Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Proteomic Analysis of Glucose-Induced Cardiac Myoblasts and the Potential Role of mir-92b-5p in Regulating Sarcomere Proteins Under a Hyperglycemic Environment

Author(s): Priyanka Mathur and Vibha Rani*

Volume 29, Issue 11, 2022

Published on: 07 October, 2022

Page: [937 - 945] Pages: 9

DOI: 10.2174/0929866529666220819121325

Price: $65

Abstract

Background: Diabetes mellitus, a common metabolic disorder that causes high blood glucose, is due to impaired insulin secretion. Prolonged high blood sugar is associated with heart disease. Many proteins are involved in metabolic pathways and contractility of cardiac cells regulate cardiac hypertrophy, altering normal cardiac physiology and function. Moreover, microRNAs are essential regulators of these proteins. Thus, there is a need to study the protein and microRNA alterations in cardiomyocytes to better understand the mechanisms activated during cardiac stress.

Objective: The study aims to profile differentially expressed sarcomere proteins in H9C2 cell lines under high glucose conditions compared with normal conditions, along with the identification of miRNAs regulating these proteins.

Methods: Cardiac myoblast cell lines were treated with D-Glucose at three concentrations (10 mM, 25 mM, and 50 mM). Total cell protein was analyzed by Tandem Mass spectrometry Nano LCMS/ MS. Furthermore, next-generation sequencing data were analyzed for detecting microRNAs regulating cardiac cell protein expression. Bioinformatics databases such as Uniprot, Ingenuity Pathway Analysis (IPA), PANTHER, and Target scan were used.

Results: The Nano LC-MS/MS analysis showed 2891 protein, 1351 protein groups, and 4381 peptide groups in both glucose-treated and control samples. Most proteins were metabolite interconversion enzymes, translation proteins, and proteins regulating the cytoskeleton. IPA analysis revealed differentially expressed proteins involved in EIF2 signaling, actin cytoskeleton signaling, cardiac fibrosis, and cell death. Moreover, the proteins troponin, tropomyosin, myosin, alpha-actin, and ATP synthase were found to be downregulated, thus responsible for altering sarcomere protein expression. Rno-mir-92b-5p was observed to be highly upregulated at 50 mM. Its target genes namely TPM2, ATP1A2, and CORO1C were mostly components of the sarcomere complex and its regulators.

Conclusion: A combination of proteomic profile and microRNA profile of hyperglycemic cells provides an insight into advanced therapeutics. Our study has highlighted the role of sarcomere proteins, activation of Eukaryotic Initiation Factor 2 (EIF2) signaling, and suppression of actin cytoskeleton signaling in the pathophysiology of cardiomyopathy. MiR-92b-5p has an important role in regulating sarcomere protein complex activated.

Keywords: Proteomics, diabetes mellitus, cardiac myoblast cell line, Tandem Mass spectrometry, Nano LC-MS/MS, sarcomere proteins, microRNA, IPA (Ingenuity Pathway Analysis)

Graphical Abstract

[1]
Joshi, M.; Kotha, S.R.; Malireddy, S.; Selvaraju, V.; Satoskar, A.R.; Palesty, A.; McFadden, D.W.; Parinandi, N.L.; Maulik, N. Conundrum of pathogenesis of diabetic cardiomyopathy: Role of vascular endothelial dysfunction, reactive oxygen species, and mitochondria. Mol. Cell. Biochem., 2014, 386(1-2), 233-249.
[http://dx.doi.org/10.1007/s11010-013-1861-x] [PMID: 24307101]
[2]
International Diabetes Federation. IDF Diabetes Atlas, 9th ed; Brussels, Belgium, 2019.
[3]
Dhingra, R.; Vasan, R.S. Diabetes and the risk of heart failure. Heart Fail. Clin., 2012, 8(1), 125-133.
[http://dx.doi.org/10.1016/j.hfc.2011.08.008] [PMID: 22108732]
[4]
Mathur, P.; Rani, V. MicroRNAs: A critical regulator and a promising therapeutic and diagnostic molecule for diabetic cardiomyopathy. Curr. Gene Ther., 2021, 21(4), 313-326.
[http://dx.doi.org/10.2174/1566523221666210311111619] [PMID: 33719971]
[5]
Malhotra, A.; Lopez, M.C.; Nakouzi, A. Troponin subunits contribute to altered myosin ATPase activity in diabetic cardiomyopathy. Mol. Cell. Biochem., 1995, 151(2), 165-172.
[http://dx.doi.org/10.1007/BF01322339] [PMID: 8569762]
[6]
Morimoto, S. Sarcomeric proteins and inherited cardiomyopathies. Cardiovasc. Res., 2008, 77(4), 659-666.
[http://dx.doi.org/10.1093/cvr/cvm084] [PMID: 18056765]
[7]
Van der Velden, J.; Stienen, G.J.M. Cardiac disorders and pathophysiology of sarcomeric proteins. Physiol. Rev., 2019, 99(1), 381-426.
[http://dx.doi.org/10.1152/physrev.00040.2017] [PMID: 30379622]
[8]
Karam, C.N.; Warren, C.M.; Rajan, S.; De Tombe, P.P.; Wieczorek, D.F.; Solaro, R.J. Expression of tropomyosin-κ induces dilated cardiomyopathy and depresses cardiac myofilament tension by mechanisms involving cross-bridge dependent activation and altered tropomyosin phosphorylation. J. Muscle Res. Cell Motil., 2011, 31(5-6), 315-322.
[http://dx.doi.org/10.1007/s10974-010-9237-2] [PMID: 21221740]
[9]
Zhang, L.; Huang, D.; Shen, D.; Zhang, C.; Ma, Y.; Babcock, S.A.; Chen, B.; Ren, J. Inhibition of protein kinase C βII isoform ameliorates methylglyoxal advanced glycation endproduct-induced cardiomyocyte contractile dysfunction. Life Sci., 2014, 94(1), 83-91.
[http://dx.doi.org/10.1016/j.lfs.2013.11.011] [PMID: 24269213]
[10]
Kitajima, Y.; Yoshioka, K.; Suzuki, N. The ubiquitin-proteasome system in regulation of the skeletal muscle homeostasis and atrophy: From basic science to disorders. J. Physiol. Sci., 2020, 70(1), 40.
[http://dx.doi.org/10.1186/s12576-020-00768-9] [PMID: 32938372]
[11]
Donlin, L.T.; Andresen, C.; Just, S.; Rudensky, E.; Pappas, C.T.; Kruger, M.; Jacobs, E.Y.; Unger, A.; Zieseniss, A.; Dobenecker, M.W.; Voelkel, T.; Chait, B.T.; Gregorio, C.C.; Rottbauer, W.; Tarakhovsky, A.; Linke, W.A. Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev., 2012, 26(2), 114-119.
[http://dx.doi.org/10.1101/gad.177758.111] [PMID: 22241783]
[12]
Hathaway, Q.A.; Pinti, M.V.; Durr, A.J.; Waris, S.; Shepherd, D.L.; Hollander, J.M. Regulating microRNA expression: At the heart of diabetes mellitus and the mitochondrion. Am. J. Physiol. Heart Circ. Physiol., 2018, 314(2), H293-H310.
[http://dx.doi.org/10.1152/ajpheart.00520.2017] [PMID: 28986361]
[13]
Bian, Y.; Zheng, R.; Bayer, F.P.; Wong, C.; Chang, Y.C.; Meng, C.; Zolg, D.P.; Reinecke, M.; Zecha, J.; Wiechmann, S.; Heinzlmeir, S.; Scherr, J.; Hemmer, B.; Baynham, M.; Gingras, A.C.; Boychenko, O.; Kuster, B. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC-MS/MS. Nat. Commun., 2020, 11(1), 157.
[http://dx.doi.org/10.1038/s41467-019-13973-x] [PMID: 31919466]
[14]
Gaspari, M.; Cuda, G. Nano LC–MS/MS: A robust setup for proteomic analysis. In: Nanoproteomics. Methods in Molecular Biology (Methods and Protocols); Toms, S.; Weil, R., Eds.; Humana Press: New Jersey, US, 2011; Vol. 790, pp. 115-126.
[http://dx.doi.org/10.1007/978-1-61779-319-6_9]
[15]
Hu, Y.; Lan, W.; Miller, D. Next-generation sequencing for MicroRNA expression profile. In: Bioinformatics in MicroRNA Research. Methods in Molecular Biology; Huang, J., Ed.; Humana Press: New Jersey, US, 2017; Vol. 1617, pp. 169-177.
[http://dx.doi.org/10.1007/978-1-4939-7046-9_12]
[16]
Atale, N.; Saxena, S.; Nirmala, J.G.; Narendhirakannan, R.T.; Mohanty, S.; Rani, V. Synthesis and characterization of Sygyzium cumini nanoparticles for its protective potential in high glucose-induced cardiac stress: A green approach. Appl. Biochem. Biotechnol., 2017, 181(3), 1140-1154.
[http://dx.doi.org/10.1007/s12010-016-2274-6] [PMID: 27734287]
[17]
Hashimoto, Y.; Akiyama, Y.; Yuasa, Y. Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer. PLoS One, 2013, 8(5), e62589.
[http://dx.doi.org/10.1371/journal.pone.0062589] [PMID: 23667495]
[18]
Atale, N.; Chakraborty, M.; Mohanty, S.; Bhattacharya, S.; Nigam, D.; Sharma, M.; Rani, V. Cardioprotective role of Syzygium cumini against glucose-induced oxidative stress in H9C2 cardiac myocytes. Cardiovasc. Toxicol., 2013, 13(3), 278-289.
[http://dx.doi.org/10.1007/s12012-013-9207-1] [PMID: 23512199]
[19]
Jain, A.; Atale, N.; Kohli, S.; Bhattacharya, S.; Sharma, M.; Rani, V. An assessment of norepinephrine mediated hypertrophy to apoptosis transition in cardiac cells: A signal for cell death. Chem. Biol. Interact., 2015, 225, 54-62.
[http://dx.doi.org/10.1016/j.cbi.2014.11.017] [PMID: 25437044]
[20]
Rai, A.K.; Lee, B.; Gomez, R.; Rajendran, D.; Khan, M.; Garikipati, V.N. Current status and potential therapeutic strategies for using non-coding RNA to treat diabetic cardiomyopathy. Front. Physiol. 1750, 2021.
[http://dx.doi.org/10.3389/fphys.2020.612722] [PMID: 33551838]
[21]
Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circ. Res., 2018, 122(4), 624-638.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311586] [PMID: 29449364]
[22]
Branco, A.F.; Pereira, S.P.; Gonzalez, S.; Gusev, O.; Rizvanov, A.A.; Oliveira, P.J. Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype. PLoS One, 2015, 10(6), e0129303.
[http://dx.doi.org/10.1371/journal.pone.0129303] [PMID: 26121149]
[23]
Shimoni, Y.; Rattner, J.B. Type 1 diabetes leads to cytoskeleton changes that are reflected in insulin action on rat cardiac K(+) currents. Am. J. Physiol. Endocrinol. Metab., 2001, 281(3), E575-E585.
[http://dx.doi.org/10.1152/ajpendo.2001.281.3.E575] [PMID: 11500313]
[24]
Meneses-Romero, E.; Hernández-Orihuela, L.; Pando-Robles, V.; López, T.D.; Oses-Prieto, J.A.; Burlingame, A.L.; Batista, C.V.F. Quantitative proteomic analysis reveals high interference on protein expression of H9c2 cells activated with glucose and cardiotonic steroids. J. Proteomics, 2020, 211, 103536.
[http://dx.doi.org/10.1016/j.jprot.2019.103536] [PMID: 31629057]
[25]
Clemens, M.J. nitiation factor eIF2α phosphorylation in stress responses and apoptosis. In: Signaling Pathways for Translation; Springer Berlin., 2001; 27, pp. 57-89.
[http://dx.doi.org/10.1007/978-3-662-09889-9_3]
[26]
Waddingham, M.T.; Edgley, A.J.; Tsuchimochi, H.; Kelly, D.J.; Shirai, M.; Pearson, J.T. Contractile apparatus dysfunction early in the pathophysiology of diabetic cardiomyopathy. World J. Diabetes, 2015, 6(7), 943-960.
[http://dx.doi.org/10.4239/wjd.v6.i7.943] [PMID: 26185602]
[27]
Yin, Z.; Ren, J.; Guo, W. Sarcomeric protein isoform transitions in cardiac muscle: A journey to heart failure. Biochim. Biophys. Acta, 2015, 1852(1), 47-52.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.003] [PMID: 25446994]
[28]
Yasuda-Yamahara, M.; Rogg, M.; Frimmel, J.; Trachte, P.; Helmstaedter, M.; Schroder, P.; Schiffer, M.; Schell, C.; Huber, T.B. FERMT2 links cortical actin structures, plasma membrane tension and focal adhesion function to stabilize podocyte morphology. Matrix Biol., 2018, 68-69, 263-279.
[http://dx.doi.org/10.1016/j.matbio.2018.01.003] [PMID: 29337051]
[29]
ter Keurs, H.E. The interaction of Ca2+ with sarcomeric proteins: Role in function and dysfunction of the heart. Am. J. Physiol. Heart Circ. Physiol., 2012, 302(1), H38-H50.
[http://dx.doi.org/10.1152/ajpheart.00219.2011] [PMID: 22021327]
[30]
Wu, T.; Chen, Y.; Du, Y.; Tao, J.; Zhou, Z.; Yang, Z. Serum exosomal MiR-92b-5p as a potential biomarker for acute heart failure caused by dilated cardiomyopathy. Cell. Physiol. Biochem., 2018, 46(5), 1939-1950.
[http://dx.doi.org/10.1159/000489383] [PMID: 29719295]
[31]
Wu, T.; Chen, Y.; Du, Y.; Tao, J.; Li, W.; Zhou, Z.; Yang, Z. Circulating exosomal miR-92b-5p is a promising diagnostic biomarker of heart failure with reduced ejection fraction patients hospitalized for acute heart failure. J. Thorac. Dis., 2018, 10(11), 6211-6220.
[http://dx.doi.org/10.21037/jtd.2018.10.52] [PMID: 30622793]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy