Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Tannic Acid, as a Structural Moiety Coupled to a Protein Antigen, Exhibiting a Molecular-structure Adjuvant Activity for Antibody Specificity Enhancement

Author(s): Brenda Molina-Ramírez, Nidia Cabral-Hipólito, Irais Castillo-Maldonado*, Dealmy Delgadillo-Guzmán, Rocío Meza-Velázquez, Agustina Ramírez-Moreno, Erika Flores-Loyola, Pablo Ruíz-Flores, Jorge Haro-Santa Cruz, Perla-Karina Espino-Silva, Joaquín Avalos-Soto, Miguel-Ángel Téllez-López, Rubén Daniel Arellano Pérez Vertti, Manuel-Gerardo Rosales-González and David Pedroza-Escobar*

Volume 29, Issue 11, 2022

Published on: 06 October, 2022

Page: [925 - 936] Pages: 12

DOI: 10.2174/0929866529666220902152147

Price: $65

conference banner
Abstract

Background: An antigen is a small foreign substance, such as a microorganism structural protein, that may trigger an immune response once inside the body. Antigens are preferentially used rather than completely attenuated microorganisms to develop safe vaccines. Unfortunately, not all antigens are able to induce an immune response. Thus, new adjuvants to enhance the antigen’s ability to stimulate immunity must be developed.

Objectives: Therefore, this work aimed to evaluate the molecular-structure adjuvant activity of tannic acid (TA) coupled to a protein antigen in Balb/c mice.

Methods: Bovine serum albumin (BSA) was used as an antigen. The coupling of BSA and TA was mediated by carbodiimide crosslinking, and verified by SDS-PAGE. Forty-two Balb/c mice were divided into seven groups, including two controls without antigen, an antigen control, an adjuvant control, and two treatment groups. An additional group was used for macrophages isolation. A 30-day scheme was used to immunize the mice. The analysis of humoral immunity included immunoglobulin quantification, isotyping and antigen-antibody precipitation. The analysis of cell-mediated immunity included the quantification of nitric oxide from peritoneal macrophages and splenocytes’ proliferation assay after treatment stimulation.

Results: No differences were found in the antibodies’ concentration or isotypes induced with the conjugate or the pure BSA. However, an immunogenicity improvement (p < 0.05) was observed through the specific anti-BSA antibody titers in mice immunized with the conjugate. Besides, macrophage activation (p < 0.05) was detected when stimulated with the treatments containing TA.

Conclusion: Tannic acid exhibited macrophages’ activation properties. Moreover, when TA was incorporated into the structure of a protein antigen, such as BSA, an antibody specificity enhancement was observed. This was a consequence of antigen processing by activated antigen-presenting cells. These results showed the use of tannic acid as a novel candidate for vaccine molecular-structure adjuvant.

Keywords: Adjuvant, cell-mediated immunity, humoral immunity, immunogenicity, tannic acid, vaccine adjuvant.

Graphical Abstract

[1]
Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and molecular immunology, 9th ed; Elsevier Science: Boston, MA, 2016.
[2]
Reyna-Margarita, H.R.; Irais, C.M.; Mario-Alberto, R.G.; Agustina, R.M.; Luis-Benjamín, S.G.; David, P.E. Plant phenolics and lectins as vaccine adjuvants. Curr. Pharm. Biotechnol., 2019, 20(15), 1236-1243.
[http://dx.doi.org/10.2174/1389201020666190716110705] [PMID: 31333121]
[3]
Rodwell, V.W.; Bender, D.A.; Botham, K.M.; Kennelly, P.J.; Weill, A. Harper’s Illustrated Biochemistry, 31st ed; McGraw-Hill: New York, 2018.
[4]
Sethu, S.; Govindappa, K.; Alhaidari, M.; Pirmohamed, M.; Park, K.; Sathish, J. Immunogenicity to biologics: Mechanisms, prediction and reduction. Arch. Immunol. Ther. Exp., 2012, 60(5), 331-344.
[http://dx.doi.org/10.1007/s00005-012-0189-7] [PMID: 22930363]
[5]
Mahanty, S.; Prigent, A.; Garraud, O. Immunogenicity of infectious pathogens and vaccine antigens. BMC Immunol., 2015, 16(1), 31.
[http://dx.doi.org/10.1186/s12865-015-0095-y] [PMID: 26021448]
[6]
Irais, C.M.; María-de-la-Luz, S.G.; Dealmy, D.G.; Agustina, R.M.; Nidia, C.H.; Mario-Alberto, R.G.; Luis-Benjamín, S.G.; María-del-Carmen, V.M.; David, P.E. Plant phenolics as pathogen-carrier immunogenicity modulator haptens. Curr. Pharm. Biotechnol., 2020, 21(10), 897-905.
[http://dx.doi.org/10.2174/1389201021666200121130313] [PMID: 31965941]
[7]
Stevanović S. Structural basis of immunogenicity. Transpl. Immunol., 2002, 10(2-3), 133-136.
[http://dx.doi.org/10.1016/S0966-3274(02)00059-X] [PMID: 12216943]
[8]
Colbert, J.D.; Cruz, F.M.; Rock, K.L. Cross-presentation of exogenous antigens on MHC I molecules. Curr. Opin. Immunol., 2020, 64, 1-8.
[http://dx.doi.org/10.1016/j.coi.2019.12.005] [PMID: 31927332]
[9]
Kotsias, F.; Cebrian, I.; Alloatti, A. Antigen processing and presentation. Int. Rev. Cell Mol. Biol., 2019, 348, 69-121.
[http://dx.doi.org/10.1016/bs.ircmb.2019.07.005] [PMID: 31810556]
[10]
Brodsky, F.M.; Guagliardi, L.E. The cell biology of antigen processing and presentation. Annu. Rev. Immunol., 1991, 9(1), 707-744.
[http://dx.doi.org/10.1146/annurev.iy.09.040191.003423] [PMID: 1910692]
[11]
Ferrington, D.A.; Gregerson, D.S. Immunoproteasomes. Prog. Mol. Biol. Transl. Sci., 2012, 109, 75-112.
[http://dx.doi.org/10.1016/B978-0-12-397863-9.00003-1] [PMID: 22727420]
[12]
Fineschi, B.; Miller, J. Endosomal proteases and antigen processing. Trends Biochem. Sci., 1997, 22(10), 377-382.
[http://dx.doi.org/10.1016/S0968-0004(97)01116-X] [PMID: 9357312]
[13]
Li, P.; Gregg, J.L.; Wang, N.; Zhou, D.; O’Donnell, P.; Blum, J.S.; Crotzer, V.L. Compartmentalization of class II antigen presentation: Contribution of cytoplasmic and endosomal processing. Immunol. Rev., 2005, 207(1), 206-217.
[http://dx.doi.org/10.1111/j.0105-2896.2005.00297.x] [PMID: 16181338]
[14]
Lindenbergh, M.F.S.; Stoorvogel, W. Antigen presentation by extracellular vesicles from professional antigen-presenting cells. Annu. Rev. Immunol., 2018, 36(1), 435-459.
[http://dx.doi.org/10.1146/annurev-immunol-041015-055700] [PMID: 29400984]
[15]
Watts, C. The endosome lysosome pathway and information generation in the immune system. Biochim. Biophys. Acta. Proteins Proteomics, 2012, 1824(1), 14-21.
[http://dx.doi.org/10.1016/j.bbapap.2011.07.006] [PMID: 21782984]
[16]
Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta. Proteins Proteomics, 2012, 1824(1), 68-88.
[http://dx.doi.org/10.1016/j.bbapap.2011.10.002] [PMID: 22024571]
[17]
Yadati, T.; Houben, T.; Bitorina, A.; Shiri-Sverdlov, R. The ins and outs of cathepsins: Physiological function and role in disease management. Cells, 2020, 9(7), 1679.
[http://dx.doi.org/10.3390/cells9071679] [PMID: 32668602]
[18]
Patel, S.; Homaei, A.; El-Seedi, H.R.; Akhtar, N. Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed. Pharmacother., 2018, 105, 526-532.
[http://dx.doi.org/10.1016/j.biopha.2018.05.148] [PMID: 29885636]
[19]
Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. AOAC Int., 2019, 102(5), 1397-1400.
[http://dx.doi.org/10.5740/jaoacint.19-0133] [PMID: 31200785]
[20]
Serrano, J.; Puupponen-Pimiä, R.; Dauer, A.; Aura, A.M.; Saura-Calixto, F. Tannins: Current knowledge of food sources, intake, bioavailability and biological effects. Mol. Nutr. Food Res., 2009, 53(Suppl. 2), S310-S329.
[http://dx.doi.org/10.1002/mnfr.200900039] [PMID: 19437486]
[21]
Griroge, A. Plant Phenolic Compounds as Immunomodulatory Agents. In: Phenolic Compounds-Biological Activity; Marcos, S.H.; Mariana, P.T.; Maria, R.G.M., Eds.; IntechOpen, 2017; pp. 75-98.
[22]
Venkatalakshmi, P.; Vadivel, V.; Brindha, P. Role of phytochemicals as immunomodulatory agents: A review. Int. J. Green Pharm, 2016, 10(1), 1-18.
[23]
Lakhani, N.; Kamra, D.N.; Lakhani, P.; Alhussien, M.N. Immune status and haemato-biochemical profile of buffalo calves supplemented with phytogenic feed additives rich in tannins, saponins and essential oils. Trop. Anim. Health Prod., 2019, 51(3), 565-573.
[http://dx.doi.org/10.1007/s11250-018-1727-z] [PMID: 30328547]
[24]
Ryel Min, B.; McTear, K.; Wang, H.H.; Joakin, M.; Gurung, N.; Abrahamsen, F.; Solaiman, S.; Sue Eun, J.; Hon Lee, J.; Dietz, L.A.; Zeller, W.E. Influence of elevated protein and tannin-rich peanut skin supplementation on growth performance, blood metabolites, carcass traits and immune-related gene expression of grazing meat goats. J. Anim. Physiol. Anim. Nutr., 2019, 104(1), 88-100.
[http://dx.doi.org/10.1111/jpn.13250] [PMID: 31724236]
[25]
Cabral-Hipólito, N. Effect of the aqueous extract of Azadirachta indica A. Juss (Neem) on the specific response BSA-serum antibodies of Wistar rats. MSc Thesis, Autonomous University of Coahuila: Torreon. 2019.
[26]
Cabral-Hipólito, N.; Molina-Ramírez, B.S.; Castillo-Maldonado, I.; Meza-Velázquez, R.; García-Garza, R.; Gauna, S.E.V.; Delgadillo-Guzmán, D.; Hernández-Herrera, A.; Ramírez-Moreno, A.; Cruz, J.H.S.; Espino-Silva, P.K.; Pedroza-Escobar, D. Tannic acid exhibits adjuvant activity by enhancing humoral and cell-mediated immunity against BSA as a protein antigen. Protein Pept. Lett., 2022, 29(2), 166-175.
[http://dx.doi.org/10.2174/0929866528666211125110701] [PMID: 34823455]
[27]
Tsakos, M.; Schaffert, E.S.; Clement, L.L.; Villadsen, N.L.; Poulsen, T.B. Ester coupling reactions – an enduring challenge in the chemical synthesis of bioactive natural products. Nat. Prod. Rep., 2015, 32(4), 605-632.
[http://dx.doi.org/10.1039/C4NP00106K] [PMID: 25572105]
[28]
Bio-Rad Laboratories, Inc.. Molecular weight determination by SDS-PAGE in: Electrophoresis tech note 3133; , 2004. Available from: https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_3133.pdf
[29]
Matsumoto, H.; Haniu, H.; Komori, N. Determination of protein molecular weights on SDS-PAGE. Methods Mol. Biol., 2019, 1855, 101-105.
[http://dx.doi.org/10.1007/978-1-4939-8793-1_10] [PMID: 30426411]
[30]
Haider, S.R.; Reid, H.J.; Sharp, B.L. Tricine-SDS-PAGE. Methods Mol. Biol., 2019, 1855, 151-160.
[http://dx.doi.org/10.1007/978-1-4939-8793-1_15] [PMID: 30426416]
[31]
Du, J.; Duan, S.; Miao, J.; Zhai, M.; Cao, Y. Purification and characterization of chitinase from Paenibacillus sp. Biotechnol. Appl. Biochem., 2021, 68(1), 30-40.
[http://dx.doi.org/10.1002/bab.1889] [PMID: 31957084]
[32]
Varol, C.; Mildner, A.; Jung, S. Macrophages: Development and tissue specialization. Annu. Rev. Immunol., 2015, 33(1), 643-675.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112220] [PMID: 25861979]
[33]
Mond, J.J.; Brunswick, M. Proliferative assays for B cell function. Curr. Protoc. Immunol., 2003, 57(1), 3-10.
[http://dx.doi.org/10.1002/0471142735.im0310s57]
[34]
Yabuuchi, S.; Endo, S.; Baek, K.; Hoshino, K.; Tsujino, Y.; Vestergaard, M.C.; Takagi, M. Raft-dependent endocytic movement and intracellular cluster formation during T cell activation triggered by concanavalin A. J. Biosci. Bioeng., 2017, 124(6), 685-693.
[http://dx.doi.org/10.1016/j.jbiosc.2017.06.009] [PMID: 28711300]
[35]
Pedersen, M.K.; Sorensen, N.S.; Heegaard, P.M.H.; Beyer, N.H.; Bruun, L. Effect of different hapten-carrier conjugation ratios and molecular orientations on antibody affinity against a peptide antigen. J. Immunol. Methods, 2006, 311(1-2), 198-206.
[http://dx.doi.org/10.1016/j.jim.2006.02.008] [PMID: 16574142]
[36]
Lemus, R.; Karol, M.H. Conjugation of haptens. Methods Mol. Med., 2008, 138, 167-182.
[http://dx.doi.org/10.1007/978-1-59745-366-0_14] [PMID: 18612607]
[37]
Zeltins, A.; Turks, M.; Skrastina, D. Lugiņina, J.; Kalnciema, I.; Balke, I.; Bizdēna, Ē.; Skrivelis, V. Synthesis and immunological evaluation of virus-like particle-milbemycin A3/A4 conjugates. Antibiotics, 2017, 6(3), 18.
[http://dx.doi.org/10.3390/antibiotics6030018] [PMID: 28892001]
[38]
Narayana, P.V.S.L.S.S.; Dutta, J.R. Glycoconjugation of Shigella flexneri type 2a O-polysaccharide with CRM197 as a potential vaccine candidate for shigellosis. Biologicals, 2021, 72, 1-9.
[http://dx.doi.org/10.1016/j.biologicals.2021.07.001] [PMID: 34247915]
[39]
Bartoloni, A.; Norelli, F.; Ceccarini, C.; Rappuoli, R.; Costantino, P. Immunogenicity of meningococcal B polysaccharide conjugated to tetanus toxoid or CRM197 via adipic acid dihydrazide. Vaccine, 1995, 13(5), 463-470.
[http://dx.doi.org/10.1016/0264-410X(94)00007-A] [PMID: 7543714]
[40]
Wang, Y.; He, C.H.; Zheng, H.; Zhang, H.B. Characterization and comparison of fumonisin B(1)-protein conjugates by six methods. Int. J. Mol. Sci., 2011, 13(1), 84-96.
[http://dx.doi.org/10.3390/ijms13010084] [PMID: 22312240]
[41]
Greenfield, E.A.; DeCaprio, J.; Brahmandam, M. Making weak antigens strong: Cross-linking peptides to KLH with maleimide. Cold Spring Harb. Protoc., 2018, 2018(10), pdb.prot100016.
[http://dx.doi.org/10.1101/pdb.prot100016] [PMID: 30275080]
[42]
Luo, L.; Wei, X.Q.; Jia, B.Z.; Yang, J.Y.; Shen, Y.D.; Hammock, B.; Dong, J.X.; Wang, H.; Lei, H.T.; Xu, Z.L. Modulating linker composition of haptens resulted in improved immunoassay for histamine. Biomolecules, 2019, 9(10), 597.
[http://dx.doi.org/10.3390/biom9100597] [PMID: 31614550]
[43]
Li, T.; Huang, M.; Song, Z.; Zhang, H.; Chen, C. Biological characteristics and conjugated antigens of ClfA A-FnBPA and CP5 in Staphylococcus aureus. Can. J. Vet. Res., 2018, 82(1), 48-54.
[PMID: 29382968]
[44]
Su, Q.; Yi, Y.; Qiu, F.; Lu, X.; Ding, J.; Jia, Z.; Tian, R.; Gao, Y.; Bi, S. Immune responses to HBsAg conjugated to protein D of non-typeable Haemophilus influenzae in mice. PLoS One, 2015, 10(2), e0117736.
[http://dx.doi.org/10.1371/journal.pone.0117736] [PMID: 25689855]
[45]
Baruffaldi, F.; Kelcher, A.H.; Laudenbach, M.; Gradinati, V.; Limkar, A.; Roslawski, M.; Birnbaum, A.; Lees, A.; Hassler, C.; Runyon, S.; Pravetoni, M. Preclinical efficacy and characterization of candidate vaccines for treatment of opioid use disorders using clinically viable carrier proteins. Mol. Pharm., 2018, 15(11), 4947-4962.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00592] [PMID: 30240216]
[46]
Bremer, P.T.; Schlosburg, J.E.; Banks, M.L.; Steele, F.F.; Zhou, B.; Poklis, J.L.; Janda, K.D. Development of a clinically viable heroin vaccine. J. Am. Chem. Soc., 2017, 139(25), 8601-8611.
[http://dx.doi.org/10.1021/jacs.7b03334] [PMID: 28574716]
[47]
Hwang, C.S.; Ellis, B.; Zhou, B.; Janda, K.D. Heat shock proteins: A dual carrier-adjuvant for an anti-drug vaccine against heroin. Bioorg. Med. Chem., 2019, 27(1), 125-132.
[http://dx.doi.org/10.1016/j.bmc.2018.11.027] [PMID: 30497790]
[48]
Nuriev, R.; Galvidis, I.; Burkin, M. Immunochemical characteristics of Streptococcus pneumoniae type 3 capsular polysaccharide glycoconjugate constructs correlate with its immunogenicity in mice model. Vaccine, 2020, 38(52), 8292-8301.
[http://dx.doi.org/10.1016/j.vaccine.2020.11.024] [PMID: 33213929]
[49]
Awate, S.; Babiuk, L.A.; Mutwiri, G. Mechanisms of action of adjuvants. Front. Immunol., 2013, 4, 114.
[http://dx.doi.org/10.3389/fimmu.2013.00114] [PMID: 23720661]
[50]
Billiau, A.; Matthys, P. Modes of action of freund’s adjuvants in experimental models of autoimmune diseases. J. Leukoc. Biol., 2001, 70(6), 849-860.
[PMID: 11739546]
[51]
Hwang, J.S.; Kwon, M.Y.; Kim, K.H.; Lee, Y.; Lyoo, I.K.; Kim, J.E.; Oh, E.S.; Han, I.O. Lipopolysaccharide (LPS)-stimulated iNOS induction is increased by glucosamine under normal glucose conditions but is inhibited by glucosamine under high glucose conditions in macrophage cells. J. Biol. Chem., 2017, 292(5), 1724-1736.
[http://dx.doi.org/10.1074/jbc.M116.737940] [PMID: 27927986]
[52]
Kolodziej, H.; Burmeister, A.; Trun, W.; Radtke, O.A.; Kiderlen, A.F.; Ito, H.; Hatano, T.; Yoshida, T.; Foo, L.Y. Tannins and related compounds induce nitric oxide synthase and cytokines gene expressions in Leishmania major-infected macrophage-like RAW 264.7 cells. Bioorg. Med. Chem., 2005, 13(23), 6470-6476.
[http://dx.doi.org/10.1016/j.bmc.2005.07.012] [PMID: 16143535]
[53]
Orlowski, P.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Gniadek, M.; Labedz, O.; Malewski, T.; Nowakowska, J.; Chodaczek, G.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Tannic acid-modified silver and gold nanoparticles as novel stimulators of dendritic cells activation. Front. Immunol., 2018, 9(9), 1115.
[http://dx.doi.org/10.3389/fimmu.2018.01115] [PMID: 29872440]
[54]
Sivanantham, A.; Pattarayan, D.; Rajasekar, N.; Kannan, A.; Loganathan, L.; Bethunaickan, R.; Mahapatra, S.K.; Palanichamy, R.; Muthusamy, K.; Rajasekaran, S. Tannic acid prevents macrophage-induced pro-fibrotic response in lung epithelial cells via suppressing TLR4-mediated macrophage polarization. Inflamm. Res., 2019, 68(12), 1011-1024.
[http://dx.doi.org/10.1007/s00011-019-01282-4] [PMID: 31489459]
[55]
Apostólico, J.S.; Lunardelli, V.A.S.; Coirada, F.C.; Boscardin, S.B.; Rosa, D.S. Adjuvants: Classification, Modus Operandi, and licensing. J. Immunol. Res., 2016, 2016, 1-16.
[http://dx.doi.org/10.1155/2016/1459394]
[56]
Bastola, R.; Noh, G.; Keum, T.; Bashyal, S.; Seo, J.E.; Choi, J.; Oh, Y.; Cho, Y.; Lee, S. Vaccine adjuvants: Smart components to boost the immune system. Arch. Pharm. Res., 2017, 40(11), 1238-1248.
[http://dx.doi.org/10.1007/s12272-017-0969-z] [PMID: 29027637]
[57]
Burgdorf, S.; Kurts, C. Endocytosis mechanisms and the cell biology of antigen presentation. Curr. Opin. Immunol., 2008, 20(1), 89-95.
[http://dx.doi.org/10.1016/j.coi.2007.12.002] [PMID: 18249105]
[58]
Mittler, J.N.; Lee, W.T. Antigen-specific CD4 T cell clonal expansion and differentiation in the aged lymphoid microenvironment. Mech. Ageing Dev., 2004, 125(1), 59-68.
[http://dx.doi.org/10.1016/j.mad.2003.10.003] [PMID: 14706238]
[59]
Mesquita Júnior, D.; Araújo, J.A.; Catelan, T.T.; Souza, A.W.; Cruvinel, W.M.; Andrade, L.E.; Silva, N.P. Immune system - part II: Basis of the immunological response mediated by T and B lymphocytes. Rev. Bras. Reumatol., 2010, 50(5), 552-580.
[PMID: 21125191]
[60]
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K. The Adaptive Immune System - Helper T Cells and Lymphocyte Activation. In: Molecular Biology of the Cell, 4th ed; Garland Science: New York, 2002.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy