Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Clinical Biomarkers and Novel Drug Targets to Cut Gordian Knots of Alzheimer's Disease

Author(s): Abdul Jalil Shah, Roohi Mohi-ud-din, Saba Sabreen, Taha Umair Wani, Rafia Jan, Md. Noushad Javed, Prince Ahad Mir, Reyaz Hassan Mir* and Mubashir Hussain Masoodi*

Volume 16, Issue 3, 2023

Published on: 03 November, 2022

Article ID: e030922208490 Pages: 26

DOI: 10.2174/1874467215666220903095837

Price: $65

Abstract

Background: Alzheimer's disease (AD), the primary cause of dementia, escalating worldwide, has no proper diagnosis or effective treatment. Neuronal cell death and impairment of cognitive abilities, possibly triggered by several brain mechanisms, are the most significant characteristic of this disorder.

Methods: A multitude of pharmacological targets have been identified for potential drug design against AD. Although many advances in treatment strategies have been made to correct various abnormalities, these often exhibit limited clinical significance because this disease aggressively progresses into different regions of the brain, causing severe deterioration.

Results: These biomarkers can be game-changers for early detection and timely monitoring of such disorders.

Conclusion: This review covers clinically significant biomarkers of AD for precise and early monitoring of risk factors and stages of this disease, the potential site of action and novel targets for drugs, and pharmacological approaches to clinical management.

Keywords: Alzheimer's disease, beta-amyloid, neurofibrillary tangles, novel targets, neurodegeneration, drug design, pharmacological approaches.

Graphical Abstract

[1]
De Strooper, B.; Karran, E. The cellular phase of Alzheimer’s disease. Cell, 2016, 164(4), 603-615.
[http://dx.doi.org/10.1016/j.cell.2015.12.056] [PMID: 26871627]
[2]
Mirakhur, A.; Craig, D.; Hart, D.J.; McLlroy, S.P.; Passmore, A.P. Behavioural and psychological syndromes in Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 2004, 19(11), 1035-1039.
[http://dx.doi.org/10.1002/gps.1203] [PMID: 15481075]
[3]
Kumar, A.; Singh, A. Ekavali, A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[4]
Huang, Y.; Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell, 2012, 148(6), 1204-1222.
[http://dx.doi.org/10.1016/j.cell.2012.02.040] [PMID: 22424230]
[5]
Cornutiu, G. The epidemiological scale of Alzheimer’s disease. J. Clin. Med. Res., 2015, 7(9), 657-666.
[http://dx.doi.org/10.14740/jocmr2106w] [PMID: 26251678]
[6]
Patterson, C. World Alzheimer report 2018: The state of the art of dementia research: New frontiers. In: Alzheimer’s Disease International; ADI: London, UK, 2018; pp. 32-36.
[7]
Wong, D.F.; Rosenberg, P.B.; Zhou, Y.; Kumar, A.; Raymont, V.; Ravert, H.T.; Dannals, R.F.; Nandi, A.; Brasić, J.R.; Ye, W.; Hilton, J.; Lyketsos, C.; Kung, H.F.; Joshi, A.D.; Skovronsky, D.M.; Pontecorvo, M.J. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J. Nucl. Med., 2010, 51(6), 913-920.
[http://dx.doi.org/10.2967/jnumed.109.069088] [PMID: 20501908]
[8]
Jin, M.; Shepardson, N.; Yang, T.; Chen, G.; Walsh, D.; Selkoe, D.J. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. USA, 2011, 108(14), 5819-5824.
[http://dx.doi.org/10.1073/pnas.1017033108] [PMID: 21421841]
[9]
Wang, J.; Tung, Y.C.; Wang, Y.; Li, X.T.; Iqbal, K.; Grundke-Iqbal, I. Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett., 2001, 507(1), 81-87.
[http://dx.doi.org/10.1016/S0014-5793(01)02944-1] [PMID: 11682063]
[10]
Olabarria, M.; Noristani, H.N.; Verkhratsky, A.; Rodríguez, J.J. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia, 2010, 58(7), 831-838.
[http://dx.doi.org/10.1002/glia.20967] [PMID: 20140958]
[11]
Kumar, A.; Nisha, C.M.; Silakari, C.; Sharma, I.; Anusha, K.; Gupta, N.; Nair, P.; Tripathi, T.; Kumar, A. Current and novel therapeutic molecules and targets in Alzheimer’s disease. J. Formos. Med. Assoc., 2016, 115(1), 3-10.
[http://dx.doi.org/10.1016/j.jfma.2015.04.001] [PMID: 26220908]
[12]
Praticò, D. Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: Lights and shadows. Ann. N. Y. Acad. Sci., 2008, 1147(1), 70-78.
[http://dx.doi.org/10.1196/annals.1427.010] [PMID: 19076432]
[13]
Grossberg, G.T.; Tong, G.; Burke, A.D.; Tariot, P.N. Present algorithms and future treatments for Alzheimer’s disease. J. Alzheimers Dis., 2019, 67(4), 1157-1171.
[http://dx.doi.org/10.3233/JAD-180903] [PMID: 30741683]
[14]
Rasmussen, J.; Langerman, H. Alzheimer’s disease–why we need early diagnosis. Degener. Neurol. Neuromuscul. Dis., 2019, 9, 123-130.
[http://dx.doi.org/10.2147/DNND.S228939] [PMID: 31920420]
[15]
Cummings, J. The role of biomarkers in Alzheimer’s disease drug development. In: Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders; Springer, 2019; pp. 29-61.
[16]
Ehrenberg, A.J.; Khatun, A.; Coomans, E.; Betts, M.J.; Capraro, F.; Thijssen, E.H. Relevance of biomarkers across different neurodegenerative diseases. Alzheimers Res. Ther., 2020, 12, 1-11.
[17]
Holtzman, D.M. CSF biomarkers for Alzheimer’s disease: Current utility and potential future use. Neurobiol. Aging, 2011, 32(Suppl. 1), S4-S9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.09.003] [PMID: 22078172]
[18]
Andreasen, N.; Hesse, C.; Davidsson, P.; Minthon, L.; Wallin, A.; Winblad, B.; Vanderstichele, H.; Vanmechelen, E.; Blennow, K. Cerebrospinal fluid β-amyloid(1-42) in Alzheimer disease: Differences between early- and late-onset alzheimer disease and stability during the course of disease. Arch. Neurol., 1999, 56(6), 673-680.
[http://dx.doi.org/10.1001/archneur.56.6.673] [PMID: 10369305]
[19]
Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; Wu, E.; Dakin, K.; Petzold, M.; Blennow, K.; Zetterberg, H. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol., 2016, 15(7), 673-684.
[http://dx.doi.org/10.1016/S1474-4422(16)00070-3] [PMID: 27068280]
[20]
Blennow, K.; Mattsson, N.; Schöll, M.; Hansson, O.; Zetterberg, H. Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol. Sci., 2015, 36(5), 297-309.
[http://dx.doi.org/10.1016/j.tips.2015.03.002] [PMID: 25840462]
[21]
Palmqvist, S.; Zetterberg, H.; Mattsson, N.; Johansson, P.; Minthon, L.; Blennow, K.; Olsson, M.; Hansson, O. Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology, 2015, 85(14), 1240-1249.
[http://dx.doi.org/10.1212/WNL.0000000000001991] [PMID: 26354982]
[22]
Kaneko, N.; Nakamura, A.; Washimi, Y.; Kato, T.; Sakurai, T.; Arahata, Y.; Bundo, M.; Takeda, A.; Niida, S.; Ito, K.; Toba, K.; Tanaka, K.; Yanagisawa, K. Novel plasma biomarker surrogating cerebral amyloid deposition. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2014, 90(9), 353-364.
[http://dx.doi.org/10.2183/pjab.90.353] [PMID: 25391320]
[23]
Nakamura, A.; Kaneko, N.; Villemagne, V.L.; Kato, T.; Doecke, J.; Doré, V.; Fowler, C.; Li, Q.X.; Martins, R.; Rowe, C.; Tomita, T.; Matsuzaki, K.; Ishii, K.; Ishii, K.; Arahata, Y.; Iwamoto, S.; Ito, K.; Tanaka, K.; Masters, C.L.; Yanagisawa, K. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature, 2018, 554(7691), 249-254.
[http://dx.doi.org/10.1038/nature25456] [PMID: 29420472]
[24]
Hansson, O.; Lehmann, S.; Otto, M.; Zetterberg, H.; Lewczuk, P. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s Disease. Alzheimers Res. Ther., 2019, 11(1), 34.
[http://dx.doi.org/10.1186/s13195-019-0485-0] [PMID: 31010420]
[25]
Kang, M.S.; Aliaga, A.A.; Shin, M.; Mathotaarachchi, S.; Benedet, A.L.; Pascoal, T.A. Amyloid-beta modulates the association between neurofilament light chain and brain atrophy in Alzheimer’s disease. Mol. Psychiatry, 2020, 1-13.
[PMID: 32591633]
[26]
Lehmann, S.; Dumurgier, J.; Ayrignac, X.; Marelli, C.; Alcolea, D.; Ormaechea, J.F.; Thouvenot, E.; Delaby, C.; Hirtz, C.; Vialaret, J.; Ginestet, N.; Bouaziz-Amar, E.; Laplanche, J.L.; Labauge, P.; Paquet, C.; Lleo, A.; Gabelle, A. Cerebrospinal fluid A beta 1-40 peptides increase in Alzheimer’s disease and are highly correlated with phospho-tau in control individuals. Alzheimers Res. Ther., 2020, 12(1), 123.
[http://dx.doi.org/10.1186/s13195-020-00696-1] [PMID: 33008460]
[27]
Grundke-Iqbal, I.; Iqbal, K.; Tung, Y-C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA, 1986, 83(13), 4913-4917.
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[28]
Blennow, K.; Wallin, A.; Ågren, H.; Spenger, C.; Siegfried, J.; Vanmechelen, E. Tau protein in cerebrospinal fluid: A biochemical marker for axonal degeneration in Alzheimer disease? Mol. Chem. Neuropathol., 1995, 26(3), 231-245.
[http://dx.doi.org/10.1007/BF02815140] [PMID: 8748926]
[29]
Vanmechelen, E.; Vanderstichele, H.; Davidsson, P.; Van Kerschaver, E.; Van Der Perre, B.; Sjögren, M.; Andreasen, N.; Blennow, K. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: A sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci. Lett., 2000, 285(1), 49-52.
[http://dx.doi.org/10.1016/S0304-3940(00)01036-3] [PMID: 10788705]
[30]
Ishiguro, K.; Ohno, H.; Arai, H.; Yamaguchi, H.; Urakami, K.; Park, J-M.; Sato, K.; Kohno, H.; Imahori, K. Phosphorylated tau in human cerebrospinal fluid is a diagnostic marker for Alzheimer’s disease. Neurosci. Lett., 1999, 270(2), 91-94.
[http://dx.doi.org/10.1016/S0304-3940(99)00476-0] [PMID: 10462105]
[31]
Kohnken, R.; Buerger, K.; Zinkowski, R.; Miller, C.; Kerkman, D.; DeBernardis, J.; Shen, J.; Möller, H.J.; Davies, P.; Hampel, H. Detection of tau phosphorylated at threonine 231 in cerebrospinal fluid of Alzheimer’s disease patients. Neurosci. Lett., 2000, 287(3), 187-190.
[http://dx.doi.org/10.1016/S0304-3940(00)01178-2] [PMID: 10863026]
[32]
Hu, Y.Y.; He, S.S.; Wang, X.; Duan, Q.H.; Grundke-Iqbal, I.; Iqbal, K.; Wang, J. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients: An ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am. J. Pathol., 2002, 160(4), 1269-1278.
[http://dx.doi.org/10.1016/S0002-9440(10)62554-0] [PMID: 11943712]
[33]
Hampel, H.; Buerger, K.; Zinkowski, R.; Teipel, S.J.; Goernitz, A.; Andreasen, N.; Sjoegren, M.; DeBernardis, J.; Kerkman, D.; Ishiguro, K.; Ohno, H.; Vanmechelen, E.; Vanderstichele, H.; McCulloch, C.; Moller, H.J.; Davies, P.; Blennow, K. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: A comparative cerebrospinal fluid study. Arch. Gen. Psychiatry, 2004, 61(1), 95-102.
[http://dx.doi.org/10.1001/archpsyc.61.1.95] [PMID: 14706948]
[34]
Chong, F.P.; Ng, K.Y.; Koh, R.Y.; Chye, S.M. Tau proteins and tauopathies in Alzheimer’s disease. Cell. Mol. Neurobiol., 2018, 38(5), 965-980.
[http://dx.doi.org/10.1007/s10571-017-0574-1] [PMID: 29299792]
[35]
Gulisano, W.; Maugeri, D.; Baltrons, M.A.; Fà, M.; Amato, A.; Palmeri, A.; D’Adamio, L.; Grassi, C.; Devanand, D.P.; Honig, L.S.; Puzzo, D.; Arancio, O. Role of amyloid-β and tau proteins in Alzheimer’s disease: Confuting the amyloid cascade. J. Alzheimers Dis., 2018, 64(s1), S611-S631.
[http://dx.doi.org/10.3233/JAD-179935] [PMID: 29865055]
[36]
Vogel, J.W.; Iturria-Medina, Y.; Strandberg, O.T.; Smith, R.; Levitis, E.; Evans, A.C.; Hansson, O.; Weiner, M.; Aisen, P.; Petersen, R.; Jack, C.R., Jr; Jagust, W.; Trojanowki, J.Q.; Toga, A.W.; Beckett, L.; Green, R.C.; Saykin, A.J.; Morris, J.; Shaw, L.M.; Liu, E.; Montine, T.; Thomas, R.G.; Donohue, M.; Walter, S.; Gessert, D.; Sather, T.; Jiminez, G.; Harvey, D.; Donohue, M.; Bernstein, M.; Fox, N.; Thompson, P.; Schuff, N. DeCArli, C.; Borowski, B.; Gunter, J.; Senjem, M.; Vemuri, P.; Jones, D.; Kantarci, K.; Ward, C.; Koeppe, R.A.; Foster, N.; Reiman, E.M.; Chen, K.; Mathis, C.; Landau, S.; Cairns, N.J.; Householder, E.; Reinwald, L.T.; Lee, V.; Korecka, M.; Figurski, M.; Crawford, K.; Neu, S.; Foroud, T.M.; Potkin, S.; Shen, L.; Kelley, F.; Kim, S.; Nho, K.; Kachaturian, Z.; Frank, R.; Snyder, P.J.; Molchan, S.; Kaye, J.; Quinn, J.; Lind, B.; Carter, R.; Dolen, S.; Schneider, L.S.; Pawluczyk, S.; Beccera, M.; Teodoro, L.; Spann, B.M.; Brewer, J.; Vanderswag, H.; Fleisher, A.; Heidebrink, J.L.; Lord, J.L.; Petersen, R.; Mason, S.S.; Albers, C.S.; Knopman, D.; Johnson, K.; Doody, R.S.; Meyer, J.V.; Chowdhury, M.; Rountree, S.; Dang, M.; Stern, Y.; Honig, L.S.; Bell, K.L.; Ances, B.; Morris, J.C.; Carroll, M.; Leon, S.; Householder, E.; Mintun, M.A.; Schneider, S.; OliverNG, A.; Griffith, R.; Clark, D.; Geldmacher, D.; Brockington, J.; Roberson, E.; Grossman, H.; Mitsis, E.; de Toledo-Morrell, L.; Shah, R.C.; Duara, R.; Varon, D.; Greig, M.T.; Roberts, P.; Albert, M.; Onyike, C.; D’Agostino, D., II; Kielb, S.; Galvin, J.E.; Pogorelec, D.M.; Cerbone, B.; Michel, C.A.; Rusinek, H.; de Leon, M.J.; Glodzik, L.; De Santi, S.; Doraiswamy, P.M.; Petrella, J.R.; Wong, T.Z.; Arnold, S.E.; Karlawish, J.H.; Wolk, D.; Smith, C.D.; Jicha, G.; Hardy, P.; Sinha, P.; Oates, E.; Conrad, G.; Lopez, O.L.; Oakley, M.A.; Simpson, D.M.; Porsteinsson, A.P.; Goldstein, B.S.; Martin, K.; Makino, K.M.; Ismail, M.S.; Brand, C.; Mulnard, R.A.; Thai, G.; Mc Adams Ortiz, C.; Womack, K.; Mathews, D.; Quiceno, M.; Arrastia, R.D.; King, R.; Weiner, M.; Cook, K.M.; DeVous, M.; Levey, A.I.; Lah, J.J.; Cellar, J.S.; Burns, J.M.; Anderson, H.S.; Swerdlow, R.H.; Apostolova, L.; Tingus, K.; Woo, E.; Silverman, D.H.S.; Lu, P.H.; Bartzokis, G.; Radford, N.R.G.; Parfitt, F.; Kendall, T.; Johnson, H.; Farlow, M.R.; Hake, A.M.; Matthews, B.R.; Herring, S.; Hunt, C.; van Dyck, C.H.; Carson, R.E.; MacAvoy, M.G.; Chertkow, H.; Bergman, H.; Hosein, C.; Black, S.; Stefanovic, B.; Caldwell, C.; Hsiung, G.Y.R.; Feldman, H.; Mudge, B.; Past, M.A.; Kertesz, A.; Rogers, J.; Trost, D.; Bernick, C.; Munic, D.; Kerwin, D.; Mesulam, M.M.; Lipowski, K.; Wu, C.K.; Johnson, N.; Sadowsky, C.; Martinez, W.; Villena, T.; Turner, R.S.; Johnson, K.; Reynolds, B.; Sperling, R.A.; Johnson, K.A.; Marshall, G.; Frey, M.; Yesavage, J.; Taylor, J.L.; Lane, B.; Rosen, A.; Tinklenberg, J.; Sabbagh, M.N.; Belden, C.M.; Jacobson, S.A.; Sirrel, S.A.; Kowall, N.; Killiany, R.; Budson, A.E.; Norbash, A.; Johnson, P.L.; Obisesan, T.O.; Wolday, S.; Allard, J.; Lerner, A.; Ogrocki, P.; Hudson, L.; Fletcher, E.; Carmichael, O.; Olichney, J.; DeCarli, C.; Kittur, S.; Borrie, M.; Lee, T.Y.; Bartha, R.; Johnson, S.; Asthana, S.; Carlsson, C.M.; Potkin, S.G.; Preda, A.; Nguyen, D.; Tariot, P.; Fleisher, A.; Reeder, S.; Bates, V.; Capote, H.; Rainka, M.; Scharre, D.W.; Kataki, M.; Adeli, A.; Zimmerman, E.A.; Celmins, D.; Brown, A.D.; Pearlson, G.D.; Blank, K.; Anderson, K.; Santulli, R.B.; Kitzmiller, T.J.; Schwartz, E.S.; SinkS, K.M.; Williamson, J.D.; Garg, P.; Watkins, F.; Ott, B.R.; Querfurth, H.; Tremont, G.; Salloway, S.; Malloy, P.; Correia, S.; Rosen, H.J.; Miller, B.L.; Mintzer, J.; Spicer, K.; Bachman, D.; Finger, E.; Pasternak, S.; Rachinsky, I.; Rogers, J.; Kertesz, A.; Drost, D.; Pomara, N.; Hernando, R.; Sarrael, A.; Schultz, S.K.; Boles Ponto, L.L.; Shim, H.; Smith, K.E.; Relkin, N.; Chaing, G.; Raudin, L.; Smith, A.; Fargher, K.; Raj, B.A.; Andersson, E.; Berron, D.; Byman, E.; Sundberg-Brorsson, T.; Administrator; Borland, E.; Callmer, A.; Dahl, C.; Gertje, E.; Gustavsson, A-M.; Grzegorska, J.; Hall, S.; Hansson, O.; Insel, P.; Janelidze, S.; Johansson, M.; Sletten, H.; Jester-Broms, J.; Londos, E.; Mattson, N.; Minthon, L.; Nilsson, M.; Nordkvist, R.; Nägga, K.; Orbjörn, C.; Ossenkoppele, R.; Palmqvist, S.; Persson, M.; Santillo, A.; Spotorno, N.; Stomrud, E.; Toresson, H.; Strandberg, O.; Schöll, M.; Friberg, I.; Johansson, P.; Wibom, M.; Johansson, K.; Pettersson, E.; Karremo, C.; Smith, R.; Surova, Y.; Jalakas, M.; Lätt, J.; Mannfolk, P.; Nilsson, M.; Ståhlberg, F.; Sundgren, P.; van Westen, D.; Andreasson, U.; Blennow, K.; Zetterberg, H.; Wahlund, L-O.; Westman, E.; Pereira, J.; Jögi, J.; Hägerström, D.; Olsson, T.; Wollmer, P. Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease. Nat. Commun., 2020, 11(1), 2612.
[http://dx.doi.org/10.1038/s41467-020-15701-2] [PMID: 32457389]
[37]
Blennow, K.; Hampel, H.; Weiner, M.; Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol., 2010, 6(3), 131-144.
[http://dx.doi.org/10.1038/nrneurol.2010.4] [PMID: 20157306]
[38]
Galasko, D.; Chang, L.; Motter, R.; Clark, C.M.; Kaye, J.; Knopman, D.; Thomas, R.; Kholodenko, D.; Schenk, D.; Lieberburg, I.; Miller, B.; Green, R.; Basherad, R.; Kertiles, L.; Boss, M.A.; Seubert, P. High cerebrospinal fluid tau and low amyloid β42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype. Arch. Neurol., 1998, 55(7), 937-945.
[http://dx.doi.org/10.1001/archneur.55.7.937] [PMID: 9678311]
[39]
Mattsson, N.; Zetterberg, H.; Hansson, O.; Andreasen, N.; Parnetti, L.; Jonsson, M.; Herukka, S.K.; van der Flier, W.M.; Blankenstein, M.A.; Ewers, M.; Rich, K.; Kaiser, E.; Verbeek, M.; Tsolaki, M.; Mulugeta, E.; Rosén, E.; Aarsland, D.; Visser, P.J.; Schröder, J.; Marcusson, J.; de Leon, M.; Hampel, H.; Scheltens, P.; Pirttilä, T.; Wallin, A.; Jönhagen, M.E.; Minthon, L.; Winblad, B.; Blennow, K. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA, 2009, 302(4), 385-393.
[http://dx.doi.org/10.1001/jama.2009.1064] [PMID: 19622817]
[40]
Shaw, L.M.; Vanderstichele, H.; Knapik-Czajka, M.; Clark, C.M.; Aisen, P.S.; Petersen, R.C.; Blennow, K.; Soares, H.; Simon, A.; Lewczuk, P.; Dean, R.; Siemers, E.; Potter, W.; Lee, V.M.; Trojanowski, J.Q. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann. Neurol., 2009, 65(4), 403-413.
[http://dx.doi.org/10.1002/ana.21610] [PMID: 19296504]
[41]
Sunderland, T.; Mirza, N.; Putnam, K.T.; Linker, G.; Bhupali, D.; Durham, R.; Soares, H.; Kimmel, L.; Friedman, D.; Bergeson, J.; Csako, G.; Levy, J.A.; Bartko, J.J.; Cohen, R.M. Cerebrospinal fluid β-amyloid1-42 and tau in control subjects at risk for Alzheimer’s disease: The effect of APOE ε4 allele. Biol. Psychiatry, 2004, 56(9), 670-676.
[http://dx.doi.org/10.1016/j.biopsych.2004.07.021] [PMID: 15522251]
[42]
Vemuri, P.; Wiste, H.J.; Weigand, S.D.; Knopman, D.S.; Shaw, L.M.; Trojanowski, J.Q.; Aisen, P.S.; Weiner, M.; Petersen, R.C.; Jack, C.R., Jr Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease. Ann. Neurol., 2010, 67(3), 308-316.
[PMID: 20373342]
[43]
Glodzik-Sobanska, L.; Pirraglia, E.; Brys, M.; de Santi, S.; Mosconi, L.; Rich, K.E.; Switalski, R.; Saint Louis, L.; Sadowski, M.J.; Martiniuk, F.; Mehta, P.; Pratico, D.; Zinkowski, R.P.; Blennow, K.; de Leon, M.J. The effects of normal aging and ApoE genotype on the levels of CSF biomarkers for Alzheimer’s disease. Neurobiol. Aging, 2009, 30(5), 672-681.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.08.019] [PMID: 17920160]
[44]
Kester, M.I.; Blankenstein, M.A.; Bouwman, F.H.; van Elk, E.J.; Scheltens, P.; van der Flier, W.M. CSF biomarkers in Alzheimer’s disease and controls: Associations with APOE genotype are modified by age. J. Alzheimers Dis., 2009, 16(3), 601-607.
[http://dx.doi.org/10.3233/JAD-2009-0999] [PMID: 19276554]
[45]
Reiman, E.M.; Chen, K.; Alexander, G.E.; Caselli, R.J.; Bandy, D.; Osborne, D.; Saunders, A.M.; Hardy, J. Correlations between apolipoprotein E ε4 gene dose and brain-imaging measurements of regional hypometabolism. Proc. Natl. Acad. Sci. USA, 2005, 102(23), 8299-8302.
[http://dx.doi.org/10.1073/pnas.0500579102] [PMID: 15932949]
[46]
Reiman, E.M.; Chen, K.; Liu, X.; Bandy, D.; Yu, M.; Lee, W.; Ayutyanont, N.; Keppler, J.; Reeder, S.A.; Langbaum, J.B.; Alexander, G.E.; Klunk, W.E.; Mathis, C.A.; Price, J.C.; Aizenstein, H.J.; DeKosky, S.T.; Caselli, R.J. Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2009, 106(16), 6820-6825.
[http://dx.doi.org/10.1073/pnas.0900345106] [PMID: 19346482]
[47]
Hye, A.; Kerr, F.; Archer, N.; Foy, C.; Poppe, M.; Brown, R.; Hamilton, G.; Powell, J.; Anderton, B.; Lovestone, S. Glycogen synthase kinase-3 is increased in white cells early in Alzheimer’s disease. Neurosci. Lett., 2005, 373(1), 1-4.
[http://dx.doi.org/10.1016/j.neulet.2004.10.031] [PMID: 15555766]
[48]
Marksteiner, J.; Humpel, C. Glycogen-synthase kinase-3β is decreased in peripheral blood mononuclear cells of patients with mild cognitive impairment. Exp. Gerontol., 2009, 44(6-7), 370-371.
[http://dx.doi.org/10.1016/j.exger.2009.02.007] [PMID: 19249342]
[49]
Armentero, M.T.; Sinforiani, E.; Ghezzi, C.; Bazzini, E.; Levandis, G.; Ambrosi, G.; Zangaglia, R.; Pacchetti, C.; Cereda, C.; Cova, E.; Basso, E.; Celi, D.; Martignoni, E.; Nappi, G.; Blandini, F. Peripheral expression of key regulatory kinases in Alzheimer’s disease and Parkinson’s disease. Neurobiol. Aging, 2011, 32(12), 2142-2151.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.01.004] [PMID: 20106550]
[50]
Jones, M.W.; Errington, M.L.; French, P.J.; Fine, A.; Bliss, T.V.; Garel, S.; Charnay, P.; Bozon, B.; Laroche, S.; Davis, S. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci., 2001, 4(3), 289-296.
[http://dx.doi.org/10.1038/85138] [PMID: 11224546]
[51]
Lakhina, V.; Arey, R.N.; Kaletsky, R.; Kauffman, A.; Stein, G.; Keyes, W.; Xu, D.; Murphy, C.T. Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs. Neuron, 2015, 85(2), 330-345.
[http://dx.doi.org/10.1016/j.neuron.2014.12.029] [PMID: 25611510]
[52]
Bartolotti, N.; Segura, L.; Lazarov, O. Diminished CRE-induced plasticity is linked to memory deficits in familial Alzheimer’s disease mice. J. Alzheimers Dis., 2016, 50(2), 477-489.
[http://dx.doi.org/10.3233/JAD-150650] [PMID: 26682682]
[53]
Chen, Y.; Huang, X.; Zhang, Y.W.; Rockenstein, E.; Bu, G.; Golde, T.E.; Masliah, E.; Xu, H. Alzheimer’s β-secretase (BACE1) regulates the cAMP/PKA/CREB pathway independently of β-amyloid. J. Neurosci., 2012, 32(33), 11390-11395.
[http://dx.doi.org/10.1523/JNEUROSCI.0757-12.2012] [PMID: 22895721]
[54]
Wang, R.; Zhang, Y.W.; Sun, P.; Liu, R.; Zhang, X.; Zhang, X.; Xia, K.; Xia, J.; Xu, H.; Zhang, Z. Transcriptional regulation of PEN-2, a key component of the γ-secretase complex, by CREB. Mol. Cell. Biol., 2006, 26(4), 1347-1354.
[http://dx.doi.org/10.1128/MCB.26.4.1347-1354.2006] [PMID: 16449647]
[55]
Pugazhenthi, S.; Wang, M.; Pham, S.; Sze, C-I.; Eckman, C.B. Downregulation of CREB expression in Alzheimer’s brain and in Aβ-treated rat hippocampal neurons. Mol. Neurodegener., 2011, 6(1), 60.
[http://dx.doi.org/10.1186/1750-1326-6-60] [PMID: 21854604]
[56]
Yamamoto-Sasaki, M.; Ozawa, H.; Saito, T.; Rösler, M.; Riederer, P. Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type. Brain Res., 1999, 824(2), 300-303.
[http://dx.doi.org/10.1016/S0006-8993(99)01220-2] [PMID: 10196463]
[57]
Cammarota, M.; Bevilaqua, L.R.; Ardenghi, P.; Paratcha, G.; Levi de Stein, M.; Izquierdo, I.; Medina, J.H. Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: Abolition by NMDA receptor blockade. Brain Res. Mol. Brain Res., 2000, 76(1), 36-46.
[http://dx.doi.org/10.1016/S0169-328X(99)00329-0] [PMID: 10719213]
[58]
Vianna, M.R.; Izquierdo, L.A.; Barros, D.M.; Ardenghi, P.; Pereira, P.; Rodrigues, C.; Moletta, B.; Medina, J.H.; Izquierdo, I. Differential role of hippocampal cAMP-dependent protein kinase in short- and long-term memory. Neurochem. Res., 2000, 25(5), 621-626.
[http://dx.doi.org/10.1023/A:1007502918282] [PMID: 10905623]
[59]
Koch, J.M.; Hinze-Selch, D.; Stingele, K.; Huchzermeier, C.; Göder, R.; Seeck-Hirschner, M.; Aldenhoff, J.B. Changes in CREB phosphorylation and BDNF plasma levels during psychotherapy of depression. Psychother. Psychosom., 2009, 78(3), 187-192.
[http://dx.doi.org/10.1159/000209350] [PMID: 19321972]
[60]
Arias, J.; Alberts, A.S.; Brindle, P.; Claret, F-X.; Smeal, T.; Karin, M.; Feramisco, J.; Montminy, M. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature, 1994, 370(6486), 226-229.
[http://dx.doi.org/10.1038/370226a0] [PMID: 8028671]
[61]
Alarcón, J.M.; Malleret, G.; Touzani, K.; Vronskaya, S.; Ishii, S.; Kandel, E.R.; Barco, A. Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: A model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron, 2004, 42(6), 947-959.
[http://dx.doi.org/10.1016/j.neuron.2004.05.021] [PMID: 15207239]
[62]
Barrett, R.M.; Malvaez, M.; Kramar, E.; Matheos, D.P.; Arrizon, A.; Cabrera, S.M.; Lynch, G.; Greene, R.W.; Wood, M.A. Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology, 2011, 36(8), 1545-1556.
[http://dx.doi.org/10.1038/npp.2011.61] [PMID: 21508930]
[63]
Lopez-Atalaya, J.P.; Ciccarelli, A.; Viosca, J.; Valor, L.M.; Jimenez-Minchan, M.; Canals, S.; Giustetto, M.; Barco, A. CBP is required for environmental enrichment-induced neurogenesis and cognitive enhancement. EMBO J., 2011, 30(20), 4287-4298.
[http://dx.doi.org/10.1038/emboj.2011.299] [PMID: 21847097]
[64]
Danbolt, N.C. Glutamate uptake. Prog. Neurobiol., 2001, 65(1), 1-105.
[http://dx.doi.org/10.1016/S0301-0082(00)00067-8] [PMID: 11369436]
[65]
Bookheimer, S.Y.; Strojwas, M.H.; Cohen, M.S.; Saunders, A.M.; Pericak-Vance, M.A.; Mazziotta, J.C.; Small, G.W. Patterns of brain activation in people at risk for Alzheimer’s disease. N. Engl. J. Med., 2000, 343(7), 450-456.
[http://dx.doi.org/10.1056/NEJM200008173430701] [PMID: 10944562]
[66]
Hall, H.; Cuellar-Baena, S.; Dahlberg, C.; Denisov, V.; Kirik, D. Magnetic resonance spectroscopic methods for the assessment of metabolic functions in the diseased brain. In: Brain Imaging in Behavioral Neuroscience; Springer, 2011; pp. 169-198.
[67]
Su, L.; Blamire, A.; Watson, R.; He, J.; Hayes, L.; O’brien, J. Whole-brain patterns of 1 H-magnetic resonance spectroscopy imaging in Alzheimer’s disease and dementia with Lewy bodies. Transl. Psychiatry, 2016, 6(8), e877.
[68]
Wang, H.; Tan, L.; Wang, H-F.; Liu, Y.; Yin, R-H.; Wang, W-Y.; Chang, X.L.; Jiang, T.; Yu, J.T. Magnetic resonance spectroscopy in Alzheimer’s disease: Systematic review and meta-analysis. J. Alzheimers Dis., 2015, 46(4), 1049-1070.
[http://dx.doi.org/10.3233/JAD-143225] [PMID: 26402632]
[69]
Gao, F.; Edden, R.A.; Li, M.; Puts, N.A.; Wang, G.; Liu, C. Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels. Neuroimage, 2013, 78, 75-82.
[http://dx.doi.org/10.1016/j.neuroimage.2013.04.012]
[70]
Kantarci, K.; Murray, M.E.; Schwarz, C.G.; Reid, R.I.; Przybelski, S.A.; Lesnick, T.; Zuk, S.M.; Raman, M.R.; Senjem, M.L.; Gunter, J.L.; Boeve, B.F.; Knopman, D.S.; Parisi, J.E.; Petersen, R.C.; Jack, C.R., Jr; Dickson, D.W. White-matter integrity on DTI and the pathologic staging of Alzheimer’s disease. Neurobiol. Aging, 2017, 56, 172-179.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.04.024] [PMID: 28552181]
[71]
Modrego, P.J.; Fayed, N.; Pina, M.A. Conversion from mild cognitive impairment to probable Alzheimer’s disease predicted by brain magnetic resonance spectroscopy. Am. J. Psychiatry, 2005, 162(4), 667-675.
[http://dx.doi.org/10.1176/appi.ajp.162.4.667] [PMID: 15800137]
[72]
Wang, X.L.; Li, C.J.; Xing, Y.; Yang, Y.H.; Jia, J.P. Hypervalinemia and hyperleucine-isoleucinemia caused by mutations in the branched-chain-amino-acid aminotransferase gene. J. Inherit. Metab. Dis., 2015, 38(5), 855-861.
[http://dx.doi.org/10.1007/s10545-015-9814-z] [PMID: 25653144]
[73]
Antuono, P.G.; Jones, J.L.; Wang, Y.; Li, S-J. Decreased glutamate + glutamine in Alzheimer’s disease detected in vivo with (1)H-MRS at 0.5 T. Neurology, 2001, 56(6), 737-742.
[http://dx.doi.org/10.1212/WNL.56.6.737] [PMID: 11274307]
[74]
Fayed, N.; Modrego, P.J.; Rojas-Salinas, G.; Aguilar, K. Brain glutamate levels are decreased in Alzheimer’s disease: A magnetic resonance spectroscopy study. Am. J. Alzheimers Dis. Other Demen., 2011, 26(6), 450-456.
[http://dx.doi.org/10.1177/1533317511421780] [PMID: 21921084]
[75]
Rupsingh, R.; Borrie, M.; Smith, M.; Wells, J.L.; Bartha, R. Reduced hippocampal glutamate in Alzheimer disease. Neurobiol. Aging, 2011, 32(5), 802-810.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.05.002] [PMID: 19501936]
[76]
Kantarci, K. 1H magnetic resonance spectroscopy in dementia. British J. Radiol., 2007, 80(special_issue_2), S146-S152.
[77]
Riese, F.; Gietl, A.; Zölch, N.; Henning, A.; O’Gorman, R.; Kälin, A.M.; Leh, S.E.; Buck, A.; Warnock, G.; Edden, R.A.; Luechinger, R.; Hock, C.; Kollias, S.; Michels, L. Posterior cingulate γ-aminobutyric acid and glutamate/glutamine are reduced in amnestic mild cognitive impairment and are unrelated to amyloid deposition and apolipoprotein E genotype. Neurobiol. Aging, 2015, 36(1), 53-59.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.07.030] [PMID: 25169676]
[78]
Greig, N.H.; Utsuki, T.; Ingram, D.K.; Wang, Y.; Pepeu, G.; Scali, C.; Yu, Q.S.; Mamczarz, J.; Holloway, H.W.; Giordano, T.; Chen, D.; Furukawa, K.; Sambamurti, K.; Brossi, A.; Lahiri, D.K. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA, 2005, 102(47), 17213-17218.
[http://dx.doi.org/10.1073/pnas.0508575102] [PMID: 16275899]
[79]
Panza, F.; Frisardi, V.; Imbimbo, B.P.; Capurso, C.; Logroscino, G.; Sancarlo, D.; Seripa, D.; Vendemiale, G.; Pilotto, A.; Solfrizzi, V. REVIEW: γ-Secretase inhibitors for the treatment of Alzheimer’s disease: The current state. CNS Neurosci. Ther., 2010, 16(5), 272-284.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00164.x] [PMID: 20560993]
[80]
Kumar, D.; Ganeshpurkar, A.; Kumar, D.; Modi, G.; Gupta, S.K.; Singh, S.K. Secretase inhibitors for the treatment of Alzheimer’s disease: Long road ahead. Eur. J. Med. Chem., 2018, 148, 436-452.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.035] [PMID: 29477076]
[81]
Islam, M.A.; Pillay, T.S. β-secretase inhibitors for Alzheimer’s disease: Identification using pharmacoinformatics. J. Biomol. Struct. Dyn., 2019, 37(2), 503-522.
[http://dx.doi.org/10.1080/07391102.2018.1430619] [PMID: 29388503]
[82]
Ghosh, A.K.; Osswald, H.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem. Soc. Rev., 2014, 43(19), 6765-6813.
[http://dx.doi.org/10.1039/C3CS60460H] [PMID: 24691405]
[83]
Chen, G.F.; Xu, T.H.; Yan, Y.; Zhou, Y.R.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[84]
Yoon, S-S.; Jo, S.A. Mechanisms of amyloid-β peptide clearance: Potential therapeutic targets for Alzheimer’s disease. Biomol. Ther. (Seoul), 2012, 20(3), 245-255.
[http://dx.doi.org/10.4062/biomolther.2012.20.3.245] [PMID: 24130920]
[85]
Kurz, A.; Perneczky, R. Amyloid clearance as a treatment target against Alzheimer’s disease. J. Alzheimers Dis., 2011, 24(Suppl. 2), 61-73.
[http://dx.doi.org/10.3233/JAD-2011-102139] [PMID: 21422524]
[86]
Cao, J.; Hou, J.; Ping, J.; Cai, D. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol. Neurodegener., 2018, 13(1), 64.
[http://dx.doi.org/10.1186/s13024-018-0299-8] [PMID: 30541602]
[87]
Schilling, S.; Rahfeld, J-U.; Lues, I.; Lemere, C.A. Passive Aβ immunotherapy: Current achievements and future perspectives. Molecules, 2018, 23(5), 1068.
[http://dx.doi.org/10.3390/molecules23051068] [PMID: 29751505]
[88]
Vandenberghe, R.; Riviere, M.E.; Caputo, A.; Sovago, J.; Maguire, R.P.; Farlow, M.; Marotta, G.; Sanchez-Valle, R.; Scheltens, P.; Ryan, J.M.; Graf, A. Active Aβ immunotherapy CAD106 in Alzheimer’s disease: A phase 2b study. Alzheimers Dement. (N. Y.), 2016, 3(1), 10-22.
[http://dx.doi.org/10.1016/j.trci.2016.12.003] [PMID: 29067316]
[89]
Roda, A.R.; Esquerda-Canals, G.; Martí-Clúa, J.; Villegas, S. Cognitive impairment in the 3xTg-AD mouse model of Alzheimer’s disease is affected by Aβ-immunotherapy and cognitive stimulation. Pharmaceutics, 2020, 12(10), 944.
[http://dx.doi.org/10.3390/pharmaceutics12100944] [PMID: 33023109]
[90]
Plotkin, S.S.; Cashman, N.R. Passive immunotherapies targeting Aβ and tau in Alzheimer’s disease. Neurobiol. Dis., 2020, 144, 105010.
[http://dx.doi.org/10.1016/j.nbd.2020.105010] [PMID: 32682954]
[91]
Hooper, C.; Killick, R.; Lovestone, S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem., 2008, 104(6), 1433-1439.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05194.x] [PMID: 18088381]
[92]
Llorens-Martín, M.; Jurado, J.; Hernández, F.; Avila, J. GSK-3β, a pivotal kinase in Alzheimer disease. Front. Mol. Neurosci., 2014, 7, 46.
[PMID: 24904272]
[93]
Reddy, P.H. Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in Alzheimer’s disease: Implications for synaptic dysfunction and neuronal damage. Biochim. Biophys. Acta, 2013, 1832(12), 1913-1921.
[http://dx.doi.org/10.1016/j.bbadis.2013.06.012] [PMID: 23816568]
[94]
Wilkaniec, A.; Gąssowska-Dobrowolska, M.; Strawski, M.; Adamczyk, A.; Czapski, G.A. Inhibition of cyclin-dependent kinase 5 affects early neuroinflammatory signalling in murine model of amyloid beta toxicity. J. Neuroinflammation, 2018, 15(1), 1.
[http://dx.doi.org/10.1186/s12974-017-1027-y] [PMID: 29301548]
[95]
Cai, Z. Monoamine oxidase inhibitors: Promising therapeutic agents for Alzheimer’s disease (Review). Mol. Med. Rep., 2014, 9(5), 1533-1541.
[http://dx.doi.org/10.3892/mmr.2014.2040] [PMID: 24626484]
[96]
Sharma, P.; Srivastava, P.; Seth, A.; Tripathi, P.N.; Banerjee, A.G.; Shrivastava, S.K. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog. Neurobiol., 2019, 174, 53-89.
[http://dx.doi.org/10.1016/j.pneurobio.2018.12.006] [PMID: 30599179]
[97]
Aisen, P.S. Evaluation of selective COX-2 inhibitors for the treatment of Alzheimer’s disease. J. Pain Symptom Manage., 2002, 23(4), S35-S40.
[http://dx.doi.org/10.1016/S0885-3924(02)00374-3] [PMID: 11992749]
[98]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[99]
Guan, P.P.; Wang, P. Integrated communications between cyclooxygenase-2 and Alzheimer’s disease. FASEB J., 2019, 33(1), 13-33.
[http://dx.doi.org/10.1096/fj.201800355RRRR] [PMID: 30020833]
[100]
Zipfel, P.; Rochais, C.; Baranger, K.; Rivera, S.; Dallemagne, P. Matrix metalloproteinases as new targets in Alzheimer’s disease: Opportunities and challenges. J. Med. Chem., 2020, 63(19), 10705-10725.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00352] [PMID: 32459966]
[101]
García-Osta, A.; Cuadrado-Tejedor, M.; García-Barroso, C.; Oyarzábal, J.; Franco, R. Phosphodiesterases as therapeutic targets for Alzheimer’s disease. ACS Chem. Neurosci., 2012, 3(11), 832-844.
[http://dx.doi.org/10.1021/cn3000907] [PMID: 23173065]
[102]
Nabavi, S.M.; Talarek, S.; Listos, J.; Nabavi, S.F.; Devi, K.P.; Roberto de Oliveira, M.; Tewari, D.; Argüelles, S.; Mehrzadi, S.; Hosseinzadeh, A.; D’onofrio, G.; Orhan, I.E.; Sureda, A.; Xu, S.; Momtaz, S.; Farzaei, M.H. Phosphodiesterase inhibitors say NO to Alzheimer’s disease. Food Chem. Toxicol., 2019, 134, 110822.
[http://dx.doi.org/10.1016/j.fct.2019.110822] [PMID: 31536753]
[103]
Mazzola, C.; Medalie, J.; Scherma, M.; Panlilio, L.V.; Solinas, M.; Tanda, G.; Drago, F.; Cadet, J.L.; Goldberg, S.R.; Yasar, S. Fatty acid amide hydrolase (FAAH) inhibition enhances memory acquisition through activation of PPAR-alpha nuclear receptors. Learn. Mem., 2009, 16(5), 332-337.
[http://dx.doi.org/10.1101/lm.1145209] [PMID: 19403796]
[104]
Montanari, S.; Scalvini, L.; Bartolini, M.; Belluti, F.; Gobbi, S.; Andrisano, V.; Ligresti, A.; Di Marzo, V.; Rivara, S.; Mor, M.; Bisi, A.; Rampa, A. Fatty acid amide hydrolase (FAAH), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE): Networked targets for the development of carbamates as potential anti-Alzheimer’s disease agents. J. Med. Chem., 2016, 59(13), 6387-6406.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00609] [PMID: 27309570]
[105]
Chen, R.; Zhang, J.; Wu, Y.; Wang, D.; Feng, G.; Tang, Y-P.; Teng, Z.; Chen, C. Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep., 2012, 2(5), 1329-1339.
[http://dx.doi.org/10.1016/j.celrep.2012.09.030] [PMID: 23122958]
[106]
Suidan, G.L.; Ramaswamy, G. Targeting apolipoprotein E for alzheimer’s Disease: an industry perspective. Int. J. Mol. Sci., 2019, 20(9), E2161.
[http://dx.doi.org/10.3390/ijms20092161] [PMID: 31052389]
[107]
Safieh, M.; Korczyn, A.D.; Michaelson, D.M. ApoE4: An emerging therapeutic target for Alzheimer’s disease. BMC Med., 2019, 17(1), 64.
[http://dx.doi.org/10.1186/s12916-019-1299-4] [PMID: 30890171]
[108]
Godyń, J.; Jończyk, J.; Panek, D.; Malawska, B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep., 2016, 68(1), 127-138.
[http://dx.doi.org/10.1016/j.pharep.2015.07.006] [PMID: 26721364]
[109]
Panza, F.; Solfrizzi, V.; Seripa, D.; Imbimbo, B.P.; Lozupone, M.; Santamato, A.; Tortelli, R.; Galizia, I.; Prete, C.; Daniele, A.; Pilotto, A.; Greco, A.; Logroscino, G. Tau-based therapeutics for Alzheimer’s disease: Active and passive immunotherapy. Immunotherapy, 2016, 8(9), 1119-1134.
[http://dx.doi.org/10.2217/imt-2016-0019] [PMID: 27485083]
[110]
Abeysinghe, A.A.D.T.; Deshapriya, R.D.U.S.; Udawatte, C. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci., 2020, 256, 117996.
[http://dx.doi.org/10.1016/j.lfs.2020.117996] [PMID: 32585249]
[111]
Kontsekova, E.; Zilka, N.; Kovacech, B.; Novak, P.; Novak, M. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res. Ther., 2014, 6(4), 44.
[http://dx.doi.org/10.1186/alzrt278] [PMID: 25478017]
[112]
Serrano-Pozo, A.; William, C.M.; Ferrer, I.; Uro-Coste, E.; Delisle, M-B.; Maurage, C-A.; Hock, C.; Nitsch, R.M.; Masliah, E.; Growdon, J.H.; Frosch, M.P.; Hyman, B.T. Beneficial effect of human anti-amyloid-β active immunization on neurite morphology and tau pathology. Brain, 2010, 133(Pt 5), 1312-1327.
[http://dx.doi.org/10.1093/brain/awq056] [PMID: 20360050]
[113]
Chai, X.; Wu, S.; Murray, T.K.; Kinley, R.; Cella, C.V.; Sims, H.; Buckner, N.; Hanmer, J.; Davies, P.; O’Neill, M.J.; Hutton, M.L.; Citron, M. Passive immunization with anti-Tau antibodies in two transgenic models: Reduction of Tau pathology and delay of disease progression. J. Biol. Chem., 2011, 286(39), 34457-34467.
[http://dx.doi.org/10.1074/jbc.M111.229633] [PMID: 21841002]
[114]
Pedersen, J.T.; Sigurdsson, E.M. Tau immunotherapy for Alzheimer’s disease. Trends Mol. Med., 2015, 21(6), 394-402.
[http://dx.doi.org/10.1016/j.molmed.2015.03.003] [PMID: 25846560]
[115]
Ng, P.Y.; Chang, I.S.; Koh, R.Y.; Chye, S.M. Recent advances in tau-directed immunotherapy against Alzheimer’s disease: An overview of pre-clinical and clinical development. Metab. Brain Dis., 2020, 35(7), 1049-1066.
[http://dx.doi.org/10.1007/s11011-020-00591-6] [PMID: 32632666]
[116]
Rosenmann, H.; Grigoriadis, N.; Karussis, D.; Boimel, M.; Touloumi, O.; Ovadia, H.; Abramsky, O. Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch. Neurol., 2006, 63(10), 1459-1467.
[http://dx.doi.org/10.1001/archneur.63.10.1459] [PMID: 17030663]
[117]
Selenica, M-L.B.; Davtyan, H.; Housley, S.B.; Blair, L.J.; Gillies, A.; Nordhues, B.A.; Zhang, B.; Liu, J.; Gestwicki, J.E.; Lee, D.C.; Gordon, M.N.; Morgan, D.; Dickey, C.A. Epitope analysis following active immunization with tau proteins reveals immunogens implicated in tau pathogenesis. J. Neuroinflammation, 2014, 11(1), 152.
[http://dx.doi.org/10.1186/s12974-014-0152-0] [PMID: 25183004]
[118]
Asuni, A.A.; Boutajangout, A.; Quartermain, D.; Sigurdsson, E.M. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci., 2007, 27(34), 9115-9129.
[http://dx.doi.org/10.1523/JNEUROSCI.2361-07.2007] [PMID: 17715348]
[119]
Boutajangout, A.; Quartermain, D.; Sigurdsson, E.M. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J. Neurosci., 2010, 30(49), 16559-16566.
[http://dx.doi.org/10.1523/JNEUROSCI.4363-10.2010] [PMID: 21147995]
[120]
Rajamohamedsait, H.; Rasool, S.; Rajamohamedsait, W.; Lin, Y.; Sigurdsson, E.M. Prophylactic active tau immunization leads to sustained reduction in both tau and amyloid-β pathologies in 3xTg mice. Sci. Rep., 2017, 7(1), 17034.
[http://dx.doi.org/10.1038/s41598-017-17313-1] [PMID: 29213096]
[121]
Krishnamurthy, P.K.; Sait, H.B.R.; Boutajangout, A.; Sigurdsson, E.M. Immunotherapy targeting Alzheimer’s phospho-tau epitope within the microtubule binding region of tau clears pathological tau and prevents functional decline in a mouse model of tauopathy. Alzheimers Dement., 2009, 4(5), 112.
[http://dx.doi.org/10.1016/j.jalz.2009.05.352]
[122]
Boimel, M.; Grigoriadis, N.; Lourbopoulos, A.; Haber, E.; Abramsky, O.; Rosenmann, H. Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp. Neurol., 2010, 224(2), 472-485.
[http://dx.doi.org/10.1016/j.expneurol.2010.05.010] [PMID: 20546729]
[123]
Richter, M.; Mewes, A.; Fritsch, M.; Krügel, U.; Hoffmann, R.; Singer, D. Doubly phosphorylated peptide vaccines to protect transgenic P301S mice against Alzheimer’s disease like tau aggregation. Vaccines, 2014, 2(3), 601-623.
[http://dx.doi.org/10.3390/vaccines2030601] [PMID: 26344748]
[124]
Boutajangout, A.; Ingadottir, J.; Davies, P.; Sigurdsson, E.M. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J. Neurochem., 2011, 118(4), 658-667.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07337.x] [PMID: 21644996]
[125]
Schroeder, S.K.; Joly-Amado, A.; Gordon, M.N.; Morgan, D. Tau-directed immunotherapy: A promising strategy for treating Alzheimer’s disease and other tauopathies. J. Neuroimmune Pharmacol., 2016, 11(1), 9-25.
[http://dx.doi.org/10.1007/s11481-015-9637-6] [PMID: 26538351]
[126]
Yanamandra, K.; Kfoury, N.; Jiang, H.; Mahan, T.E.; Ma, S.; Maloney, S.E.; Wozniak, D.F.; Diamond, M.I.; Holtzman, D.M. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron, 2013, 80(2), 402-414.
[http://dx.doi.org/10.1016/j.neuron.2013.07.046] [PMID: 24075978]
[127]
Yanamandra, K.; Jiang, H.; Mahan, T.E.; Maloney, S.E.; Wozniak, D.F.; Diamond, M.I.; Holtzman, D.M. Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann. Clin. Transl. Neurol., 2015, 2(3), 278-288.
[http://dx.doi.org/10.1002/acn3.176] [PMID: 25815354]
[128]
Solomon, B. Immunological approach for the treatment of Alzheimer’s disease. J. Mol. Neurosci., 2003, 20(3), 283-286.
[http://dx.doi.org/10.1385/JMN:20:3:283] [PMID: 14501009]
[129]
Taniguchi, S.; Suzuki, N.; Masuda, M.; Hisanaga, S.; Iwatsubo, T.; Goedert, M.; Hasegawa, M. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem., 2005, 280(9), 7614-7623.
[http://dx.doi.org/10.1074/jbc.M408714200] [PMID: 15611092]
[130]
Taniguchi, T.; Sumida, M.; Hiraoka, S.; Tomoo, K.; Kakehi, T.; Minoura, K.; Sugiyama, S.; Inaka, K.; Ishida, T.; Saito, N.; Tanaka, C. Effects of different anti-tau antibodies on tau fibrillogenesis: RTA-1 and RTA-2 counteract tau aggregation. FEBS Lett., 2005, 579(6), 1399-1404.
[http://dx.doi.org/10.1016/j.febslet.2005.01.039] [PMID: 15733848]
[131]
Kontsekova, E.; Ivanovova, N.; Handzusova, M.; Novak, M. Chaperone-like antibodies in neurodegenerative tauopathies: Implication for immunotherapy. Cell. Mol. Neurobiol., 2009, 29(6-7), 793-798.
[http://dx.doi.org/10.1007/s10571-009-9355-9] [PMID: 19214739]
[132]
Lasagna-Reeves, C.A.; Castillo-Carranza, D.L.; Jackson, G.R.; Kayed, R. Tau oligomers as potential targets for immunotherapy for Alzheimer’s disease and tauopathies. Curr. Alzheimer Res., 2011, 8(6), 659-665.
[http://dx.doi.org/10.2174/156720511796717177] [PMID: 21605039]
[133]
Lasagna-Reeves, C.A.; Castillo-Carranza, D.L.; Sengupta, U.; Clos, A.L.; Jackson, G.R.; Kayed, R. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol. Neurodegener., 2011, 6(1), 39.
[http://dx.doi.org/10.1186/1750-1326-6-39] [PMID: 21645391]
[134]
Hoover, B.R.; Reed, M.N.; Su, J.; Penrod, R.D.; Kotilinek, L.A.; Grant, M.K.; Pitstick, R.; Carlson, G.A.; Lanier, L.M.; Yuan, L.L.; Ashe, K.H.; Liao, D. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron, 2010, 68(6), 1067-1081.
[http://dx.doi.org/10.1016/j.neuron.2010.11.030] [PMID: 21172610]
[135]
Medeiros, R.; Baglietto-Vargas, D.; LaFerla, F.M. The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci. Ther., 2011, 17(5), 514-524.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00177.x] [PMID: 20553310]
[136]
Lasagna-Reeves, C.A.; Castillo-Carranza, D.L.; Sengupta, U.; Guerrero-Munoz, M.J.; Kiritoshi, T.; Neugebauer, V.; Jackson, G.R.; Kayed, R. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci. Rep., 2012, 2(1), 700.
[http://dx.doi.org/10.1038/srep00700] [PMID: 23050084]
[137]
Lasagna-Reeves, C.A.; Castillo-Carranza, D.L.; Sengupta, U.; Sarmiento, J.; Troncoso, J.; Jackson, G.R.; Kayed, R. Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J., 2012, 26(5), 1946-1959.
[http://dx.doi.org/10.1096/fj.11-199851] [PMID: 22253473]
[138]
Castillo-Carranza, D.L.; Gerson, J.E.; Sengupta, U.; Guerrero-Muñoz, M.J.; Lasagna-Reeves, C.A.; Kayed, R. Specific targeting of tau oligomers in Htau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J. Alzheimers Dis., 2014, 40(Suppl. 1), S97-S111.
[http://dx.doi.org/10.3233/JAD-132477] [PMID: 24603946]
[139]
Dai, C.L.; Chen, X.; Kazim, S.F.; Liu, F.; Gong, C-X.; Grundke-Iqbal, I.; Iqbal, K. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies. J. Neural Transm. (Vienna), 2015, 122(4), 607-617.
[http://dx.doi.org/10.1007/s00702-014-1315-y] [PMID: 25233799]
[140]
Dai, C.L.; Tung, Y.C.; Liu, F.; Gong, C-X.; Iqbal, K. Tau passive immunization inhibits not only tau but also Aβ pathology. Alzheimers Res. Ther., 2017, 9(1), 1.
[http://dx.doi.org/10.1186/s13195-016-0227-5] [PMID: 28073379]
[141]
Dai, C.L.; Hu, W.; Tung, Y.C.; Liu, F.; Gong, C-X.; Iqbal, K. Tau passive immunization blocks seeding and spread of Alzheimer hyperphosphorylated Tau-induced pathology in 3 × Tg-AD mice. Alzheimers Res. Ther., 2018, 10(1), 13.
[http://dx.doi.org/10.1186/s13195-018-0341-7] [PMID: 29386065]
[142]
Albert, M.; Mairet-Coello, G.; Danis, C.; Lieger, S.; Caillierez, R.; Carrier, S.; Skrobala, E.; Landrieu, I.; Michel, A.; Schmitt, M.; Citron, M.; Downey, P.; Courade, J.P.; Buée, L.; Colin, M. Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain, 2019, 142(6), 1736-1750.
[http://dx.doi.org/10.1093/brain/awz100] [PMID: 31038156]
[143]
Courade, J-P.; Angers, R.; Mairet-Coello, G.; Pacico, N.; Tyson, K.; Lightwood, D.; Munro, R.; McMillan, D.; Griffin, R.; Baker, T.; Starkie, D.; Nan, R.; Westwood, M.; Mushikiwabo, M.L.; Jung, S.; Odede, G.; Sweeney, B.; Popplewell, A.; Burgess, G.; Downey, P.; Citron, M. Epitope determines efficacy of therapeutic anti-Tau antibodies in a functional assay with human Alzheimer Tau. Acta Neuropathol., 2018, 136(5), 729-745.
[http://dx.doi.org/10.1007/s00401-018-1911-2] [PMID: 30238240]
[144]
Ray, W.J.; Buggia-Prevot, V. Novel targets for alzheimer’s disease: A view beyond amyloid. Annu. Rev. Med., 2020, 72, 15-28.
[PMID: 32867590]
[145]
Theunis, C.; Crespo-Biel, N.; Gafner, V.; Pihlgren, M.; López-Deber, M.P.; Reis, P.; Hickman, D.T.; Adolfsson, O.; Chuard, N.; Ndao, D.M.; Borghgraef, P.; Devijver, H.; Van Leuven, F.; Pfeifer, A.; Muhs, A. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau.P301L mice that model tauopathy. PLoS One, 2013, 8(8), e72301.
[http://dx.doi.org/10.1371/journal.pone.0072301] [PMID: 23977276]
[146]
Lee, S-H.; Le Pichon, C.E.; Adolfsson, O.; Gafner, V.; Pihlgren, M.; Lin, H.; Solanoy, H.; Brendza, R.; Ngu, H.; Foreman, O.; Chan, R.; Ernst, J.A.; DiCara, D.; Hotzel, I.; Srinivasan, K.; Hansen, D.V.; Atwal, J.; Lu, Y.; Bumbaca, D.; Pfeifer, A.; Watts, R.J.; Muhs, A.; Scearce-Levie, K.; Ayalon, G. Antibody-mediated targeting of tau in vivo does not require effector function and microglial engagement. Cell Rep., 2016, 16(6), 1690-1700.
[http://dx.doi.org/10.1016/j.celrep.2016.06.099] [PMID: 27475227]
[147]
Sekar, S.; McDonald, J.; Cuyugan, L.; Aldrich, J.; Kurdoglu, A.; Adkins, J.; Serrano, G.; Beach, T.G.; Craig, D.W.; Valla, J.; Reiman, E.M.; Liang, W.S. Alzheimer’s disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes. Neurobiol. Aging, 2015, 36(2), 583-591.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.09.027] [PMID: 25448601]
[148]
West, T.; Hu, Y.; Verghese, P.B.; Bateman, R.J.; Braunstein, J.B.; Fogelman, I.; Budur, K.; Florian, H.; Mendonca, N.; Holtzman, D.M. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J. Prev. Alzheimers Dis., 2017, 4(4), 236-241.
[PMID: 29181488]
[149]
Alam, R.; Driver, D.; Wu, S.; Lozano, E.; Key, S.L.; Hole, J.T. Preclinical characterization of an antibody [LY3303560] targeting aggregated tau. Alzheimer's Dementia, 2017, 13(7S_Part_11), P592-P593.
[150]
Spread, T.B. Antibody Must Attack its Mid-Region. ALZFORUM, 2018. Available from: https://www alzforum org/news/conferencecoverage/block-taus-proteopathic-spread-antibody-mustattack-itsmid-region (Accessed on April 25, 2019)
[151]
Hosokawa, T.; Saito, T.; Asada, A.; Fukunaga, K.; Hisanaga, S. Quantitative measurement of in vivo phosphorylation states of Cdk5 activator p35 by Phos-tag SDS-PAGE. Mol. Cell. Proteomics, 2010, 9(6), 1133-1143.
[http://dx.doi.org/10.1074/mcp.M900578-MCP200] [PMID: 20097924]
[152]
Reddy, P.H.; Reddy, T.P. Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr. Alzheimer Res., 2011, 8(4), 393-409.
[http://dx.doi.org/10.2174/156720511795745401] [PMID: 21470101]
[153]
Pradeepkiran, J.A.; Reddy, A.P.; Reddy, P.H. Pharmacophore-based models for therapeutic drugs against phosphorylated tau in Alzheimer’s disease. Drug Discov. Today, 2019, 24(2), 616-623.
[http://dx.doi.org/10.1016/j.drudis.2018.11.005] [PMID: 30453058]
[154]
Hanger, D.P.; Hughes, K.; Woodgett, J.R.; Brion, J-P.; Anderton, B.H. Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: Generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett., 1992, 147(1), 58-62.
[http://dx.doi.org/10.1016/0304-3940(92)90774-2] [PMID: 1336152]
[155]
Ishiguro, K.; Kobayashi, S.; Omori, A.; Takamatsu, M.; Yonekura, S.; Anzai, K.; Imahori, K.; Uchida, T. Identification of the 23 kDa subunit of tau protein kinase II as a putative activator of cdk5 in bovine brain. FEBS Lett., 1994, 342(2), 203-208.
[http://dx.doi.org/10.1016/0014-5793(94)80501-6] [PMID: 8143878]
[156]
Castro, A.; Martinez, A. Inhibition of tau phosphorylation: A new therapeutic strategy for the treatment of Alzheimer’s disease and other neurodegenerative disorders. Expert Opin. Ther. Pat., 2000, 10(10), 1519-1527.
[http://dx.doi.org/10.1517/13543776.10.10.1519]
[157]
Guo, Z.; Chen, Y.; Mao, Y-F.; Zheng, T.; Jiang, Y.; Yan, Y.; Yin, X.; Zhang, B. Long-term treatment with intranasal insulin ameliorates cognitive impairment, tau hyperphosphorylation, and microglial activation in a streptozotocin-induced Alzheimer’s rat model. Sci. Rep., 2017, 7(1), 45971.
[http://dx.doi.org/10.1038/srep45971] [PMID: 28382978]
[158]
Williams, P.; Sorribas, A.; Howes, M-J.R. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep., 2011, 28(1), 48-77.
[http://dx.doi.org/10.1039/C0NP00027B] [PMID: 21072430]
[159]
Stambolic, V.; Ruel, L.; Woodgett, J.R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol., 1996, 6(12), 1664-1668.
[http://dx.doi.org/10.1016/S0960-9822(02)70790-2] [PMID: 8994831]
[160]
Muñoz-Montaño, J.R.; Moreno, F.J.; Avila, J.; Díaz-Nido, J. Lithium inhibits Alzheimer’s disease-like tau protein phosphorylation in neurons. FEBS Lett., 1997, 411(2-3), 183-188.
[http://dx.doi.org/10.1016/S0014-5793(97)00688-1] [PMID: 9271202]
[161]
Lovestone, S.; Davis, D.R.; Webster, M-T.; Kaech, S.; Brion, J-P.; Matus, A.; Anderton, B.H. Lithium reduces tau phosphorylation: Effects in living cells and in neurons at therapeutic concentrations. Biol. Psychiatry, 1999, 45(8), 995-1003.
[http://dx.doi.org/10.1016/S0006-3223(98)00183-8] [PMID: 10386182]
[162]
Wischik, C.M.; Harrington, C.R.; Storey, J.M. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem. Pharmacol., 2014, 88(4), 529-539.
[http://dx.doi.org/10.1016/j.bcp.2013.12.008] [PMID: 24361915]
[163]
Panza, F.; Frisardi, V.; Solfrizzi, V.; Imbimbo, B.P.; Logroscino, G.; Santamato, A.; Greco, A.; Seripa, D.; Pilotto, A. Immunotherapy for Alzheimer’s disease: From anti-β-amyloid to tau-based immunization strategies. Immunotherapy, 2012, 4(2), 213-238.
[http://dx.doi.org/10.2217/imt.11.170] [PMID: 22339463]
[164]
Tolosa, E.; Litvan, I.; Höglinger, G.U.; Burn, D.; Lees, A.; Andrés, M.V.; Gómez-Carrillo, B.; León, T.; Del Ser, T. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov. Disord., 2014, 29(4), 470-478.
[http://dx.doi.org/10.1002/mds.25824] [PMID: 24532007]
[165]
Lovestone, S.; Boada, M.; Dubois, B.; Hüll, M.; Rinne, J.O.; Huppertz, H-J.; Calero, M.; Andrés, M.V.; Gómez-Carrillo, B.; León, T.; del Ser, T. A phase II trial of tideglusib in Alzheimer’s disease. J. Alzheimers Dis., 2015, 45(1), 75-88.
[http://dx.doi.org/10.3233/JAD-141959] [PMID: 25537011]
[166]
Panza, F.; Solfrizzi, V.; Seripa, D.; Imbimbo, B.P.; Lozupone, M.; Santamato, A. Tau-centric targets and drugs in clinical development for the treatment of Alzheimer’s disease. BioMed Res. Int., 2016, 2016, 3245935.
[http://dx.doi.org/10.1155/2016/3245935]
[167]
Iqbal, K.; Alonso, A.C.; El-Akkad, E.; Gong, C.X.; Haque, N.; Khatoon, S.; Pei, J.J.; Tsujio, I.; Wang, J.Z.; Grundke-Iqbal, I. Significance and mechanism of Alzheimer neurofibrillary degeneration and therapeutic targets to inhibit this lesion. J. Mol. Neurosci., 2002, 19(1-2), 95-99.
[http://dx.doi.org/10.1007/s12031-002-0017-3] [PMID: 12212801]
[168]
Medina, M.; Avila, J. Further understanding of tau phosphorylation: Implications for therapy. Expert Rev. Neurother., 2015, 15(1), 115-122.
[http://dx.doi.org/10.1586/14737175.2015.1000864] [PMID: 25555397]
[169]
Gong, C-X.; Iqbal, K. Hyperphosphorylation of microtubule-associated protein tau: A promising therapeutic target for Alzheimer disease. Curr. Med. Chem., 2008, 15(23), 2321-2328.
[http://dx.doi.org/10.2174/092986708785909111] [PMID: 18855662]
[170]
Iqbal, K.; Liu, F.; Gong, C-X. Alzheimer disease therapeutics: Focus on the disease and not just plaques and tangles. Biochem. Pharmacol., 2014, 88(4), 631-639.
[http://dx.doi.org/10.1016/j.bcp.2014.01.002] [PMID: 24418409]
[171]
Hu, S.; Begum, A.N.; Jones, M.R.; Oh, M.S.; Beech, W.K.; Beech, B.H.; Yang, F.; Chen, P.; Ubeda, O.J.; Kim, P.C.; Davies, P.; Ma, Q.; Cole, G.M.; Frautschy, S.A. GSK3 inhibitors show benefits in an Alzheimer’s disease (AD) model of neurodegeneration but adverse effects in control animals. Neurobiol. Dis., 2009, 33(2), 193-206.
[http://dx.doi.org/10.1016/j.nbd.2008.10.007] [PMID: 19038340]
[172]
Bettayeb, K.; Oumata, N.; Echalier, A.; Ferandin, Y.; Endicott, J.A.; Galons, H.; Meijer, L. CR8, a potent and selective, roscovitine-derived inhibitor of cyclin-dependent kinases. Oncogene, 2008, 27(44), 5797-5807.
[http://dx.doi.org/10.1038/onc.2008.191] [PMID: 18574471]
[173]
Meijer, L.; Borgne, A.; Mulner, O.; Chong, J.P.; Blow, J.J.; Inagaki, N.; Inagaki, M.; Delcros, J.G.; Moulinoux, J.P. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem., 1997, 243(1-2), 527-536.
[http://dx.doi.org/10.1111/j.1432-1033.1997.t01-2-00527.x] [PMID: 9030781]
[174]
Oumata, N.; Bettayeb, K.; Ferandin, Y.; Demange, L.; Lopez-Giral, A.; Goddard, M-L.; Myrianthopoulos, V.; Mikros, E.; Flajolet, M.; Greengard, P.; Meijer, L.; Galons, H. Roscovitine-derived, dual-specificity inhibitors of cyclin-dependent kinases and casein kinases 1. J. Med. Chem., 2008, 51(17), 5229-5242.
[http://dx.doi.org/10.1021/jm800109e] [PMID: 18698753]
[175]
Butler, D.; Bendiske, J.; Michaelis, M.L.; Karanian, D.A.; Bahr, B.A. Microtubule-stabilizing agent prevents protein accumulation-induced loss of synaptic markers. Eur. J. Pharmacol., 2007, 562(1-2), 20-27.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.053] [PMID: 17336290]
[176]
Zhang, B.; Carroll, J.; Trojanowski, J.Q.; Yao, Y.; Iba, M.; Potuzak, J.S.; Hogan, A.M.; Xie, S.X.; Ballatore, C.; Smith, A.B., III; Lee, V.M.; Brunden, K.R. The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J. Neurosci., 2012, 32(11), 3601-3611.
[http://dx.doi.org/10.1523/JNEUROSCI.4922-11.2012] [PMID: 22423084]
[177]
Sloane, P.D.; Zimmerman, S.; Suchindran, C.; Reed, P.; Wang, L.; Boustani, M.; Sudha, S. The public health impact of Alzheimer’s disease, 2000-2050: Potential implication of treatment advances. Annu. Rev. Public Health, 2002, 23(1), 213-231.
[http://dx.doi.org/10.1146/annurev.publhealth.23.100901.140525] [PMID: 11910061]
[178]
Cisek, K.; Cooper, G.L.; Huseby, C.J.; Kuret, J. Structure and mechanism of action of tau aggregation inhibitors. Curr. Alzheimer Res., 2014, 11(10), 918-927.
[http://dx.doi.org/10.2174/1567205011666141107150331] [PMID: 25387336]
[179]
Li, W.; Sperry, J.B.; Crowe, A.; Trojanowski, J.Q.; Smith, A.B., III; Lee, V.M.Y. Inhibition of tau fibrillization by oleocanthal via reaction with the amino groups of tau. J. Neurochem., 2009, 110(4), 1339-1351.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06224.x] [PMID: 19549281]
[180]
Casamenti, F.; Grossi, C.; Rigacci, S.; Pantano, D.; Luccarini, I.; Stefani, M. Oleuropein aglycone: A possible drug against degenerative conditions. in vivo evidence of its effectiveness against Alzheimer’s disease. J. Alzheimers Dis., 2015, 45(3), 679-688.
[http://dx.doi.org/10.3233/JAD-142850] [PMID: 25649656]
[181]
Wobst, H.J.; Sharma, A.; Diamond, M.I.; Wanker, E.E.; Bieschke, J. The green tea polyphenol (-)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Lett., 2015, 589(1), 77-83.
[http://dx.doi.org/10.1016/j.febslet.2014.11.026] [PMID: 25436420]
[182]
Akoury, E.; Gajda, M.; Pickhardt, M.; Biernat, J.; Soraya, P.; Griesinger, C.; Mandelkow, E.; Zweckstetter, M. Inhibition of tau filament formation by conformational modulation. J. Am. Chem. Soc., 2013, 135(7), 2853-2862.
[http://dx.doi.org/10.1021/ja312471h] [PMID: 23360400]
[183]
Ahmad, B.; Lapidus, L.J. Curcumin prevents aggregation in α-synuclein by increasing reconfiguration rate. J. Biol. Chem., 2012, 287(12), 9193-9199.
[http://dx.doi.org/10.1074/jbc.M111.325548] [PMID: 22267729]
[184]
Masuda, M.; Suzuki, N.; Taniguchi, S.; Oikawa, T.; Nonaka, T.; Iwatsubo, T.; Hisanaga, S.; Goedert, M.; Hasegawa, M. Small molecule inhibitors of α-synuclein filament assembly. Biochemistry, 2006, 45(19), 6085-6094.
[http://dx.doi.org/10.1021/bi0600749] [PMID: 16681381]
[185]
O’Leary, J.C., III; Li, Q.; Marinec, P.; Blair, L.J.; Congdon, E.E.; Johnson, A.G.; Jinwal, U.K.; Koren, J., III; Jones, J.R.; Kraft, C.; Peters, M.; Abisambra, J.F.; Duff, K.E.; Weeber, E.J.; Gestwicki, J.E.; Dickey, C.A. Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol. Neurodegener., 2010, 5(1), 45.
[http://dx.doi.org/10.1186/1750-1326-5-45] [PMID: 21040568]
[186]
van Bebber, F.; Paquet, D.; Hruscha, A.; Schmid, B.; Haass, C. Methylene blue fails to inhibit Tau and polyglutamine protein dependent toxicity in zebrafish. Neurobiol. Dis., 2010, 39(3), 265-271.
[http://dx.doi.org/10.1016/j.nbd.2010.03.023] [PMID: 20381619]
[187]
Hosokawa, M.; Arai, T.; Masuda-Suzukake, M.; Nonaka, T.; Yamashita, M.; Akiyama, H.; Hasegawa, M. Methylene blue reduced abnormal tau accumulation in P301L tau transgenic mice. PLoS One, 2012, 7(12), e52389.
[http://dx.doi.org/10.1371/journal.pone.0052389] [PMID: 23285020]
[188]
Spires-Jones, T.L.; Friedman, T.; Pitstick, R.; Polydoro, M.; Roe, A.; Carlson, G.A.; Hyman, B.T. Methylene blue does not reverse existing neurofibrillary tangle pathology in the rTg4510 mouse model of tauopathy. Neurosci. Lett., 2014, 562, 63-68.
[http://dx.doi.org/10.1016/j.neulet.2014.01.013] [PMID: 24462887]
[189]
Sandoval, K.E.; Witt, K.A.; Crider, A.M.; Kontoyianni, M. Somatostatin receptor-4 agonists as candidates for treatment of Alzheimer’s disease. In: Drug Design and Discovery in Alzheimer’s Disease; Elsevier, 2014; pp. 566-597.
[http://dx.doi.org/10.1016/B978-0-12-803959-5.50012-X]
[190]
Epelbaum, J.; Guillou, J-L.; Gastambide, F.; Hoyer, D.; Duron, E.; Viollet, C. Somatostatin, Alzheimer’s disease and cognition: An old story coming of age? Prog. Neurobiol., 2009, 89(2), 153-161.
[http://dx.doi.org/10.1016/j.pneurobio.2009.07.002] [PMID: 19595735]
[191]
Iwata, N.; Higuchi, M.; Saido, T.C. Metabolism of amyloid-β peptide and Alzheimer’s disease. Pharmacol. Ther., 2005, 108(2), 129-148.
[http://dx.doi.org/10.1016/j.pharmthera.2005.03.010] [PMID: 16112736]
[192]
Saito, T.; Iwata, N.; Tsubuki, S.; Takaki, Y.; Takano, J.; Huang, S-M.; Suemoto, T.; Higuchi, M.; Saido, T.C. Somatostatin regulates brain amyloid β peptide Abeta42 through modulation of proteolytic degradation. Nat. Med., 2005, 11(4), 434-439.
[http://dx.doi.org/10.1038/nm1206] [PMID: 15778722]
[193]
Guadiana, S.M.; Parker, A.K.; Filho, G.F.; Sequeira, A.; Semple-Rowland, S.; Shaw, G.; Mandel, R.J.; Foster, T.C.; Kumar, A.; Sarkisian, M.R. Type 3 adenylyl cyclase and somatostatin receptor 3 expression persists in aged rat neocortical and hippocampal neuronal cilia. Front. Aging Neurosci., 2016, 8, 127.
[http://dx.doi.org/10.3389/fnagi.2016.00127] [PMID: 27303293]
[194]
Kumar, A.; Pintus, F.; Di Petrillo, A.; Medda, R.; Caria, P.; Matos, M.J.; Viña, D.; Pieroni, E.; Delogu, F.; Era, B.; Delogu, G.L.; Fais, A. Novel 2-pheynlbenzofuran derivatives as selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Sci. Rep., 2018, 8(1), 4424.
[http://dx.doi.org/10.1038/s41598-018-22747-2] [PMID: 29535344]
[195]
Morley, J.E.; Farr, S.A.; Kumar, V.B.; Armbrecht, H.J. The SAMP8 mouse: A model to develop therapeutic interventions for Alzheimer’s disease. Curr. Pharm. Des., 2012, 18(8), 1123-1130.
[http://dx.doi.org/10.2174/138161212799315795] [PMID: 22288401]
[196]
Sandoval, K.E.; Farr, S.A.; Banks, W.A.; Crider, A.M.; Morley, J.E.; Witt, K.A. Somatostatin receptor subtype-4 agonist NNC 26-9100 decreases extracellular and intracellular Aβ1−42 trimers. Eur. J. Pharmacol., 2012, 683(1-3), 116-124.
[http://dx.doi.org/10.1016/j.ejphar.2012.03.020] [PMID: 22449380]
[197]
Farrell, S.R.; Rankin, D.R.; Brecha, N.C.; Barnes, S. Somatostatin receptor subtype 4 modulates L-type calcium channels via Gβγ and PKC signaling in rat retinal ganglion cells. Channels (Austin), 2014, 8(6), 519-527.
[http://dx.doi.org/10.4161/19336950.2014.967623] [PMID: 25483286]
[198]
Schuelert, N.; Just, S.; Kuelzer, R.; Corradini, L.; Gorham, L.C.; Doods, H. The somatostatin receptor 4 agonist J-2156 reduces mechanosensitivity of peripheral nerve afferents and spinal neurons in an inflammatory pain model. Eur. J. Pharmacol., 2015, 746, 274-281.
[http://dx.doi.org/10.1016/j.ejphar.2014.11.003] [PMID: 25445035]
[199]
Kukielski, S. Design, Synthesis, and Evaluation of 3, 4, 5-Trisubstituted-1, 2, 4-Triazoles as Selective SST4 Agonists for the Treatment of Alzheimer's Disease; Southern Illinois University: Edwardsville 2018.
[200]
Calvo-Flores Guzmán, B.; Vinnakota, C.; Govindpani, K.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. The GABAergic system as a therapeutic target for Alzheimer’s disease. J. Neurochem., 2018, 146(6), 649-669.
[http://dx.doi.org/10.1111/jnc.14345] [PMID: 29645219]
[201]
Fritschy, J.M.; Mohler, H. GABAA-receptor heterogeneity in the adult rat brain: Differential regional and cellular distribution of seven major subunits. J. Comp. Neurol., 1995, 359(1), 154-194.
[http://dx.doi.org/10.1002/cne.903590111] [PMID: 8557845]
[202]
Bormann, J. The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci., 2000, 21(1), 16, 19.
[http://dx.doi.org/10.1016/S0165-6147(99)01413-3] [PMID: 10637650]
[203]
Zhang, S.Q.; Obregon, D.; Ehrhart, J.; Deng, J.; Tian, J.; Hou, H.; Giunta, B.; Sawmiller, D.; Tan, J. Baicalein reduces β-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model. J. Neurosci. Res., 2013, 91(9), 1239-1246.
[http://dx.doi.org/10.1002/jnr.23244] [PMID: 23686791]
[204]
Lee, B.Y.; Ban, J.Y.; Seong, Y.H. Chronic stimulation of GABAA receptor with muscimol reduces amyloid β protein (25-35)-induced neurotoxicity in cultured rat cortical cells. Neurosci. Res., 2005, 52(4), 347-356.
[http://dx.doi.org/10.1016/j.neures.2005.04.008] [PMID: 15896866]
[205]
Lin, X.; Jun-Tian, Z. Neuroprotection by D-securinine against neurotoxicity induced by beta-amyloid (25-35). Neurol. Res., 2004, 26(7), 792-796.
[http://dx.doi.org/10.1179/016164104225014148] [PMID: 15494124]
[206]
Leurs, R.; Smit, M.J.; Timmerman, H. Molecular pharmacological aspects of histamine receptors. Pharmacol. Ther., 1995, 66(3), 413-463.
[http://dx.doi.org/10.1016/0163-7258(95)00006-3] [PMID: 7494855]
[207]
Clapham, J.; Kilpatrick, G.J. Histamine H3 receptors modulate the release of [3H]-acetylcholine from slices of rat entorhinal cortex: Evidence for the possible existence of H3 receptor subtypes. Br. J. Pharmacol., 1992, 107(4), 919-923.
[http://dx.doi.org/10.1111/j.1476-5381.1992.tb13386.x] [PMID: 1334753]
[208]
Glowinski, J.; Axelrod, J.; Iversen, L.L. Regional studies of catecholamines in the rat brain. IV. Effects of drugs on the disposition and metabolism of H3-norepinephrine and H3-dopamine. J. Pharmacol. Exp. Ther., 1966, 153(1), 30-41.
[PMID: 4380692]
[209]
Esbenshade, T.A.; Browman, K.E.; Bitner, R.S.; Strakhova, M.; Cowart, M.D.; Brioni, J.D. The histamine H3 receptor: An attractive target for the treatment of cognitive disorders. Br. J. Pharmacol., 2008, 154(6), 1166-1181.
[http://dx.doi.org/10.1038/bjp.2008.147] [PMID: 18469850]
[210]
Threlfell, S.; Cragg, S.J.; Kalló, I.; Turi, G.F.; Coen, C.W.; Greenfield, S.A. Histamine H3 receptors inhibit serotonin release in substantia nigra pars reticulata. J. Neurosci., 2004, 24(40), 8704-8710.
[http://dx.doi.org/10.1523/JNEUROSCI.2690-04.2004] [PMID: 15470136]
[211]
Brioni, J.D.; Esbenshade, T.A.; Garrison, T.R.; Bitner, S.R.; Cowart, M.D. Discovery of histamine H3 antagonists for the treatment of cognitive disorders and Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2011, 336(1), 38-46.
[http://dx.doi.org/10.1124/jpet.110.166876] [PMID: 20864505]
[212]
Gemkow, M.J.; Davenport, A.J.; Harich, S.; Ellenbroek, B.A.; Cesura, A.; Hallett, D. The histamine H3 receptor as a therapeutic drug target for CNS disorders. Drug Discov. Today, 2009, 14(9-10), 509-515.
[http://dx.doi.org/10.1016/j.drudis.2009.02.011] [PMID: 19429511]
[213]
Łażewska, D.; Bajda, M.; Kaleta, M.; Zaręba, P.; Doroz-Płonka, A.; Siwek, A.; Alachkar, A.; Mogilski, S.; Saad, A.; Kuder, K.; Olejarz-Maciej, A.; Godyń, J.; Stary, D.; Sudoł, S.; Więcek, M.; Latacz, G.; Walczak, M.; Handzlik, J.; Sadek, B.; Malawska, B.; Kieć-Kononowicz, K. Rational design of new multitarget histamine H3 receptor ligands as potential candidates for treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2020, 207, 112743.
[http://dx.doi.org/10.1016/j.ejmech.2020.112743] [PMID: 32882609]
[214]
Garcia-Alloza, M.; Hirst, W.D.; Chen, C.P.; Lasheras, B.; Francis, P.T.; Ramírez, M.J. Differential involvement of 5-HT(1B/1D) and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer’s disease. Neuropsychopharmacology, 2004, 29(2), 410-416.
[http://dx.doi.org/10.1038/sj.npp.1300330] [PMID: 14571255]
[215]
Geldenhuys, W.J.; Van der Schyf, C.J. Role of serotonin in Alzheimer’s disease: A new therapeutic target? CNS Drugs, 2011, 25(9), 765-781.
[http://dx.doi.org/10.2165/11590190-000000000-00000] [PMID: 21870888]
[216]
Butzlaff, M.; Ponimaskin, E. The role of serotonin receptors in Alzheimer’s disease. Opera Med. Physiol., 2016, 2(1), 77-86.
[217]
Verdurand, M.; Zimmer, L. Hippocampal 5-HT1A receptor expression changes in prodromal stages of Alzheimer’s disease: Beneficial or deleterious? Neuropharmacology, 2017, 123, 446-454.
[http://dx.doi.org/10.1016/j.neuropharm.2017.06.021] [PMID: 28647411]
[218]
Barrett, F.S.; Workman, C.I.; Sair, H.I.; Savonenko, A.V.; Kraut, M.A.; Sodums, D.J.; Joo, J.J.; Nassery, N.; Marano, C.M.; Munro, C.A.; Brandt, J.; Zhou, Y.; Wong, D.F.; Smith, G.S. Association between serotonin denervation and resting-state functional connectivity in mild cognitive impairment. Hum. Brain Mapp., 2017, 38(7), 3391-3401.
[http://dx.doi.org/10.1002/hbm.23595] [PMID: 28379618]
[219]
McCann, U.D.; Szabo, Z.; Seckin, E.; Rosenblatt, P.; Mathews, W.B.; Ravert, H.T.; Dannals, R.F.; Ricaurte, G.A. Quantitative PET studies of the serotonin transporter in MDMA users and controls using [11C]McN5652 and [11C]DASB. Neuropsychopharmacology, 2005, 30(9), 1741-1750.
[http://dx.doi.org/10.1038/sj.npp.1300736] [PMID: 15841106]
[220]
Cirrito, J.R.; Disabato, B.M.; Restivo, J.L.; Verges, D.K.; Goebel, W.D.; Sathyan, A.; Hayreh, D.; D’Angelo, G.; Benzinger, T.; Yoon, H.; Kim, J.; Morris, J.C.; Mintun, M.A.; Sheline, Y.I. Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans. Proc. Natl. Acad. Sci. USA, 2011, 108(36), 14968-14973.
[http://dx.doi.org/10.1073/pnas.1107411108] [PMID: 21873225]
[221]
Sheline, Y.I.; West, T.; Yarasheski, K.; Swarm, R.; Jasielec, M.S.; Fisher, J.R. An antidepressant decreases CSF Aβ production in healthy individuals and in transgenic AD mice. Sci. Transl. Med., 2014, 6(236), 236.
[http://dx.doi.org/10.1126/scitranslmed.3008169]
[222]
Claeysen, S.; Bockaert, J.; Giannoni, P. Serotonin: A new hope in Alzheimer’s disease? ACS Publications, 2015, 6(7), 940-943.
[223]
Braissant, O.; Foufelle, F.; Scotto, C.; Dauça, M.; Wahli, W. Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology, 1996, 137(1), 354-366.
[http://dx.doi.org/10.1210/endo.137.1.8536636] [PMID: 8536636]
[224]
Bordet, R.; Ouk, T.; Petrault, O.; Gelé, P.; Gautier, S.; Laprais, M.; Deplanque, D.; Duriez, P.; Staels, B.; Fruchart, J.C.; Bastide, M. PPAR: A new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem. Soc. Trans., 2006, 34(Pt 6), 1341-1346.
[http://dx.doi.org/10.1042/BST0341341] [PMID: 17073815]
[225]
Heneka, M.T.; Sastre, M.; Dumitrescu-Ozimek, L.; Hanke, A.; Dewachter, I.; Kuiperi, C.; O’Banion, K.; Klockgether, T.; Van Leuven, F.; Landreth, G.E. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain, 2005, 128(Pt 6), 1442-1453.
[http://dx.doi.org/10.1093/brain/awh452] [PMID: 15817521]
[226]
Skerrett, R.; Pellegrino, M.P.; Casali, B.T.; Taraboanta, L.; Landreth, G.E. Combined liver X receptor/peroxisome proliferator-activated receptor γ agonist treatment reduces amyloid β levels and improves behavior in amyloid precursor protein/presenilin 1 mice. J. Biol. Chem., 2015, 290(35), 21591-21602.
[http://dx.doi.org/10.1074/jbc.M115.652008] [PMID: 26163517]
[227]
Zolezzi, J.M.; Bastías-Candia, S.; Santos, M.J.; Inestrosa, N.C. Alzheimer’s disease: Relevant molecular and physiopathological events affecting amyloid-β brain balance and the putative role of PPARs. Front. Aging Neurosci., 2014, 6, 176.
[http://dx.doi.org/10.3389/fnagi.2014.00176] [PMID: 25120477]
[228]
Watson, G.S.; Cholerton, B.A.; Reger, M.A.; Baker, L.D.; Plymate, S.R.; Asthana, S.; Fishel, M.A.; Kulstad, J.J.; Green, P.S.; Cook, D.G.; Kahn, S.E.; Keeling, M.L.; Craft, S. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: A preliminary study. Am. J. Geriatr. Psychiatry, 2005, 13(11), 950-958.
[http://dx.doi.org/10.1176/appi.ajgp.13.11.950] [PMID: 16286438]
[229]
Tong, M.; Dominguez, C.; Didsbury, J.; de la Monte, S.M. Targeting Alzheimer’s disease neuro-metabolic dysfunction with a small molecule nuclear receptor agonist (T3D-959) reverses disease pathologies. J. Alzheimers Dis. Parkinsonism, 2016, 6(3), 238.
[http://dx.doi.org/10.4172/2161-0460.1000238] [PMID: 27525190]
[230]
Aso, E.; Ferrer, I. Cannabinoids for treatment of Alzheimer’s disease: Moving toward the clinic. Front. Pharmacol., 2014, 5, 37.
[http://dx.doi.org/10.3389/fphar.2014.00037] [PMID: 24634659]
[231]
Navarro, G.; Borroto-Escuela, D.; Angelats, E.; Etayo, Í.; Reyes-Resina, I.; Pulido-Salgado, M.; Rodríguez-Pérez, A.I.; Canela, E.I.; Saura, J.; Lanciego, J.L.; Labandeira-García, J.L.; Saura, C.A.; Fuxe, K.; Franco, R. Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer’s disease and levodopa-induced dyskinesia. Brain Behav. Immun., 2018, 67, 139-151.
[http://dx.doi.org/10.1016/j.bbi.2017.08.015] [PMID: 28843453]
[232]
Janefjord, E.; Mååg, J.L.; Harvey, B.S.; Smid, S.D. Cannabinoid effects on β amyloid fibril and aggregate formation, neuronal and microglial-activated neurotoxicity in vitro. Cell. Mol. Neurobiol., 2014, 34(1), 31-42.
[http://dx.doi.org/10.1007/s10571-013-9984-x] [PMID: 24030360]
[233]
Benito, C.; Núñez, E.; Tolón, R.M.; Carrier, E.J.; Rábano, A.; Hillard, C.J.; Romero, J. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J. Neurosci., 2003, 23(35), 11136-11141.
[http://dx.doi.org/10.1523/JNEUROSCI.23-35-11136.2003] [PMID: 14657172]
[234]
Altamura, C.; Ventriglia, M.; Martini, M.G.; Montesano, D.; Errante, Y.; Piscitelli, F.; Scrascia, F.; Quattrocchi, C.; Palazzo, P.; Seccia, S.; Vernieri, F.; Di Marzo, V. Elevation of plasma 2-arachidonoylglycerol levels in Alzheimer’s disease patients as a potential protective mechanism against neurodegenerative decline. J. Alzheimers Dis., 2015, 46(2), 497-506.
[http://dx.doi.org/10.3233/JAD-142349] [PMID: 25818503]
[235]
Aso Pérez, E.; Juvés, S.; Maldonado, R.; Ferrer, I. CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AβPP/PS1 mice. 2013, 35(4), 847-58.
[236]
Cheng, Y.; Dong, Z.; Liu, S. β-Caryophyllene ameliorates the Alzheimer-like phenotype in APP/PS1 Mice through CB2 receptor activation and the PPARγ pathway. Pharmacology, 2014, 94(1-2), 1-12.
[http://dx.doi.org/10.1159/000362689] [PMID: 25171128]
[237]
Shoemaker, J.L.; Seely, K.A.; Reed, R.L.; Crow, J.P.; Prather, P.L. The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset. J. Neurochem., 2007, 101(1), 87-98.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04346.x] [PMID: 17241118]
[238]
de Bruin, N.M.; Prickaerts, J.; Lange, J.H.; Akkerman, S.; Andriambeloson, E.; de Haan, M.; Wijnen, J.; van Drimmelen, M.; Hissink, E.; Heijink, L.; Kruse, C.G. SLV330, a cannabinoid CB1 receptor antagonist, ameliorates deficits in the T-maze, object recognition and Social Recognition Tasks in rodents. Neurobiol. Learn. Mem., 2010, 93(4), 522-531.
[http://dx.doi.org/10.1016/j.nlm.2010.01.010] [PMID: 20132903]
[239]
Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res., 2012, 7(5), 376-385.
[PMID: 25774178]
[240]
Feng, Y.; Wang, X. Antioxidant therapies for Alzheimer’s disease. Oxid. Med. Cell. Longev., 2012, 2012, 472932.
[http://dx.doi.org/10.1155/2012/472932]
[241]
Eckert, G.P.; Müller, W.E.; Wood, G.W. Cholesterol-lowering drugs and Alzheimer’s disease. Future Lipidol., 2007, 2(4), 423-432.
[http://dx.doi.org/10.2217/17460875.2.4.423]
[242]
Dias, I.H.; Mistry, J.; Fell, S.; Reis, A.; Spickett, C.M.; Polidori, M.C.; Lip, G.Y.; Griffiths, H.R. Oxidized LDL lipids increase β-amyloid production by SH-SY5Y cells through glutathione depletion and lipid raft formation. Free Radic. Biol. Med., 2014, 75, 48-59.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.07.012] [PMID: 25048970]
[243]
Kandiah, N.; Feldman, H.H. Therapeutic potential of statins in Alzheimer’s disease. J. Neurol. Sci., 2009, 283(1-2), 230-234.
[http://dx.doi.org/10.1016/j.jns.2009.02.352] [PMID: 19321181]
[244]
Grundy, S.M. HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N. Engl. J. Med., 1988, 319(1), 24-33.
[http://dx.doi.org/10.1056/NEJM198807073190105] [PMID: 3288867]
[245]
Chauhan, N.B.; Siegel, G.J.; Feinstein, D.L. Effects of lovastatin and pravastatin on amyloid processing and inflammatory response in TgCRND8 brain. Neurochem. Res., 2004, 29(10), 1897-1911.
[http://dx.doi.org/10.1023/B:NERE.0000042217.90204.8d] [PMID: 15532546]
[246]
Wolozin, B.; Kellman, W.; Ruosseau, P.; Celesia, G.G.; Siegel, G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol., 2000, 57(10), 1439-1443.
[http://dx.doi.org/10.1001/archneur.57.10.1439] [PMID: 11030795]
[247]
von Bergmann, K.; Hennerici, M.; Beyreuther, K.; Hartmann, T. Simvastatin strongly reduces levels of Alzheimer’s disease-amyloid peptides A 42 and A 40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2001, 98(10), 5856-5861.
[248]
Serrano-Pozo, A.; Vega, G.L.; Lütjohann, D.; Locascio, J.J.; Tennis, M.K.; Deng, A.; Atri, A.; Hyman, B.T.; Irizarry, M.C.; Growdon, J.H. Effects of simvastatin on cholesterol metabolism and Alzheimer disease biomarkers. Alzheimer Dis. Assoc. Disord., 2010, 24(3), 220-226.
[http://dx.doi.org/10.1097/WAD.0b013e3181d61fea] [PMID: 20473136]
[249]
Geifman, N.; Brinton, R.D.; Kennedy, R.E.; Schneider, L.S.; Butte, A.J. Evidence for benefit of statins to modify cognitive decline and risk in Alzheimer’s disease. Alzheimers Res. Ther., 2017, 9(1), 10.
[http://dx.doi.org/10.1186/s13195-017-0237-y] [PMID: 28212683]
[250]
Sparks, D.L.; Sabbagh, M.N.; Connor, D.J.; Lopez, J.; Launer, L.J.; Petanceska, S.; Browne, P.; Wassar, D.; Johnson-Traver, S.; Lochhead, J.; Ziolkowski, C. Atorvastatin therapy lowers circulating cholesterol but not free radical activity in advance of identifiable clinical benefit in the treatment of mild-to-moderate AD. Curr. Alzheimer Res., 2005, 2(3), 343-353.
[http://dx.doi.org/10.2174/1567205054367900] [PMID: 15974900]
[251]
Choi, J-S.; Braymer, J.J.; Nanga, R.P.; Ramamoorthy, A.; Lim, M.H. Design of small molecules that target metal-Aβ species and regulate metal-induced Aβ aggregation and neurotoxicity. Proc. Natl. Acad. Sci. USA, 2010, 107(51), 21990-21995.
[http://dx.doi.org/10.1073/pnas.1006091107] [PMID: 21131570]
[252]
Adlard, P.A.; Parncutt, J.M.; Finkelstein, D.I.; Bush, A.I. Cognitive loss in zinc transporter-3 knock-out mice: A phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J. Neurosci., 2010, 30(5), 1631-1636.
[http://dx.doi.org/10.1523/JNEUROSCI.5255-09.2010] [PMID: 20130173]
[253]
Regland, B.; Lehmann, W.; Abedini, I.; Blennow, K.; Jonsson, M.; Karlsson, I.; Sjögren, M.; Wallin, A.; Xilinas, M.; Gottfries, C.G. Treatment of Alzheimer’s disease with clioquinol. Dement. Geriatr. Cogn. Disord., 2001, 12(6), 408-414.
[http://dx.doi.org/10.1159/000051288] [PMID: 11598313]
[254]
Payton, S.; Cahill, C.M.; Randall, J.D.; Gullans, S.R.; Rogers, J.T. Drug discovery targeted to the Alzheimer’s APP mRNA 5′-untranslated region: The action of paroxetine and dimercaptopropanol. J. Mol. Neurosci., 2003, 20(3), 267-275.
[http://dx.doi.org/10.1385/JMN:20:3:267] [PMID: 14501007]
[255]
Sayre, L.M.; Perry, G.; Harris, P.L.; Liu, Y.; Schubert, K.A.; Smith, M.A. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: A central role for bound transition metals. J. Neurochem., 2000, 74(1), 270-279.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0740270.x] [PMID: 10617129]
[256]
Kurihara, A.; Pardridge, W.M. Abeta(1-40) peptide radiopharmaceuticals for brain amyloid imaging: (111)In chelation, conjugation to poly(ethylene glycol)-biotin linkers, and autoradiography with Alzheimer’s disease brain sections. Bioconjug. Chem., 2000, 11(3), 380-386.
[http://dx.doi.org/10.1021/bc9901393] [PMID: 10821654]
[257]
Crapper McLachlan, D.R.; Dalton, A.J.; Kruck, T.P.; Bell, M.Y.; Smith, W.L.; Kalow, W.; Andrews, D.F. Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet, 1991, 337(8753), 1304-1308.
[http://dx.doi.org/10.1016/0140-6736(91)92978-B] [PMID: 1674295]
[258]
Bandyopadhyay, S.; Huang, X.; Cho, H.; Greig, N.; Youdim, M.; Rogers, J. Metal specificity of an iron-responsive element in Alzheimer’s APP mRNA 5′ untranslated region, tolerance of SH-SY5Y and H4 neural cells to desferrioxamine, clioquinol, VK-28, and a piperazine chelator. In: Oxidative Stress and Neuroprotection; Springer, 2006; pp. 237-247.
[259]
Cuajungco, M.P.; Fagét, K.Y.; Huang, X.; Tanzi, R.E.; Bush, A.I. Metal chelation as a potential therapy for Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2000, 920(1), 292-304.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06938.x] [PMID: 11193167]
[260]
Price, K.A.; Crouch, P.J.; White, A.R. Therapeutic treatment of Alzheimer’s disease using metal complexing agents. Recent Patents CNS Drug Discov., 2007, 2(3), 180-187.
[http://dx.doi.org/10.2174/157488907782411774] [PMID: 18221229]
[261]
León, R.; Garcia, A.G.; Marco-Contelles, J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev., 2013, 33(1), 139-189.
[http://dx.doi.org/10.1002/med.20248] [PMID: 21793014]
[262]
Domínguez, J.L.; Fernández-Nieto, F.; Castro, M.; Catto, M.; Paleo, M.R.; Porto, S.; Sardina, F.J.; Brea, J.M.; Carotti, A.; Villaverde, M.C.; Sussman, F. Computer-aided structure-based design of multitarget leads for Alzheimer’s disease. J. Chem. Inf. Model., 2015, 55(1), 135-148.
[http://dx.doi.org/10.1021/ci500555g] [PMID: 25483751]
[263]
Chen, X.; Wehle, S.; Kuzmanovic, N.; Merget, B.; Holzgrabe, U.; König, B.; Sotriffer, C.A.; Decker, M. Acetylcholinesterase inhibitors with photoswitchable inhibition of β-amyloid aggregation. ACS Chem. Neurosci., 2014, 5(5), 377-389.
[http://dx.doi.org/10.1021/cn500016p] [PMID: 24628027]
[264]
Sarno, T.A.; Talib, L.L.; Joaquim, H.P.G.; Bram, J.M.; Gattaz, W.F.; Forlenza, O.V. Protein expression of BACE1 is downregulated by donepezil in Alzheimer’s disease platelets. J. Alzheimers Dis., 2017, 55(4), 1445-1451.
[http://dx.doi.org/10.3233/JAD-160813] [PMID: 27858713]
[265]
Hamulakova, S.; Poprac, P.; Jomova, K.; Brezova, V.; Lauro, P.; Drostinova, L.; Jun, D.; Sepsova, V.; Hrabinova, M.; Soukup, O.; Kristian, P.; Gazova, Z.; Bednarikova, Z.; Kuca, K.; Valko, M. Targeting copper(II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer’s disease using multifunctional tacrine-coumarin hybrid molecules. J. Inorg. Biochem., 2016, 161, 52-62.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.05.001] [PMID: 27230386]
[266]
Guzior, N.; Wieckowska, A.; Panek, D.; Malawska, B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2015, 22(3), 373-404.
[http://dx.doi.org/10.2174/0929867321666141106122628] [PMID: 25386820]
[267]
Simoni, E.; Daniele, S.; Bottegoni, G.; Pizzirani, D.; Trincavelli, M.L.; Goldoni, L.; Tarozzo, G.; Reggiani, A.; Martini, C.; Piomelli, D.; Melchiorre, C.; Rosini, M.; Cavalli, A. Combining galantamine and memantine in multitargeted, new chemical entities potentially useful in Alzheimer’s disease. J. Med. Chem., 2012, 55(22), 9708-9721.
[http://dx.doi.org/10.1021/jm3009458] [PMID: 23033965]
[268]
Weinreb, O.; Amit, T.; Bar-Am, O.; Youdim, M.B. Ladostigil: A novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr. Drug Targets, 2012, 13(4), 483-494.
[http://dx.doi.org/10.2174/138945012799499794] [PMID: 22280345]
[269]
Scheiner, M.; Sink, A.; Hoffmann, M.; Vrigneau, C.; Endres, E.; Carles, A.; Sotriffer, C.; Maurice, T.; Decker, M. Photoswitchable pseudoirreversible butyrylcholinesterase inhibitors allow optical control of inhibition in vitro and enable restoration of cognition in an Alzheimer’s disease mouse model upon irradiation. J. Am. Chem. Soc., 2022, 144(7), 3279-3284.
[http://dx.doi.org/10.1021/jacs.1c13492] [PMID: 35138833]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy