Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Combined Bazedoxifene and Genistein Ameliorate Ovariectomy-Induced Hippocampal Neuro-Alterations via Activating CREB/BDNF/TrkB Signaling Pathway

Author(s): Mai A. Samak*, Abeer A. Abdelrahman, Walaa Samy and Shaimaa A. Abdelrahman

Volume 16, Issue 6, 2023

Published on: 31 October, 2022

Article ID: e020922208452 Pages: 18

DOI: 10.2174/1874467215666220902112939

Price: $65

Abstract

Objectives: The scientific research community devotes stupendous efforts to control the arguable counterbalance between the undesirable effects of hormone replacement therapy (HRT) and post-menopausal syndrome. The recent emergence of 3rd generation selective estrogen receptor modulators and phytoestrogens has provided a promising alternative to HRT. Hence, we assessed the potential effects of combined Bazedoxifene and Genistein on hippocampal neuro-alterations induced by experimental ovariectomy.

Methods: For this purpose, we utilized forty-eight healthy sexually mature female Wistar rats assorted to control, ovariectomy (OVX), Genistein-treated ovariectomized (OVX+GEN) and Bazedoxifene and Genistein-treated ovariectomized (OVX+BZA+GEN) groups. Hippocampi samples from various groups were examined by H&E, silver stains and immunohistochemical examination for calbindin-D28k, GFAP, and BAX proteins. We also assessed hippocampal mRNA expression of ERK, CREB, BDNF and TrkB.

Results: Our histopathological results confirmed that combined BZA+GEN induced restoration of hippocampal neuronal architecture, significant reduction of GFAP and BAX mean area % and significant upregulation of calbindin-D28k immunoexpression. Furthermore, we observed significant upregulation of ERK, CREB, BDNF and TrkB mRNA expression in the BZA+GEN group compared to the OVX group.

Conclusion: Taken together, our findings have provided a comprehensive assessment of histological, immunohistochemical and cyto-molecular basis of combined Genistein and Bazedoxifene ameliorative impacts on hippocampal neuro-alterations of OVX rats via upregulation of Calbindin, CERB, BDNF, Trk-B and ERK neuronal expression.

Keywords: Bazedoxifene, Genistein, Ovariectomy, Hippocampus, CREB/BDNF/TrkB pathway

Graphical Abstract

[1]
Romero-Aleshire, M.J.; Diamond-Stanic, M.K.; Hasty, A.H.; Hoyer, P.B.; Brooks, H.L. Loss of ovarian function in the VCD mouse-model of menopause leads to insulin resistance and a rapid progression into the metabolic syndrome. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, 297(3), R587-R592.
[http://dx.doi.org/10.1152/ajpregu.90762.2008] [PMID: 19439618]
[2]
Rocca, W.A.; Bower, J.H.; Maraganore, D.M.; Ahlskog, J.E.; Grossardt, B.R.; de Andrade, M.; Melton, L.J., III Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before menopause. Neurology, 2007, 69(11), 1074-1083.
[http://dx.doi.org/10.1212/01.wnl.0000276984.19542.e6] [PMID: 17761551]
[3]
Morrison, L.A.; Brown, D.E.; Sievert, L.L.; Reza, A.; Rahberg, N.; Mills, P.; Goodloe, A. Voices from the Hilo women’s health study: talking story about menopause. Health Care Women Int., 2014, 35(5), 529-548.
[http://dx.doi.org/10.1080/07399332.2013.829067] [PMID: 24134306]
[4]
Bast, T.; Pezze, M.; McGarrity, S. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition. Br. J. Pharmacol., 2017, 174(19), 3211-3225.
[http://dx.doi.org/10.1111/bph.13850] [PMID: 28477384]
[5]
Del Rio-Bermudez, C.; Kim, J.; Sokoloff, G.; Blumberg, M.S. Theta oscillations during active sleep synchronize the developing rubro-hippocampal sensorimotor network. Curr. Biol., 2017, 27(10), 1413-1424.e4.
[http://dx.doi.org/10.1016/j.cub.2017.03.077] [PMID: 28479324]
[6]
Kwapis, J.L.; Alaghband, Y.; Kramár, E.A.; López, A.J.; Vogel Ciernia, A.; White, A.O.; Shu, G.; Rhee, D.; Michael, C.M.; Montellier, E.; Liu, Y.; Magnan, C.N.; Chen, S.; Sassone-Corsi, P.; Baldi, P.; Matheos, D.P.; Wood, M.A. Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory. Nat. Commun., 2018, 9(1), 3323.
[http://dx.doi.org/10.1038/s41467-018-05868-0] [PMID: 30127461]
[7]
Ghallab, A.M.; Alazouny, Z.M.; Samak, M.A.; Abdel Malek, H.G. Dentate gyrus neurogenesis across different ages in male rats: An immunohistochemical approach. Biologia, 2019, 74(7), 905-914.
[http://dx.doi.org/10.2478/s11756-019-00246-7.]
[8]
Destrieux, C.; Bourry, D.; Velut, S. Surgical anatomy of the hippocampus. Neurochirurgie, 2013, 59(4-5), 149-158.
[http://dx.doi.org/10.1016/j.neuchi.2013.08.003] [PMID: 24183470]
[9]
Kim, J.; Szinte, J.S.; Boulware, M.I.; Frick, K.M. 17β-Estradiol and agonism of G-protein-coupled estrogen receptor enhance hippocampal memory via different cell-signaling mechanisms. J. Neurosci., 2016, 36(11), 3309-3321.
[http://dx.doi.org/10.1523/JNEUROSCI.0257-15.2016] [PMID: 26985039]
[10]
Finney, C.A.; Shvetcov, A.; Westbrook, R.F.; Jones, N.M.; Morris, M.J. The role of hippocampal estradiol in synaptic plasticity and memory: A systematic review. Front. Neuroendocrinol., 2020, 56100818
[http://dx.doi.org/10.1016/j.yfrne.2019.100818] [PMID: 31843506]
[11]
Hadjimarkou, M.M.; Vasudevan, N. GPER1/GPR30 in the brain: Crosstalk with classical estrogen receptors and implications for behavior. J. Steroid Biochem. Mol. Biol., 2018, 176, 57-64.
[http://dx.doi.org/10.1016/j.jsbmb.2017.04.012] [PMID: 28465157]
[12]
Sun, T.; Liu, Z.; Liu, M.; Guo, Y.; Sun, H.; Zhao, J.; Lan, Z.; Lian, B.; Zhang, J. Hippocampus-specific Rictor knockdown inhibited 17β-estradiol induced neuronal plasticity and spatial memory improvement in ovariectomized mice. Behav. Brain Res., 2019, 364, 50-61.
[http://dx.doi.org/10.1016/j.bbr.2019.02.014] [PMID: 30753873]
[13]
Wu, D.; Wu, F.; Lin, R.; Meng, Y.; Wei, W.; Sun, Q.; Jia, L. Impairment of learning and memory induced by perinatal exposure to BPA is associated with ERα-mediated alterations of synaptic plasticity and PKC/ERK/CREB signaling pathway in offspring rats. Brain Res. Bull., 2020, 161, 43-54.
[http://dx.doi.org/10.1016/j.brainresbull.2020.04.023] [PMID: 32380187]
[14]
Mueck, A.O.; Ruan, X. Benefits and risks during HRT: Main safety issue breast cancer. Horm. Mol. Biol. Clin. Investig., 2011, 5(2), 105-116.
[http://dx.doi.org/10.1515/HMBCI.2011.014] [PMID: 25961246]
[15]
Renoux, C.; Suissa, S. Hormone therapy administration in postmenopausal women and risk of stroke. Womens Health, 2011, 7(3), 355-361.
[http://dx.doi.org/10.2217/WHE.11.28] [PMID: 21612355]
[16]
Poluzzi, E.; Piccinni, C.; Raschi, E.; Rampa, A.; Recanatini, M.; Ponti, F. Phytoestrogens in postmenopause: The state of the art from a chemical, pharmacological and regulatory perspective. Curr. Med. Chem., 2013, 21(4), 417-436.
[http://dx.doi.org/10.2174/09298673113206660297] [PMID: 24164197]
[17]
Arcoraci, V.; Atteritano, M.; Squadrito, F.; D’Anna, R.; Marini, H.; Santoro, D.; Minutoli, L.; Messina, S.; Altavilla, D.; Bitto, A. Antiosteoporotic activity of genistein aglycone in postmenopausal women: Evidence from a post-hoc analysis of a multicenter randomized controlled trial. Nutrients, 2017, 9(2), 179.
[http://dx.doi.org/10.3390/nu9020179] [PMID: 28241420]
[18]
de Gregorio, C.; Marini, H.; Alibrandi, A.; Di Benedetto, A.; Bitto, A.; Adamo, E.; Altavilla, D.; Irace, C.; Di Vieste, G.; Pancaldo, D.; Granese, R.; Atteritano, M.; Corrao, S.; Licata, G.; Squadrito, F.; Arcoraci, V. Genistein supplementation and cardiac function in postmenopausal women with metabolic syndrome: Results from a pilot strain-echo study. Nutrients, 2017, 9(6), 584.
[http://dx.doi.org/10.3390/nu9060584] [PMID: 28590452]
[19]
Rajput, M.S.; Sarkar, P.D. Modulation of neuro-inflammatory condition, acetylcholinesterase and antioxidant levels by genistein attenuates diabetes associated cognitive decline in mice. Chem. Biol. Interact., 2017, 268, 93-102.
[http://dx.doi.org/10.1016/j.cbi.2017.02.021] [PMID: 28259689]
[20]
Devi, K.P.; Shanmuganathan, B.; Manayi, A.; Nabavi, S.F.; Nabavi, S.M. Molecular and therapeutic targets of genistein in Alzheimer’s disease. Mol. Neurobiol., 2017, 54(9), 7028-7041.
