Abstract
Background & Aims: Coronavirus disease - 2019 (COVID-19) is a major pandemic that causes high morbidity and mortality rates. Aim of this study: to detect the relations between many risk factors, ACE-2, MCP-1, Micro RNA 146 gene expression, and COVID-19 infection and disease severity.
Methods: This study was carried out on 165 cases of COVID-19 and 138 controls. ACE2 and MCP1 levels were measured in COVID-19 cases and control by ELISA and micro-RNA-146 expression by PCR.
Results: We found an increased blood level of ACE2 and MCP1 in COVID- 19 patients than in healthy persons and a significant down-regulation of micro-RNA 146 gene expression in cases than in controls. There was a significant correlation between increased blood level of ACE2, regulation of micro-RNA 146 gene expression and severity of lung affection, a significant correlation was found between increased blood level of MCP1 and thrombosis in COVID-19 patients. Neurological complications were significantly correlated with more viral load, more ACE2 blood level, and down regulation of micro RNA146 expression.
Conclusion: High viral load, increased blood level of ACE2, and down-regulation of micro-RNA 146 expression are associated with more severe lung injury and the presence of neurologic complications like convulsions and coma in COVID-19 Egyptian patients.
Keywords: COVID-19, viruses, thrombosis, ACE2, MCP1, micro RNA 146.
[http://dx.doi.org/10.2174/1573396317666210329153515] [PMID: 33781192]
[http://dx.doi.org/10.2174/1871526520666200520112848] [PMID: 32433010]
[http://dx.doi.org/10.1016/j.tmaid.2020.101623] [PMID: 32179124]
[PMID: 32009128]
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[http://dx.doi.org/10.1111/resp.13196] [PMID: 29052924]
[http://dx.doi.org/10.1111/joim.13089] [PMID: 32352202]
[http://dx.doi.org/10.1136/bmj.m1091] [PMID: 32217556]
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[http://dx.doi.org/10.1016/j.biopha.2017.07.091] [PMID: 28772209]
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[http://dx.doi.org/10.1016/j.pharmthera.2010.06.003] [PMID: 20599443]
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[http://dx.doi.org/10.1016/j.virusres.2009.07.014] [PMID: 19635508]
[http://dx.doi.org/10.1089/jir.2008.0027] [PMID: 19441883]
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[http://dx.doi.org/10.1080/22221751.2020.1746199] [PMID: 32196410]
[http://dx.doi.org/10.1080/22221751.2020.1747363] [PMID: 32228226]
[http://dx.doi.org/10.1093/cid/ciaa410] [PMID: 32270184]
[http://dx.doi.org/10.1016/j.cell.2018.03.006]
[http://dx.doi.org/10.1101/gr.082701.108]
[http://dx.doi.org/10.1016/S2213-8587(20)30271-0] [PMID: 32798471]
[http://dx.doi.org/10.1378/chest.126.4.1087] [PMID: 15486368]
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[http://dx.doi.org/10.1016/j.ajog.2021.05.014] [PMID: 34187688]
[http://dx.doi.org/10.2147/JMDH.S335226] [PMID: 34729011]
[http://dx.doi.org/10.1001/jama.2020.1585]
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[http://dx.doi.org/10.1152/ajplung.00313.2002] [PMID: 12754187]
[http://dx.doi.org/10.1016/j.coph.2017.12.002] [PMID: 29288933]
[http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
[http://dx.doi.org/10.3389/fimmu.2019.00799] [PMID: 31057539]
[http://dx.doi.org/10.1152/physrev.00023.2016] [PMID: 29351514]
[http://dx.doi.org/10.1128/JVI.00737-08] [PMID: 18495771]
[http://dx.doi.org/10.2353/ajpath.2007.061088] [PMID: 17392154]
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[http://dx.doi.org/10.4269/ajtmh.21-0606] [PMID: 34649223]
[http://dx.doi.org/10.1080/14787210.2021.1950532] [PMID: 34225541]
[http://dx.doi.org/10.1002/jmv.27122] [PMID: 34076901]
[http://dx.doi.org/10.1007/s12011-020-02512-1] [PMID: 33247380]
[http://dx.doi.org/10.3390/vaccines9030211] [PMID: 33802310]