, Chen X, Zhang S. Long non-coding RNAs: From disease code to drug role. Acta Pharm Sin B 2021; 11(2): 340-54.
[http://dx.doi.org/10.1016/j.apsb.2020.10.001] [PMID: 33643816]
[208]
Sekar S, Liang WS. Circular RNA expression and function in the brain. Noncoding RNA Res 2019; 4(1): 23-9.
[http://dx.doi.org/10.1016/j.ncrna.2019.01.001] [PMID: 30891534]
[209]
Cervera-Carles L, Dols-Icardo O, Molina-Porcel L, et al. Assessing circular RNAs in Alzheimer’s disease and frontotemporal lobar degeneration. Neurobiol Aging 2020; 92: 7-11.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.03.017] [PMID: 32335360]
[210]
Urbanek-Trzeciak MO, Kozlowski P, Galka-Marciniak P. miRMut: Annotation of mutations in miRNA genes from human whole-exome or whole-genome sequencing. STAR Protocols 2022; 3(1): 101023.
[211]
Wang Y, Qiu C, Cui Q. A large-scale analysis of the relationship of synonymous SNPs changing microRNA regulation with functionality and disease. Int J Mol Sci 2015; 16(10): 23545-55.
[http://dx.doi.org/10.3390/ijms161023545] [PMID: 26437399]
[212]
Li C, Ni YQ, Xu H, et al. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 2021; 6(1): 383.
[http://dx.doi.org/10.1038/s41392-021-00779-x] [PMID: 34753929]
[213]
Panda A, Gorospe M. Detection and analysis of circular RNAs by RT-PCR. Bio Protoc 2018; 8(6): e2775.
[http://dx.doi.org/10.21769/BioProtoc.2775] [PMID: 29644261]
[214]
Das A, Shyamal S, Sinha T, Mishra SS, Panda AC. Identification of potential circRNA-microRNA-mRNA regulatory network in skeletal muscle. Front Mol Biosci 2021; 8: 762185.
[http://dx.doi.org/10.3389/fmolb.2021.762185] [PMID: 34912845]
[215]
Kulcheski FR, Christoff AP, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol 2016; 238: 42-51.
[http://dx.doi.org/10.1016/j.jbiotec.2016.09.011] [PMID: 27671698]

© 2024 Bentham Science Publishers | Privacy Policy