[http://dx.doi.org/10.1007/s12035-016-0215-6] [PMID: 27796744]
[21]
Maximov, P.Y.; Lee, T.M.; Jordan, V.C. The discovery and development of selective estrogen receptor modulators (SERMs) for clinical practice. Curr. Clin. Pharmacol., 2013, 8(2), 135-155.
[http://dx.doi.org/10.2174/1574884711308020006] [PMID: 23062036]
[22]
Feng, Q.; O’Malley, B.W. Nuclear receptor modulation – Role of coregulators in selective estrogen receptor modulator (SERM) actions. Steroids, 2014, 90, 39-43.
[http://dx.doi.org/10.1016/j.steroids.2014.06.008] [PMID: 24945111]
[23]
Peng, L.; Luo, Q.; Lu, H. Efficacy and safety of bazedoxifene in postmenopausal women with osteoporosis. Medicine, 2017, 96(49)e8659
[http://dx.doi.org/10.1097/MD.0000000000008659] [PMID: 29245225]
[24]
Sharifi, M.; Lewiecki, E.M. Conjugated estrogens combined with bazedoxifene: The first approved tissue selective estrogen complex therapy. Expert Rev. Clin. Pharmacol., 2014, 7(3), 281-291.
[http://dx.doi.org/10.1586/17512433.2014.893819] [PMID: 24580081]
[25]
Cada, D.J.; Baker, D.E. Conjugated estrogens and bazedoxifene. Hosp. Pharm., 2014, 49(3), 273-283.
[http://dx.doi.org/10.1310/hpj4903-273] [PMID: 24715748]
[26]
Pinkerton, J.V.; Abraham, L.; Bushmakin, A.G.; Cappelleri, J.C.; Racketa, J.; Shi, H.; Chines, A.A.; Mirkin, S. Evaluation of the efficacy and safety of bazedoxifene/conjugated estrogens for secondary outcomes including vasomotor symptoms in postmenopausal women by years since menopause in the Selective estrogens, Menopause and Response to Therapy (SMART) trials. J. Womens Health, 2014, 23(1), 18-28.
[http://dx.doi.org/10.1089/jwh.2013.4392] [PMID: 24206058]
[27]
Umland, E.M.; Karel, L.; Santoro, N. Bazedoxifene and conjugated equine estrogen: A combination product for the management of vasomotor symptoms and osteoporosis prevention associated with menopause. Pharmacotherapy, 2016, 36(5), 548-561.
[http://dx.doi.org/10.1002/phar.1749] [PMID: 27027527]
[28]
Song, W.; Lv, Y.; Tang, Z.; Nie, F.; Huang, P.; Pei, Q.; Guo, R. Bazedoxifene plays a protective role against inflammatory injury of endothelial cells by targeting CD40. Cardiovasc. Ther., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/1795853] [PMID: 33381228]
[29]
Lan, Y.L.; Wang, X.; Zou, Y.J.; Xing, J.S.; Lou, J.C.; Zou, S.; Ma, B.B.; Ding, Y.; Zhang, B. Bazedoxifene protects cerebral autoregulation after traumatic brain injury and attenuates impairments in blood–brain barrier damage: Involvement of anti-inflammatory pathways by blocking MAPK signaling. Inflamm. Res., 2019, 68(4), 311-323.
[http://dx.doi.org/10.1007/s00011-019-01217-z] [PMID: 30706110]
[30]
Hamoda, H.; Panay, N.; Pedder, H.; Arya, R.; Savvas, M. The British menopause society & women’s health concern 2020 recommendations on hormone replacement therapy in menopausal women. Post Reprod. Health, 2020, 26(4), 181-209.
[http://dx.doi.org/10.1177/2053369120957514] [PMID: 33045914]
[31]
Sengupta, P. The laboratory rat: Relating its age with human’s. Int. J. Prev. Med., 2013, 4(6), 624-630.
[PMID: 23930179]
[32]
Souza, V.R.; Mendes, E.; Casaro, M.; Antiorio, A.T.F.; Oliveira, F.A.; Ferreira, C.M. Description of ovariectomy protocol in mice. Methods Mol. Biol., 2019, 1916, 303-309.
[http://dx.doi.org/10.1007/978-1-4939-8994-2_29.]
[33]
Figueroa, C.A.; Bajgain, P.; Stohn, J.P.; Hernandez, A.; Brooks, D.J.; Houseknecht, K.L.; Rosen, C.J. Deletion of α-Synuclein in Prrx1-positive cells causes partial loss of function in the Central Nervous System (CNS) but does not affect ovariectomy induced bone loss. Bone, 2020, 137115428
[http://dx.doi.org/10.1016/j.bone.2020.115428] [PMID: 32417536]
[34]
Saad, M.A.; El-Sahar, A.E.; Sayed, R.H.; Elbaz, E.M.; Helmy, H.S.; Senousy, M.A. Venlafaxine mitigates depressive-like behavior in ovariectomized rats by activating the EPO/EPOR/JAK2 signaling pathway and increasing the serum estradiol level. Neurotherapeutics, 2019, 16(2), 404-415.
[http://dx.doi.org/10.1007/s13311-018-00680-6] [PMID: 30361931]
[35]
Zhang, Y.; Hua, F.; Ding, K.; Chen, H.; Xu, C.; Ding, W. Angiogenesis changes in ovariectomized rats with osteoporosis treated with estrogen replacement therapy. BioMed Res. Int., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/1283717] [PMID: 31355247]
[36]
Mirahmadi, S.M.S.; Shahmohammadi, A.; Rousta, A.M.; Azadi, M.R.; Fahanik-Babaei, J.; Baluchnejadmojarad, T.; Roghani, M. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine, 2018, 104, 151-159.
[http://dx.doi.org/10.1016/j.cyto.2017.10.008] [PMID: 29102164]
[37]
Maekawa, H.; Tada, Y.; Yagi, K.; Miyamoto, T.; Kitazato, K.T.; Korai, M.; Satomi, J.; Hashimoto, T.; Nagahiro, S. Bazedoxifene, a selective estrogen receptor modulator, reduces cerebral aneurysm rupture in Ovariectomized rats. J. Neuroinflammation, 2017, 14(1), 197.
[http://dx.doi.org/10.1186/s12974-017-0966-7] [PMID: 28969701]
[38]
Institutional Animal Care and Use Committee (IACUC), Office of Research Compliance (ORC). 2013. Available from: https://research.iu.edu/doc/compliance/animal care/bloominton/iubbiacuc-non-pharmaceutical-andpharmaceutical-grade compounds-inresearchanimals.pdf
[39]
Paxinos, G.; Kassem, M.S.; Kirkcaldie, M.; Carrive, P. Chemoarchitectonic atlas of the rat brain; Academic Press, 2021.
[40]
Celarain, N.; Sánchez-Ruiz de Gordoa, J.; Zelaya, M.V.; Roldán, M.; Larumbe, R.; Pulido, L.; Echavarri, C.; Mendioroz, M. TREM2 upregulation correlates with 5-hydroxymethycytosine enrichment in Alzheimer’s disease hippocampus. Clin. Epigenetics, 2016, 8(1), 37.
[http://dx.doi.org/10.1186/s13148-016-0202-9] [PMID: 27051467]
[41]
Suvarna, K.S.; Layton, C.; Bancroft, J.D. Bancroft’s theory and practice of histological techniques; Elsevier Health Sciences, 2018.
[42]
Ramos-Vara, J.A.; Kiupel, M.; Baszler, T.; Bliven, L.; Brodersen, B.; Chelack, B.; West, K.; Czub, S.; Del Piero, F.; Dial, S.; Ehrhart, E.J.; Graham, T.; Manning, L.; Paulsen, D.; Valli, V.E. Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J. Vet. Diagn. Invest., 2008, 20(4), 393-413.
[http://dx.doi.org/10.1177/104063870802000401] [PMID: 18599844]
[43]
Ahmed, S.M.; Abdelrahman, S.A.; Shalaby, S.M. Therapeutic potential of mesenchymal stem cells vs. estradiol benzoate or avosoya on the cerebellar cortex of ovariectomized adult albino rats. J. Cytol. Histol., 2017, 8(1), 444.
[http://dx.doi.org/10.4172/2157-7099.1000444.]
[44]
Abdelrahman, S.A.; Samak, M.A.; Shalaby, S.M. Fluoxetine pretreatment enhances neurogenic, angiogenic and immunomodulatory effects of MSCs on experimentally induced diabetic neuropathy. Cell Tissue Res., 2018, 374(1), 83-97.
[http://dx.doi.org/10.1007/s00441-018-2838-6] [PMID: 29687216]
[45]
Guo, J.Q.; Deng, H.H.; Bo, X.; Yang, X.S. Involvement of BDNF/TrkB and ERK/CREB axes in nitroglycerin-induced rat migraine and effects of estrogen on these signals in the migraine. Biol. Open, 2017, 6(1), 8-16.
[PMID: 27875242]
[46]
Wu, Y.; Cao, L.; Xia, L.; Wu, Q.; Wang, J.; Wang, X.; Xu, L.; Zhou, Y.; Xu, Y.; Jiang, X. Evaluation of osteogenesis and angiogenesis of icariin in local controlled release and systemic delivery for calvarial defect in ovariectomized rats. Sci. Rep., 2017, 7(1), 5077.
[http://dx.doi.org/10.1038/s41598-017-05392-z] [PMID: 28698566]
[47]
Rodgers, S.P.; Bohacek, J.; Daniel, J.M. Transient estradiol exposure during middle age in ovariectomized rats exerts lasting effects on cognitive function and the hippocampus. Endocrinology, 2010, 151(3), 1194-1203.
[http://dx.doi.org/10.1210/en.2009-1245] [PMID: 20068005]
[48]
Ibrahim, W.W.; Abdelkader, N.F.; Ismail, H.M.; Khattab, M.M. Escitalopram ameliorates cognitive impairment in D-galactose-injected ovariectomized rats: Modulation of JNK, GSK-3β and ERK signalling pathways. Sci. Rep., 2019, 9(1), 10056.
[http://dx.doi.org/10.1038/s41598-019-46558-1] [PMID: 30626917]
[49]
Abdelkader, N.F.; Abd El-Latif, A.M.; Khattab, M.M. Telmisartan/17β-estradiol mitigated cognitive deficit in an ovariectomized rat model of Alzheimer’s disease: Modulation of ACE1/ACE2 and AT1/AT2 ratio. Life Sci., 2020, 245117388
[http://dx.doi.org/10.1016/j.lfs.2020.117388] [PMID: 32007576]
[50]
Qu, N.; Wang, L.; Liu, Z.C.; Tian, Q.; Zhang, Q. Oestrogen receptor α agonist improved long-term ovariectomy-induced spatial cognition deficit in young rats. Int. J. Neuropsychopharmacol., 2013, 16(5), 1071-1082.
[http://dx.doi.org/10.1017/S1461145712000958] [PMID: 22999489]
[51]
Sárvári, M.; Kalló, I.; Hrabovszky, E.; Solymosi, N.; Rodolosse, A.; Liposits, Z. Long-term estrogen receptor beta agonist treatment modifies the hippocampal transcriptome in middle-aged ovariectomized rats. Front. Cell. Neurosci., 2016, 10, 149.
[http://dx.doi.org/10.3389/fncel.2016.00149] [PMID: 27375434]
[52]
Borrás, C.; Gambini, J.; López-Grueso, R.; Pallardó, F.V.; Viña, J. Direct antioxidant and protective effect of estradiol on isolated mitochondria. Biochim. Biophys. Acta Mol. Basis Dis., 2010, 1802(1), 205-211.
[http://dx.doi.org/10.1016/j.bbadis.2009.09.007] [PMID: 19751829]
[53]
Peng, Y.; Jiang, B.; Wu, H.; Dai, R.; Tan, L. Effects of genistein on neuronal apoptosis, and expression of Bcl-2 and Bax proteins in the hippocampus of ovariectomized rats. Neural Regen. Res., 2012, 7(36), 2874-2881.
[PMID: 25317139]
[54]
Li, S.; Jin, M.; Koeglsperger, T.; Shepardson, N.E.; Shankar, G.M.; Selkoe, D.J. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J. Neurosci., 2011, 31(18), 6627-6638.
[http://dx.doi.org/10.1523/JNEUROSCI.0203-11.2011] [PMID: 21543591]
[55]
Altinoz, M.A. Elmaci, İ Targeting nitric oxide and NMDA receptor-associated pathways in treatment of high grade glial tumors. Hypotheses for nitro-memantine and nitrones. Nitric Oxide, 2018, 79, 68-83.
[http://dx.doi.org/10.1016/j.niox.2017.10.001] [PMID: 29030124]
[56]
Deep, S.N.; Mitra, S.; Rajagopal, S.; Paul, S.; Poddar, R. GluN2A-NMDA receptor–mediated sustained Ca2+ influx leads to homocysteine-induced neuronal cell death. J. Biol. Chem., 2019, 294(29), 11154-11165.
[http://dx.doi.org/10.1074/jbc.RA119.008820] [PMID: 31167782]
[57]
Wu, G.J.; Chen, J.T.; Cherng, Y.G.; Chang, C.C.; Liu, S.H.; Chen, R.M. Genistein improves bone healing via triggering estrogen receptor alpha-mediated expressions of osteogenesis-associated genes and consequent maturation of osteoblasts. J. Agric. Food Chem., 2020, 68(39), 10639-10650.
[http://dx.doi.org/10.1021/acs.jafc.0c02830] [PMID: 32897066]
[58]
Rossberg, M.; Alkayed, N.J.; Joh, H.D.; Murphy, S.J.; Trastman, R.J.; Hurn, P.D. Selective estrogen receptor modulator LY353381. HCl-mediated neuroprotection and Bcl-2 expression after experimental stroke. Stroke, 2001, 32(Suppl. 1), 327-333.
[http://dx.doi.org/10.1161/str.32.suppl_1.327-b.]
[59]
Borrás, C.; Gambini, J.; Gómez-Cabrera, M.C.; Sastre, J.; Pallardó, F.V.; Mann, G.E.; Viña, J.; Borrás, C.; Gambini, J.; Gómez-Cabrera, M.C.; Sastre, J.; Pallardó, F.V.; Mann, G.E.; Viña, J. Genistein, a soy isoflavone, up̴;regulates expression of antioxidant genes: Involvement of estrogen receptors, ERK1/2, and NFκ B. FASEB J., 2006, 20(12), 2136-2138.
[http://dx.doi.org/10.1096/fj.05-5522fje] [PMID: 16966488]
[60]
Mahdy, H.M.; Tadros, M.G.; Mohamed, M.R.; Karim, A.M.; Khalifa, A.E. The effect of Ginkgo biloba extract on 3-nitropropionic acid-induced neurotoxicity in rats. Neurochem. Int., 2011, 59(6), 770-778.
[61]
Xu, S.Z.; Zhong, W.; Ghavideldarestani, M.; Saurabh, R.; Lindow, S.W.; Atkin, S.L. Multiple mechanisms of soy isoflavones against oxidative stress-induced endothelium injury. Free Radic. Biol. Med., 2009, 47(2), 167-175.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.04.021] [PMID: 19393315]
[62]
Menze, E.T.; Esmat, A.; Tadros, M.G.; Abdel-Naim, A.B.; Khalifa, A.E. Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: Impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties. PLoS One, 2015, 10(2)e0117223
[http://dx.doi.org/10.1371/journal.pone.0117223] [PMID: 25675218]
[63]
Lee, Y.S.; Dayma, Y.; Park, M.Y.; Kim, K.I.; Yoo, S.E.; Kim, E. Daxx is a key downstream component of receptor interacting protein kinase 3 mediating retinal ischemic cell death. FEBS Lett., 2013, 587(3), 266-271.
[http://dx.doi.org/10.1016/j.febslet.2012.12.004] [PMID: 23260419]
[64]
Yang, R.; Hu, K.; Chen, J.; Zhu, S.; Li, L.; Lu, H.; Li, P.; Dong, R. Necrostatin-1 protects hippocampal neurons against ischemia/reperfusion injury via the RIP3/DAXX signaling pathway in rats. Neurosci. Lett., 2017, 651, 207-215.
[http://dx.doi.org/10.1016/j.neulet.2017.05.016] [PMID: 28501693]
[65]
Covinhes, A.; Gallot, L.; Barrère, C.; Vincent, A.; Sportouch, C.; Piot, C.; Lebleu, B.; Nargeot, J.; Boisguérin, P.; Barrère-Lemaire, S. Anti-apoptotic peptide for long term cardioprotection in a mouse model of myocardial ischemia–reperfusion injury. Sci. Rep., 2020, 10(1), 18116.
[http://dx.doi.org/10.1038/s41598-020-75154-x] [PMID: 33093627]
[66]
Pan, D.; Li, W.; Miao, H.; Yao, J.; Li, Z.; Wei, L.; Zhao, L.; Guo, Q. LW-214, a newly synthesized flavonoid, induces intrinsic apoptosis pathway by down-regulating Trx-1 in MCF-7 human breast cells. Biochem. Pharmacol., 2014, 87(4), 598-610.
[http://dx.doi.org/10.1016/j.bcp.2013.12.010] [PMID: 24374359]
[67]
Jia, Q.; Yang, R.; Liu, X.F.; Ma, S.F. Protective effects of genistein on myocardial injury in diabetic rats. Sichuan Da Xue Xue Bao Yi Xue Ban, 2018, 49(5), 706-711.
[PMID: 30378330]
[68]
Livne-Bar, I.; Lam, S.; Chan, D.; Guo, X.; Askar, I.; Nahirnyj, A.; Flanagan, J.G.; Sivak, J.M. Pharmacologic inhibition of reactive gliosis blocks TNF-α-mediated neuronal apoptosis. Cell Death Dis., 2016, 7(9), e2386-e2386.
[http://dx.doi.org/10.1038/cddis.2016.277] [PMID: 27685630]
[69]
Luo, H.; Zhuang, J.; Hu, P.; Ye, W.; Chen, S.; Pang, Y.; Li, N.; Deng, C.; Zhang, X. Resveratrol delays retinal ganglion cell loss and attenuates gliosis-related inflammation from ischemia-reperfusion injury. Invest. Ophthalmol. Vis. Sci., 2018, 59(10), 3879-3888.
[http://dx.doi.org/10.1167/iovs.18-23806] [PMID: 30073348]
[70]
Finney, C.A.; Morris, M.J.; Westbrook, R.F.; Jones, N.M. Hippocampal silent infarct leads to subtle cognitive decline that is associated with inflammation and gliosis at twenty-four hours after injury in a rat model. Behav. Brain Res., 2021, 401113089
[http://dx.doi.org/10.1016/j.bbr.2020.113089] [PMID: 33358919]
[71]
Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol., 2010, 119(1), 7-35.
[http://dx.doi.org/10.1007/s00401-009-0619-8] [PMID: 20012068]
[72]
Han, S.; Rudd, J.A.; Hu, Z.Y.; Zhang, L.; Yew, D.T.; Fang, M. Analysis of neuronal nitric oxide synthase expression and increasing astrogliosis in the brain of senescence-accelerated-prone 8 mice. Int. J. Neurosci., 2010, 120(9), 602-608.
[http://dx.doi.org/10.3109/00207454.2010.503911] [PMID: 20707635]
[73]
Salmina, A.B. Neuron-glia interactions as therapeutic targets in neurodegeneration. J. Alzheimers Dis., 2009, 16(3), 485-502.
[http://dx.doi.org/10.3233/JAD-2009-0988] [PMID: 19276541]
[74]
Tomassoni, D.; Nwankwo, I.E.; Gabrielli, M.G.; Bhatt, S.; Muhammad, A.B.; Lokhandwala, M.F.; Tayebati, S.K.; Amenta, F. Astrogliosis in the brain of obese Zucker rat: A model of metabolic syndrome. Neurosci. Lett., 2013, 543, 136-141.
[http://dx.doi.org/10.1016/j.neulet.2013.03.025] [PMID: 23545209]
[75]
Ohgomori, T.; Jinno, S. Cuprizone-induced demyelination in the mouse hippocampus is alleviated by phytoestrogen genistein. Toxicol. Appl. Pharmacol., 2019, 363, 98-110.
[http://dx.doi.org/10.1016/j.taap.2018.11.009] [PMID: 30468814]
[76]
Honda, M.; Nakashima, K.; Katada, S. PRMT1 regulates astrocytic differentiation of embryonic neural stem/precursor cells. J. Neurochem., 2017, 142(6), 901-907.
[http://dx.doi.org/10.1111/jnc.14123] [PMID: 28695568]
[77]
Li, D.; Liu, X.; Liu, T.; Liu, H.; Tong, L.; Jia, S.; Wang, Y.F. Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. Glia, 2020, 68(5), 878-897.
[http://dx.doi.org/10.1002/glia.23734] [PMID: 31626364]
[78]
Xie, J.; Li, X.; Zhang, L.; Liu, C.; Leung, J.W.H.; Liu, P.; Yu, Z.; Liu, R.; Li, L.; Huang, C.; Huang, Z. Genistein-3̸;-sodium sulfonate ameliorates cerebral ischemia injuries by blocking neuroinflammation through the α7nAChR-JAK2/STAT3 signaling pathway in rats. Phytomedicine, 2021, 93153745
[http://dx.doi.org/10.1016/j.phymed.2021.153745] [PMID: 34634743]
[79]
Rzemieniec, J.; Litwa, E.; Wnuk, A.; Lason, W.; Kajta, M. Bazedoxifene and raloxifene protect neocortical neurons undergoing hypoxia via targeting ERα and PPAR-γ Mol. Cell. Endocrinol., 2018, 461, 64-78.
[http://dx.doi.org/10.1016/j.mce.2017.08.014] [PMID: 28859903]
[80]
Hill, R.A.; Kouremenos, K.; Tull, D.; Maggi, A.; Schroeder, A.; Gibbons, A.; Kulkarni, J.; Sundram, S.; Du, X. Bazedoxifene – a promising brain active SERM that crosses the blood brain barrier and enhances spatial memory. Psychoneuroendocrinology, 2020, 121104830
[http://dx.doi.org/10.1016/j.psyneuen.2020.104830] [PMID: 32858306]
[81]
Jover-Mengual, T.; Castelló-Ruiz, M.; Burguete, M.C.; Jorques, M.; López-Morales, M.A.; Aliena-Valero, A.; Jurado-Rodríguez, A.; Pérez, S.; Centeno, J.M.; Miranda, F.J.; Alborch, E.; Torregrosa, G.; Salom, J.B. Molecular mechanisms mediating the neuroprotective role of the selective estrogen receptor modulator, bazedoxifene, in acute ischemic stroke: A comparative study with 17β-estradiol. J. Steroid Biochem. Mol. Biol., 2017, 171, 296-304.
[http://dx.doi.org/10.1016/j.jsbmb.2017.05.001] [PMID: 28479229]
[82]
Burguete, M.C.; Jover-Mengual, T.; López-Morales, M.A.; Aliena-Valero, A.; Jorques, M.; Torregrosa, G.; Alborch, E.; Castelló-Ruiz, M.; Salom, J.B. The selective oestrogen receptor modulator, bazedoxifene, mimics the neuroprotective effect of 17β̴;oestradiol in diabetic ischaemic stroke by modulating oestrogen receptor expression and the MAPK/ ERK 1/2 signalling pathway. J. Neuroendocrinol., 2019, 31(8)e12751
[http://dx.doi.org/10.1111/jne.12751] [PMID: 31127971]
[83]
Kojetin, D.J.; Venters, R.A.; Kordys, D.R.; Thompson, R.J.; Kumar, R.; Cavanagh, J. Structure, binding interface and hydrophobic transitions of Ca2+-loaded calbindin-D28K. Nat. Struct. Mol. Biol., 2006, 13(7), 641-647.
[http://dx.doi.org/10.1038/nsmb1112] [PMID: 16799559]
[84]
Zhao, L.; Brinton, R.D. Estrogen receptor α and β differentially regulate intracellular Ca2+ dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons. Brain Res., 2007, 1172, 48-59.
[http://dx.doi.org/10.1016/j.brainres.2007.06.092] [PMID: 17803971]
[85]
Kook, S-Y.; Jeong, H.; Kang, M.J.; Park, R.; Shin, H.J.; Han, S-H.; Son, S.M.; Song, H.; Baik, S.H.; Moon, M.; Yi, E.C.; Hwang, D.; Mook-Jung, I. Crucial role of calbindin-D28k in the pathogenesis of Alzheimer’s disease mouse model. Cell Death Differ., 2014, 21(10), 1575-1587.
[http://dx.doi.org/10.1038/cdd.2014.67] [PMID: 24853300]
[86]
Li, X.Z.; Sui, C.Y.; Chen, Q.; Chen, X.P.; Zhang, H.; Zhou, X.P. Upregulation of cell surface estrogen receptor alpha is associated with the mitogen-activated protein kinase/extracellular signal-regulated kinase activity and promotes autophagy maturation. Int. J. Clin. Exp. Pathol., 2015, 8(8), 8832-8841.
[PMID: 26464625]
[87]
Yoo, Y.M.; Jeung, E.B. Calbindin-D28k in the brain influences the expression of cellular prion protein. Oxid. Med. Cell. Longev., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/4670210] [PMID: 29541346]
[88]
Bitner, R.S. Cyclic AMP response element-binding protein (CREB) phosphorylation: A mechanistic marker in the development of memory enhancing Alzheimer’s disease therapeutics. Biochem. Pharmacol., 2012, 83(6), 705-714.
[http://dx.doi.org/10.1016/j.bcp.2011.11.009] [PMID: 22119240]
[89]
Nakagawasai, O.; Nemoto, W.; Onogi, H.; Moriya, T.; Lin, J.R.; Odaira, T.; Yaoita, F.; Ogawa, T.; Ohta, K.; Endo, Y.; Tan-No, K. BE360, a new selective estrogen receptor modulator, produces antidepressant and antidementia effects through the enhancement of hippocampal cell proliferation in olfactory bulbectomized mice. Behav. Brain Res., 2016, 297, 315-322.
[90]
Sakuma, W.; Nakagawasai, O.; Nemoto, W.; Odaira, T.; Ogawa, T.; Ohta, K.; Endo, Y.; Tan-No, K. Antidepressant effect of BE360, a new selective estrogen receptor modulator, activated via CREB/BDNF, Bcl-2 signaling pathways in ovariectomized mice. Behav. Brain Res., 2020, 393(393)112764
[http://dx.doi.org/10.1016/j.bbr.2020.112764] [PMID: 32535181]
[91]
Diniz, B.S.; Teixeira, A.L. Brain-derived neurotrophic factor and Alzheimer’s disease: Physiopathology and beyond. Neuromolecular Med., 2011, 13(4), 217-222.
[http://dx.doi.org/10.1007/s12017-011-8154-x] [PMID: 21898045]
[92]
Jimenez, S.; Torres, M.; Vizuete, M.; Sanchez-Varo, R.; Sanchez-Mejias, E.; Trujillo-Estrada, L.; Carmona-Cuenca, I.; Caballero, C.; Ruano, D.; Gutierrez, A.; Vitorica, J. Age-dependent accumulation of soluble amyloid β (Abeta) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-alpha (sAPP(alpha)) by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3β pathway in Alzheimer mouse model. J. Biol. Chem., 2011, 286(21), 18414-18425.
[http://dx.doi.org/10.1074/jbc.M110.209718] [PMID: 21460223]
[93]
Ma, Z.X.; Zhang, R.Y.; Rui, W.J.; Wang, Z.Q.; Feng, X. Quercetin alleviates chronic unpredictable mild stress-induced depressive-like behaviors by promoting adult hippocampal neurogenesis via FoxG1/CREB/BDNF signaling pathway. Behav. Brain Res., 2021, 406113245
[http://dx.doi.org/10.1016/j.bbr.2021.113245] [PMID: 33745981]
[94]
Leal, G.; Afonso, P.M.; Salazar, I.L.; Duarte, C.B. Regulation of hippocampal synaptic plasticity by BDNF. Brain Res., 2015, 1621, 82-101.
[http://dx.doi.org/10.1016/j.brainres.2014.10.019] [PMID: 25451089]
[95]
Mizui, T.; Ishikawa, Y.; Kumanogoh, H.; Lume, M.; Matsumoto, T.; Hara, T.; Yamawaki, S.; Takahashi, M.; Shiosaka, S.; Itami, C.; Uegaki, K.; Saarma, M.; Kojima, M. BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met. Proc. Natl. Acad. Sci. USA, 2015, 112(23), E3067-E3074.
[http://dx.doi.org/10.1073/pnas.1422336112] [PMID: 26015580]
[96]
Lorenzana-Martínez, G.; Santerre, A.; Andrade-González, I. Effects of Hibiscus sabdariffa calyces on spatial memory and hippocampal expression of BDNF in ovariectomized rats. Nutr. Neurosci., 2020, 13, 1-1.
[PMID: 32787648]
[97]
Wang, W.; Zhou, Y.; Fan, L.; Sun, Y.; Ge, F.; Xue, M. The antidepressant-like effects of Danggui Buxue Decoction in GK rats by activating CREB/BDNF/TrkB signaling pathway. Phytomedicine, 2021, 89153600
[http://dx.doi.org/10.1016/j.phymed.2021.153600] [PMID: 34130073]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy