Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Mini-Review Article

Possible Mechanisms and Molecular Signaling of Incretins against the Development of Type 2 Diabetes Mellitus

Author(s): Raziyeh Salami, Marziyeh Salami, Alireza Mafi, Mohammad-Hossein Aarabi, Omid Vakili and Zatollah Asemi*

Volume 16, Issue 4, 2023

Published on: 03 November, 2022

Article ID: e290822208121 Pages: 17

DOI: 10.2174/1874467215666220829102020

Price: $65

Abstract

The increasing number of cases of diabetes mellitus (DM) and related diseases has become a global health concern. In this context, controlling blood glucose levels is critical to prevent and/or slow down the development of diabetes-related complications. Incretins, as gutderived hormones that trigger the post-meal secretion of insulin, are a well-known family of blood glucose modulators. Currently, incretin medications, including glucagon-like peptide-1 receptor agonist (GLP-1RA) and dipeptidyl peptidase-4 (DPP-4) inhibitors, are extensively used to treat patients with type 2 diabetes mellitus (T2D). Several experimental and clinical studies illustrate that these metabolic hormones exert their antidiabetic effects through multiple molecular mechanisms. Accordingly, the current review aims to investigate key mechanisms and signaling pathways, such as the cAMP/PKA, Nrf2, PI3K/Akt, and AMPK pathways, associated with the antidiabetic effects of incretins. It also summarizes the outcomes of a group of clinical trials evaluating the incretins’ antidiabetic potential in diabetic patients.

Keywords: Diabetes mellitus, incretins, signaling pathways, molecular mechanisms

Graphical Abstract

[1]
Kibel, A.; Selthofer-Relatic, K.; Drenjancevic, I.; Bacun, T.; Bosnjak, I.; Kibel, D.; Gros, M. Coronary microvascular dysfunction in diabetes mellitus. J. Int. Med. Res., 2017, 45(6), 1901-1929.
[http://dx.doi.org/10.1177/0300060516675504] [PMID: 28643578]
[2]
Atlas, D. International diabetes federation, IDF Diabetes Atlas, 7th ed; International Diabetes Federation: Brussels, Belgium, 2015.
[3]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[4]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[5]
Nickerson, H.D.; Dutta, S. Diabetic complications: Current challenges and opportunities. J. Cardiovasc. Transl. Res., 2012, 5(4), 375-379.
[http://dx.doi.org/10.1007/s12265-012-9388-1] [PMID: 22752737]
[6]
Papatheodorou, K.; Banach, M.; Bekiari, E.; Rizzo, M.; Edmonds, M. Complications of diabetes 2017; Hindawi, 2018.
[http://dx.doi.org/10.1155/2018/3086167]
[7]
Sloan, L.A. Review of glucagon‐like peptide‐1 receptor agonists for the treatment of type 2 diabetes mellitus in patients with chronic kidney disease and their renal effects. J. Diabetes, 2019, 11(12), 938-948.
[http://dx.doi.org/10.1111/1753-0407.12969] [PMID: 31318152]
[8]
Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med., 1993, 329(14), 977-986.
[http://dx.doi.org/10.1056/NEJM199309303291401] [PMID: 8366922]
[9]
Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future. Lancet, 2014, 383(9922), 1068-1083.
[http://dx.doi.org/10.1016/S0140-6736(13)62154-6] [PMID: 24315620]
[10]
Groeneveld, O.N.; Kappelle, L.J.; Biessels, G.J. Potentials of incretin‐based therapies in dementia and stroke in type 2 diabetes mellitus. J. Diabetes Investig., 2016, 7(1), 5-16.
[http://dx.doi.org/10.1111/jdi.12420] [PMID: 26816596]
[11]
Nauck, M.A.; Meier, J.J. Incretin hormones: Their role in health and disease. Diabetes Obes. Metab., 2018, 20(Suppl. 1), 5-21.
[http://dx.doi.org/10.1111/dom.13129] [PMID: 29364588]
[12]
Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 2006, 368(9548), 1696-1705.
[http://dx.doi.org/10.1016/S0140-6736(06)69705-5] [PMID: 17098089]
[13]
Gooßen, K.; Gräber, S. Longer term safety of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes mellitus: Systematic review and meta-analysis. Diabetes Obes. Metab., 2012, 14(12), 1061-1072.
[http://dx.doi.org/10.1111/j.1463-1326.2012.01610.x] [PMID: 22519906]
[14]
Campbell, J.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab., 2013, 17(6), 819-837.
[http://dx.doi.org/10.1016/j.cmet.2013.04.008] [PMID: 23684623]
[15]
Nauck, M.A.; Meier, J.J. The incretin effect in healthy individuals and those with type 2 diabetes: Physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol., 2016, 4(6), 525-536.
[http://dx.doi.org/10.1016/S2213-8587(15)00482-9] [PMID: 26876794]
[16]
DeFronzo, R.A. Banting Lecture. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes, 2009, 58(4), 773-795.
[http://dx.doi.org/10.2337/db09-9028] [PMID: 19336687]
[17]
Tasyurek, H.M.; Altunbas, H.A.; Balci, M.K.; Sanlioglu, S. Incretins: Their physiology and application in the treatment of diabetes mellitus. Diabetes Metab. Res. Rev., 2014, 30(5), 354-371.
[http://dx.doi.org/10.1002/dmrr.2501] [PMID: 24989141]
[18]
Holz, G.G. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes, 2004, 53(1), 5-13.
[http://dx.doi.org/10.2337/diabetes.53.1.5] [PMID: 14693691]
[19]
Oh, Y.; Jun, H.S. Effects of glucagon-like peptide-1 on oxidative stress and Nrf2 signaling. Int. J. Mol. Sci., 2017, 19(1), 26.
[http://dx.doi.org/10.3390/ijms19010026] [PMID: 29271910]
[20]
Xie, Z.; Enkhjargal, B.; Wu, L.; Zhou, K.; Sun, C.; Hu, X.; Gospodarev, V.; Tang, J.; You, C.; Zhang, J.H. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology, 2018, 128, 142-151.
[http://dx.doi.org/10.1016/j.neuropharm.2017.09.040] [PMID: 28986282]
[21]
Gao, L.; Li, S.L.; Li, Y.K. Liraglutide promotes the osteogenic differentiation in MC3T3-E1 Cells via regulating the expression of Smad2/3 through PI3K/Akt and Wnt/β-catenin pathways. DNA Cell Biol., 2018, 37(12), 1031-1043.
[http://dx.doi.org/10.1089/dna.2018.4397] [PMID: 30403540]
[22]
Andreozzi, F.; Raciti, G.A.; Nigro, C.; Mannino, G.C.; Procopio, T.; Davalli, A.M.; Beguinot, F.; Sesti, G.; Miele, C.; Folli, F. The GLP-1 receptor agonists exenatide and liraglutide activate glucose transport by an AMPK-dependent mechanism. J. Transl. Med., 2016, 14(1), 229.
[http://dx.doi.org/10.1186/s12967-016-0985-7] [PMID: 27473212]
[23]
Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig., 2010, 1(1-2), 8-23.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00022.x] [PMID: 24843404]
[24]
Nauck, M.A. Incretin-based therapies for type 2 diabetes mellitus: Properties, functions, and clinical implications. Am. J. Med., 2011, 124(1), S3-S18.
[http://dx.doi.org/10.1016/j.amjmed.2010.11.002] [PMID: 21194578]
[25]
Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology, 2007, 132(6), 2131-2157.
[http://dx.doi.org/10.1053/j.gastro.2007.03.054] [PMID: 17498508]
[26]
Seino, Y.; Yabe, D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: Incretin actions beyond the pancreas. J. Diabetes Investig., 2013, 4(2), 108-130.
[http://dx.doi.org/10.1111/jdi.12065] [PMID: 24843641]
[27]
Chia, C.W.; Carlson, O.D.; Kim, W.; Shin, Y-K.; Charles, C.P.; Kim, H.S.; Melvin, D.L.; Egan, J.M. Exogenous glucose–dependent insulinotropic polypeptide worsens post prandial hyperglycemia in Type 2 diabetes. Diabetes, 2009, 58(6), 1342-1349.
[28]
Mulvihill, E.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev., 2014, 35(6), 992-1019.
[http://dx.doi.org/10.1210/er.2014-1035] [PMID: 25216328]
[29]
Mima, A. Incretin-based therapy for prevention of diabetic vascular complications. J. Diabetes Res., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/1379274] [PMID: 26881236]
[30]
González, C.; Beruto, V.; Keller, G.; Santoro, S.; Di Girolamo, G. Investigational treatments for Type 2 diabetes mellitus: Exenatide and liraglutide. Expert Opin. Investig. Drugs, 2006, 15(8), 887-895.
[http://dx.doi.org/10.1517/13543784.15.8.887] [PMID: 16859392]
[31]
Deacon, C.F.; Ahrén, B.; Holst, J.J. Inhibitors of dipeptidyl peptidase IV: A novel approach for the prevention and treatment of type 2 diabetes? Expert Opin. Investig. Drugs, 2004, 13(9), 1091-1102.
[http://dx.doi.org/10.1517/13543784.13.9.1091] [PMID: 15330741]
[32]
Samson, S.L.; Garber, A. GLP-1R agonist therapy for diabetes. Curr. Opin. Endocrinol. Diabetes Obes., 2013, 20(2), 87-97.
[http://dx.doi.org/10.1097/MED.0b013e32835edb32] [PMID: 23403741]
[33]
Forst, T.; Weber, M.M.; Pfützner, A. Cardiovascular benefits of GLP-1-based herapies in patients with diabetes mellitus type 2: Effects on endothelial and vascular dysfunction beyond glycemic control. Exp. Diabetes Res., 2012, 2012, 1-9.
[http://dx.doi.org/10.1155/2012/635472] [PMID: 22577369]
[34]
Davies, M.; Pratley, R.; Hammer, M.; Thomsen, A.B.; Cuddihy, R. Liraglutide improves treatment satisfaction in people with Type 2 diabetes compared with sitagliptin, each as an add on to metformin. Diabet. Med., 2011, 28(3), 333-337.
[PMID: 21309842]
[35]
Pratley, R.; Nauck, M.; Bailey, T.; Montanya, E.; Cuddihy, R.; Filetti, S.; Garber, A.; Thomsen, A.B.; Hartvig, H.; Davies, M. One year of liraglutide treatment offers sustained and more effective glycaemic control and weight reduction compared with sitagliptin, both in combination with metformin, in patients with type 2 diabetes: A randomised, parallel-group, open-label trial. Int. J. Clin. Pract., 2011, 65(4), 397-407.
[http://dx.doi.org/10.1111/j.1742-1241.2011.02656.x] [PMID: 21355967]
[36]
Peyrot, M.; Rubin, R.R. How does treatment satisfaction work?: Modeling determinants of treatment satisfaction and preference. Diabetes Care, 2009, 32(8), 1411-1417.
[http://dx.doi.org/10.2337/dc08-2256] [PMID: 19470837]
[37]
Buse, J.B.; Garber, A.; Rosenstock, J.; Schmidt, W.E.; Brett, J.H.; Videbæk, N.; Holst, J.; Nauck, M. Liraglutide treatment is associated with a low frequency and magnitude of antibody formation with no apparent impact on glycemic response or increased frequency of adverse events: Results from the Liraglutide Effect and Action in Diabetes (LEAD) trials. J. Clin. Endocrinol. Metab., 2011, 96(6), 1695-1702.
[http://dx.doi.org/10.1210/jc.2010-2822] [PMID: 21450987]
[38]
Buse, J.B.; Rosenstock, J.; Sesti, G.; Schmidt, W.E.; Montanya, E.; Brett, J.H.; Zychma, M.; Blonde, L. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: A 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet, 2009, 374(9683), 39-47.
[http://dx.doi.org/10.1016/S0140-6736(09)60659-0] [PMID: 19515413]
[39]
Duez, H.; Cariou, B.; Staels, B. DPP-4 inhibitors in the treatment of type 2 diabetes. Biochem. Pharmacol., 2012, 83(7), 823-832.
[http://dx.doi.org/10.1016/j.bcp.2011.11.028] [PMID: 22172989]
[40]
Marguet, D.; Baggio, L.; Kobayashi, T.; Bernard, A.M.; Pierres, M.; Nielsen, P.F.; Ribel, U.; Watanabe, T.; Drucker, D.J.; Wagtmann, N. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6874-6879.
[http://dx.doi.org/10.1073/pnas.120069197] [PMID: 10823914]
[41]
Conarello, S.L.; Li, Z.; Ronan, J.; Roy, R.S.; Zhu, L.; Jiang, G.; Liu, F.; Woods, J.; Zycband, E.; Moller, D.E.; Thornberry, N.A.; Zhang, B.B. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc. Natl. Acad. Sci. USA, 2003, 100(11), 6825-6830.
[http://dx.doi.org/10.1073/pnas.0631828100] [PMID: 12748388]
[42]
Best, J.H.; Hoogwerf, B.J.; Herman, W.H.; Pelletier, E.M.; Smith, D.B.; Wenten, M.; Hussein, M.A. Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: A retrospective analysis of the LifeLink database. Diabetes Care, 2011, 34(1), 90-95.
[http://dx.doi.org/10.2337/dc10-1393] [PMID: 20929995]
[43]
Sokos, G.G.; Bolukoglu, H.; German, J.; Hentosz, T.; Magovern, G.J., Jr; Maher, T.D.; Dean, D.A.; Bailey, S.H.; Marrone, G.; Benckart, D.H.; Elahi, D.; Shannon, R.P. Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am. J. Cardiol., 2007, 100(5), 824-829.
[http://dx.doi.org/10.1016/j.amjcard.2007.05.022] [PMID: 17719327]
[44]
Scott, K.A.; Moran, T.H. The GLP-1 agonist exendin-4 reduces food intake in nonhuman primates through changes in meal size. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 293(3), R983-R987.
[http://dx.doi.org/10.1152/ajpregu.00323.2007] [PMID: 17581835]
[45]
Meier, J.J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2012, 8(12), 728-742.
[http://dx.doi.org/10.1038/nrendo.2012.140] [PMID: 22945360]
[46]
Yamagishi, S.; Matsui, T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid. Med. Cell. Longev., 2010, 3(2), 101-108.
[http://dx.doi.org/10.4161/oxim.3.2.11148] [PMID: 20716934]
[47]
Folli, F.; Corradi, D.; Fanti, P.; Davalli, A.; Paez, A.; Giaccari, A.; Perego, C.; Muscogiuri, G. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: Avenues for a mechanistic-based therapeutic approach. Curr. Diabetes Rev., 2011, 7(5), 313-324.
[http://dx.doi.org/10.2174/157339911797415585] [PMID: 21838680]
[48]
Naudi, A.; Jove, M.; Ayala, V.; Cassanye, A.; Serrano, J.; Gonzalo, H.; Boada, J.; Prat, J.; Portero-Otin, M.; Pamplona, R. Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp. Diabetes Res., 2012, 2012, 1-14.
[http://dx.doi.org/10.1155/2012/696215] [PMID: 22253615]
[49]
Chang, G.; Liu, J.; Qin, S.; Jiang, Y.; Zhang, P.; Yu, H.; Lu, K.; Zhang, N.; Cao, L.; Wang, Y.; Li, Y.; Zhang, D. Cardioprotection by exenatide: A novel mechanism via improving mitochondrial function involving the GLP-1 receptor/cAMP/PKA pathway. Int. J. Mol. Med., 2018, 41(3), 1693-1703.
[PMID: 29286061]
[50]
Furman, B.; Ong, W.K.; Pyne, N.J. Cyclic AMP signaling in pancreatic islets, The Islets of Langerhans; Springer, 2010, pp. 281-304.
[51]
Kawanami, D.; Matoba, K.; Sango, K.; Utsunomiya, K. Incretin-based therapies for diabetic complications: Basic mechanisms and clinical evidence. Int. J. Mol. Sci., 2016, 17(8), 1223.
[http://dx.doi.org/10.3390/ijms17081223] [PMID: 27483245]
[52]
Yang, H.; Yang, L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J. Mol. Endocrinol., 2016, 57(2), R93-R108.
[http://dx.doi.org/10.1530/JME-15-0316] [PMID: 27194812]
[53]
Shao, W.; Wang, Z.; Ip, W.; Chiang, Y.T.; Xiong, X.; Chai, T.; Xu, C.; Wang, Q.; Jin, T. GLP-1(28–36) improves β-cell mass and glucose disposal in streptozotocin-induced diabetic mice and activates cAMP/PKA/β-catenin signaling in β-cells in vitro. Am. J. Physiol. Endocrinol. Metab., 2013, 304(12), E1263-E1272.
[http://dx.doi.org/10.1152/ajpendo.00600.2012] [PMID: 23571712]
[54]
Fatrai, S.; Elghazi, L.; Balcazar, N.; Cras-Méneur, C.; Krits, I.; Kiyokawa, H.; Bernal-Mizrachi, E. Akt induces β-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes, 2006, 55(2), 318-325.
[http://dx.doi.org/10.2337/diabetes.55.02.06.db05-0757] [PMID: 16443763]
[55]
Satoh, M.; Fujimoto, S.; Haruna, Y.; Arakawa, S.; Horike, H.; Komai, N.; Sasaki, T.; Tsujioka, K.; Makino, H.; Kashihara, N. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2005, 288(6), F1144-F1152.
[http://dx.doi.org/10.1152/ajprenal.00221.2004] [PMID: 15687247]
[56]
Kim, J.S.; Diebold, B.A.; Babior, B.M.; Knaus, U.G.; Bokoch, G.M. Regulation of Nox1 activity via protein kinase A-mediated phosphorylation of NoxA1 and 14-3-3 binding. J. Biol. Chem., 2007, 282(48), 34787-34800.
[http://dx.doi.org/10.1074/jbc.M704754200] [PMID: 17913709]
[57]
Brown, J.A.; Diggs-Andrews, K.A.; Gianino, S.M.; Gutmann, D.H. Neurofibromatosis-1 heterozygosity impairs CNS neuronal morphology in a cAMP/PKA/ROCK-dependent manner. Mol. Cell. Neurosci., 2012, 49(1), 13-22.
[http://dx.doi.org/10.1016/j.mcn.2011.08.008] [PMID: 21903164]
[58]
Wang, D.; Luo, P.; Wang, Y.; Li, W.; Wang, C.; Sun, D.; Zhang, R.; Su, T.; Ma, X.; Zeng, C.; Wang, H.; Ren, J.; Cao, F. Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism. Diabetes, 2013, 62(5), 1697-1708.
[http://dx.doi.org/10.2337/db12-1025] [PMID: 23364453]
[59]
Tang, S.; Tang, H.; Su, H.; Wang, Y.; Zhou, Q.; Zhang, Q.; Wang, Y.; Zhu, H. Glucagon-like peptide-1 attenuates endothelial barrier injury in diabetes via cAMP/PKA mediated down-regulation of MLC phosphorylation. Biomed. Pharmacother., 2019, 113, 108667.
[http://dx.doi.org/10.1016/j.biopha.2019.108667] [PMID: 30852419]
[60]
Erdogdu, Ö.; Nathanson, D.; Sjöholm, Å; Nyström, T.; Zhang, Q. Exendin-4 stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requires GLP-1 receptor. Mol. Cell. Endocrinol., 2010, 325(1-2), 26-35.
[http://dx.doi.org/10.1016/j.mce.2010.04.022] [PMID: 20452396]
[61]
Bao, Y.; Jiang, L.; Chen, H.; Zou, J.; Liu, Z.; Shi, Y. The neuroprotective effect of liraglutide is mediated by glucagon-like peptide 1 receptor-mediated activation of cAMP/PKA/CREB Pathway. Cell. Physiol. Biochem., 2015, 36(6), 2366-2378.
[62]
Zhang, Y.; Ding, Y.; Zhong, X.; Guo, Q.; Wang, H.; Gao, J.; Bai, T.; Ren, L.; Guo, Y.; Jiao, X.; Liu, Y. Geniposide acutely stimulates insulin secretion in pancreatic β-cells by regulating GLP-1 receptor/cAMP signaling and ion channels. Mol. Cell. Endocrinol., 2016, 430, 89-96.
[http://dx.doi.org/10.1016/j.mce.2016.04.020] [PMID: 27126219]
[63]
Yanagimachi, T.; Fujita, Y.; Takeda, Y.; Honjo, J.; Sakagami, H.; Kitsunai, H.; Takiyama, Y.; Abiko, A.; Makino, Y.; Kieffer, T.J.; Haneda, M. Dipeptidyl peptidase-4 inhibitor treatment induces a greater increase in plasma levels of bioactive GIP than GLP-1 in non-diabetic subjects. Mol. Metab., 2017, 6(2), 226-231.
[http://dx.doi.org/10.1016/j.molmet.2016.12.009] [PMID: 28180064]
[64]
Lee, T.M.; Chen, W.T.; Chang, N.C. Dipeptidyl peptidase-4 inhibition attenuates arrhythmias via a protein kinase A-dependent pathway in infarcted hearts. Circulation, 2015, 79(11), 2461-2470.
[65]
Williams, M.D.; Nadler, J.L. Inflammatory mechanisms of diabetic complications. Curr. Diab. Rep., 2007, 7(3), 242-248.
[http://dx.doi.org/10.1007/s11892-007-0038-y] [PMID: 17547842]
[66]
Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The role of inflammation in diabetes: Current concepts and future perspectives. Eur. Cardiol., 2019, 14(1), 50-59.
[http://dx.doi.org/10.15420/ecr.2018.33.1] [PMID: 31131037]
[67]
Jin, H.Y.; Park, T.S. Role of inflammatory biomarkers in diabetic peripheral neuropathy. J. Diabetes Investig., 2018, 9(5), 1016-1018.
[http://dx.doi.org/10.1111/jdi.12794] [PMID: 29277966]
[68]
Rübsam, A.; Parikh, S.; Fort, P. Role of inflammation in diabetic retinopathy. Int. J. Mol. Sci., 2018, 19(4), 942.
[http://dx.doi.org/10.3390/ijms19040942] [PMID: 29565290]
[69]
Navarro-González, J.F.; Mora-Fernández, C.; de Fuentes, M.M.; García-Pérez, J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat. Rev. Nephrol., 2011, 7(6), 327-340.
[http://dx.doi.org/10.1038/nrneph.2011.51] [PMID: 21537349]
[70]
Que, Q.; Guo, X.; Zhan, L.; Chen, S.; Zhang, Z.; Ni, X.; Ye, B.; Wan, S. The GLP-1 agonist, liraglutide, ameliorates inflammation through the activation of the PKA/CREB pathway in a rat model of knee osteoarthritis. J. Inflamm. (Lond.), 2019, 16(1), 13.
[http://dx.doi.org/10.1186/s12950-019-0218-y] [PMID: 31182934]
[71]
Cohen, P. The TLR and IL-1 signalling network at a glance. J. Cell Sci., 2014, 127(Pt 11), 2383-2390.
[http://dx.doi.org/10.1242/jcs.149831]
[72]
Chaudhuri, A.; Umpierrez, G.E. Oxidative stress and inflammation in hyperglycemic crises and resolution with insulin: Implications for the acute and chronic complications of hyperglycemia. J. Diabetes Complications, 2012, 26(4), 257-258.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.04.016] [PMID: 22658407]
[73]
Rains, J.L.; Jain, S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med., 2011, 50(5), 567-575.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.12.006] [PMID: 21163346]
[74]
Soysal, P.; Isik, A.T.; Carvalho, A.F.; Fernandes, B.S.; Solmi, M.; Schofield, P.; Veronese, N.; Stubbs, B. Oxidative stress and frailty: A systematic review and synthesis of the best evidence. Maturitas, 2017, 99, 66-72.
[http://dx.doi.org/10.1016/j.maturitas.2017.01.006] [PMID: 28364871]
[75]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[76]
Tiedge, M.; Lortz, S.; Drinkgern, J.; Lenzen, S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes, 1997, 46(11), 1733-1742.
[http://dx.doi.org/10.2337/diab.46.11.1733] [PMID: 9356019]
[77]
Fiorentino, T.; Prioletta, A.; Zuo, P.; Folli, F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr. Pharm. Des., 2013, 19(32), 5695-5703.
[http://dx.doi.org/10.2174/1381612811319320005] [PMID: 23448484]
[78]
Li, N.; Alam, J.; Venkatesan, M.I.; Eiguren-Fernandez, A.; Schmitz, D.; Di Stefano, E.; Slaughter, N.; Killeen, E.; Wang, X.; Huang, A.; Wang, M.; Miguel, A.H.; Cho, A.; Sioutas, C.; Nel, A.E. Nrf2 is a key transcription factor that regulates antioxidant defense in macrophages and epithelial cells: Protecting against the proinflammatory and oxidizing effects of diesel exhaust chemicals. J. Immunol., 2004, 173(5), 3467-3481.
[http://dx.doi.org/10.4049/jimmunol.173.5.3467] [PMID: 15322212]
[79]
Xiong, L.; Xie, J.; Song, C.; Liu, J.; Zheng, J.; Liu, C.; Zhang, X.; Li, P.; Wang, F. The activation of Nrf2 and its downstream regulated genes mediates the antioxidative activities of xueshuan xinmaining tablet in human umbilical vein endothelial cells. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/187265] [PMID: 26681964]
[80]
Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(2), 585-597.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.005] [PMID: 27825853]
[81]
Abdelsalam, R.M.; Safar, M.M. Neuroprotective effects of vildagliptin in rat rotenone Parkinson’s disease model: role of RAGE-NFκB and Nrf2-antioxidant signaling pathways. J. Neurochem., 2015, 133(5), 700-707.
[http://dx.doi.org/10.1111/jnc.13087] [PMID: 25752913]
[82]
Tamtaji, O.R.; Naderi Taheri, M.; Notghi, F.; Alipoor, R.; Bouzari, R.; Asemi, Z. The effects of acupuncture and electroacupuncture on Parkinson’s disease: Current status and future perspectives for molecular mechanisms. J. Cell. Biochem., 2019, 120(8), 12156-12166.
[http://dx.doi.org/10.1002/jcb.28654] [PMID: 30938859]
[83]
Puddu, A.; Mach, F.; Nencioni, A.; Viviani, G.L.; Montecucco, F. An emerging role of glucagon-like peptide-1 in preventing advanced-glycation-end-product-mediated damages in diabetes. Mediators Inflamm., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/591056] [PMID: 23365488]
[84]
Fernández-Millán. E.; Martín, M.A.; Goya, L.; Lizárraga-Mollinedo, E.; Escrivá, F.; Ramos, S.; Álvarez, C. Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation. Free Radic. Biol. Med., 2016, 95, 16-26.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.03.002] [PMID: 26968794]
[85]
Matzinger, M.; Fischhuber, K.; Heiss, E.H. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol. Adv., 2018, 36(6), 1738-1767.
[http://dx.doi.org/10.1016/j.biotechadv.2017.12.015] [PMID: 29289692]
[86]
Deng, C.; Cao, J.; Han, J.; Li, J.; Li, Z.; Shi, N.; He, J. Liraglutide activates the Nrf2/HO-1 antioxidant pathway and protects brain nerve cells against cerebral ischemia in diabetic rats. Comput. Intell. Neurosci., 2018, 2018, 1-7.
[http://dx.doi.org/10.1155/2018/3094504] [PMID: 29623090]
[87]
Kim, M.H.; Kim, E.H.; Jung, H.S.; Yang, D.; Park, E.Y.; Jun, H.S. EX4 stabilizes and activates Nrf2 via PKCδ contributing to the prevention of oxidative stress-induced pancreatic beta cell damage. Toxicol. Appl. Pharmacol., 2017, 315, 60-69.
[http://dx.doi.org/10.1016/j.taap.2016.12.005] [PMID: 27939242]
[88]
Maffei, A.; Lembo, G.; Carnevale, D. PI3 kinases in diabetes mellitus and its related complications. Int. J. Mol. Sci., 2018, 19(12), 4098.
[http://dx.doi.org/10.3390/ijms19124098] [PMID: 30567315]
[89]
Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet., 2006, 7(8), 606-619.
[http://dx.doi.org/10.1038/nrg1879] [PMID: 16847462]
[90]
Guan, G.; Zhang, J.; Liu, S.; Huang, W.; Gong, Y.; Gu, X. Glucagon-like peptide-1 attenuates endoplasmic reticulum stress–induced apoptosis in H9c2 cardiomyocytes during hypoxia/reoxygenation through the GLP-1R/PI3K/Akt pathways. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(6), 715-722.
[http://dx.doi.org/10.1007/s00210-019-01625-2] [PMID: 30762075]
[91]
Jiang, Y.Q.; Chang, G.; Wang, Y.; Zhang, D.Y.; Cao, L.; Liu, J. Geniposide prevents hypoxia/reoxygenation-induced apoptosis in H9c2 cells: Improvement of mitochondrial dysfunction and activation of GLP-1R and the PI3K/AKT signaling pathway. Cell. Physiol. Biochem., 2016, 39(1), 407-421.
[http://dx.doi.org/10.1159/000445634] [PMID: 27372651]
[92]
Zhang, Y.; Zhou, H.; Wu, W.; Shi, C.; Hu, S.; Yin, T.; Ma, Q.; Han, T.; Zhang, Y.; Tian, F.; Chen, Y. Liraglutide protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury through the suppression of the SR-Ca2+–XO–ROS axis via activation of the GLP-1R/PI3K/Akt/survivin pathways. Free Radic. Biol. Med., 2016, 95, 278-292.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.03.035] [PMID: 27038735]
[93]
Kapodistria, K.; Tsilibary, E.P.; Kotsopoulou, E.; Moustardas, P.; Kitsiou, P. Liraglutide, a human glucagon‐like peptide‐1 analogue, stimulates AKT‐dependent survival signalling and inhibits pancreatic β‐cell apoptosis. J. Cell. Mol. Med., 2018, 22(6), 2970-2980.
[http://dx.doi.org/10.1111/jcmm.13259] [PMID: 29524296]
[94]
Hou, G.; Li, C.; Huan, Y.; Liu, S.; Liu, Q.; Liu, M.; Shen, Z. The PI3K/Akt1-FoxO1 translocation pathway mediates EXf effects on NIT-1 cell survival. Exp. Clin. Endocrinol. Diabetes, 2017, 125(10), 669-676.
[http://dx.doi.org/10.1055/s-0043-117048] [PMID: 28895639]
[95]
Kwon, D.Y.; Kim, Y.S.; Ahn, I.S.; Kim, D.S.; Kang, S.; Hong, S.M.; Park, S. Exendin-4 potentiates insulinotropic action partly via increasing β-cell proliferation and neogenesis and decreasing apoptosis in association with the attenuation of endoplasmic reticulum stress in islets of diabetic rats. J. Pharmacol. Sci., 2009, 111(4), 361-371.
[http://dx.doi.org/10.1254/jphs.09178FP] [PMID: 20019445]
[96]
Wang, C.; Chen, X.; Ding, X.; He, Y.; Gu, C.; Zhou, L. Exendin-4 promotes beta cell proliferation via PI3k/Akt signalling pathway. Cell. Physiol. Biochem., 2015, 35(6), 2233-2232.
[97]
Ballestri, S.; Zona, S.; Targher, G.; Romagnoli, D.; Baldelli, E.; Nascimbeni, F.; Roverato, A.; Guaraldi, G.; Lonardo, A. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J. Gastroenterol. Hepatol., 2016, 31(5), 936-944.
[http://dx.doi.org/10.1111/jgh.13264] [PMID: 26667191]
[98]
Yang, P.; Liang, Y.; Luo, Y.; Li, Z.; Wen, Y.; Shen, J.; Li, R.; Zheng, H.; Gu, H.F.; Xia, N. Liraglutide ameliorates nonalcoholic fatty liver disease in diabetic mice via the IRS2/PI3K/Akt signaling pathway. Diabetes Metab. Syndr. Obes., 2019, 12, 1013-1021.
[http://dx.doi.org/10.2147/DMSO.S206867] [PMID: 31308717]
[99]
Eizirik, D.L.; Cardozo, A.K.; Cnop, M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev., 2008, 29(1), 42-61.
[http://dx.doi.org/10.1210/er.2007-0015] [PMID: 18048764]
[100]
Alhusaini, S.; McGee, K.; Schisano, B.; Harte, A.; McTernan, P.; Kumar, S.; Tripathi, G. Lipopolysaccharide, high glucose and saturated fatty acids induce endoplasmic reticulum stress in cultured primary human adipocytes: Salicylate alleviates this stress. Biochem. Biophys. Res. Commun., 2010, 397(3), 472-478.
[http://dx.doi.org/10.1016/j.bbrc.2010.05.138] [PMID: 20515657]
[101]
van der Kallen, C.J.H.; van Greevenbroek, M.M.J.; Stehouwer, C.D.A.; Schalkwijk, C.G. Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: Is there a role for adipose tissue and liver? Apoptosis, 2009, 14(12), 1424-1434.
[http://dx.doi.org/10.1007/s10495-009-0400-4] [PMID: 19757063]
[102]
Bakker, W.; Eringa, E.C.; Sipkema, P.; van Hinsbergh, V.W.M. Endothelial dysfunction and diabetes: Roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res., 2009, 335(1), 165-189.
[http://dx.doi.org/10.1007/s00441-008-0685-6] [PMID: 18941783]
[103]
Vilatoba, M.; Eckstein, C.; Bilbao, G.; Smyth, C.A.; Jenkins, S.; Thompson, J.A.; Eckhoff, D.E.; Contreras, J.L. Sodium 4-phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis. Surgery, 2005, 138(2), 342-351.
[http://dx.doi.org/10.1016/j.surg.2005.04.019] [PMID: 16153446]
[104]
Chen, J.; Xie, J.J.; Shi, K.S.; Gu, Y.T.; Wu, C.C.; Xuan, J.; Ren, Y.; Chen, L.; Wu, Y.S.; Zhang, X.L.; Xiao, J.; Wang, D.Z.; Wang, X.Y. Glucagon-like peptide-1 receptor regulates endoplasmic reticulum stress-induced apoptosis and the associated inflammatory response in chondrocytes and the progression of osteoarthritis in rat. Cell Death Dis., 2018, 9(2), 212.
[http://dx.doi.org/10.1038/s41419-017-0217-y] [PMID: 29434185]
[105]
Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 251-262.
[http://dx.doi.org/10.1038/nrm3311] [PMID: 22436748]
[106]
Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 121-135.
[http://dx.doi.org/10.1038/nrm.2017.95] [PMID: 28974774]
[107]
Zhang, D.; Wang, W.; Sun, X.; Xu, D.; Wang, C.; Zhang, Q.; Wang, H.; Luo, W.; Chen, Y.; Chen, H.; Liu, Z. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy, 2016, 12(9), 1447-1459.
[http://dx.doi.org/10.1080/15548627.2016.1185576] [PMID: 27304906]
[108]
Eid, A.A.; Ford, B.M.; Block, K.; Kasinath, B.S.; Gorin, Y.; Ghosh-Choudhury, G.; Barnes, J.L.; Abboud, H.E. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J. Biol. Chem., 2010, 285(48), 37503-37512.
[http://dx.doi.org/10.1074/jbc.M110.136796] [PMID: 20861022]
[109]
Mangalam, A.K.; Rattan, R.; Suhail, H.; Singh, J.; Hoda, M.N.; Deshpande, M.; Fulzele, S.; Denic, A.; Shridhar, V.; Kumar, A.; Viollet, B.; Rodriguez, M.; Giri, S. AMP-activated protein kinase suppresses autoimmune central nervous system disease by regulating M1-type macrophage–Th17 axis. J. Immunol., 2016, 197(3), 747-760.
[http://dx.doi.org/10.4049/jimmunol.1501549] [PMID: 27354217]
[110]
Toyama, E.Q.; Herzig, S.; Courchet, J.; Lewis, T.L., Jr; Losón, O.C.; Hellberg, K.; Young, N.P.; Chen, H.; Polleux, F.; Chan, D.C.; Shaw, R.J. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science, 2016, 351(6270), 275-281.
[http://dx.doi.org/10.1126/science.aab4138] [PMID: 26816379]
[111]
Ha, T.S.; Park, H.Y.; Nam, J.A.; Han, G.D. Diabetic conditions modulate the adenosine monophosphate-activated protein kinase of podocytes. Kidney Res. Clin. Pract., 2014, 33(1), 26-32.
[http://dx.doi.org/10.1016/j.krcp.2014.02.001] [PMID: 26877947]
[112]
Kamoshita, M.; Ozawa, Y.; Kubota, S.; Miyake, S.; Tsuda, C.; Nagai, N.; Yuki, K.; Shimmura, S.; Umezawa, K.; Tsubota, K. AMPK-NF-κB axis in the photoreceptor disorder during retinal inflammation. PLoS One, 2014, 9(7), e103013.
[http://dx.doi.org/10.1371/journal.pone.0103013] [PMID: 25048039]
[113]
Yerra, V.G.; Kalvala, A.K.; Sherkhane, B.; Areti, A.; Kumar, A. Adenosine monophosphate-activated protein kinase modulation by berberine attenuates mitochondrial deficits and redox imbalance in experimental diabetic neuropathy. Neuropharmacology, 2018, 131, 256-270.
[http://dx.doi.org/10.1016/j.neuropharm.2017.12.029] [PMID: 29273519]
[114]
Balteau, M.; Van Steenbergen, A.; Timmermans, A.D.; Dessy, C.; Behets-Wydemans, G.; Tajeddine, N.; Castanares-Zapatero, D.; Gilon, P.; Vanoverschelde, J.L.; Horman, S.; Hue, L.; Bertrand, L.; Beauloye, C. AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol., 2014, 307(8), H1120-H1133.
[http://dx.doi.org/10.1152/ajpheart.00210.2014] [PMID: 25128166]
[115]
Tang, S.T.; Su, H.; Zhang, Q.; Tang, H.Q.; Wang, C.J.; Zhou, Q.; Wei, W.; Zhu, H.Q.; Wang, Y. Sitagliptin inhibits endothelin-1 expression in the aortic endothelium of rats with streptozotocin-induced diabetes by suppressing the nuclear factor-κB/IκBα system through the activation of AMP-activated protein kinase. Int. J. Mol. Med., 2016, 37(6), 1558-1566.
[http://dx.doi.org/10.3892/ijmm.2016.2578] [PMID: 27122056]
[116]
Yang, Y.; Lu, Y.; Han, F.; Chang, Y.; Li, X.; Han, Z.; Xue, M.; Cheng, Y.; Sun, B.; Chen, L. Saxagliptin regulates M1/M2 macrophage polarization via CaMKKβ/AMPK pathway to attenuate NAFLD. Biochem. Biophys. Res. Commun., 2018, 503(3), 1618-1624.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.090] [PMID: 30060948]
[117]
Mafi, A.; Yadegar, N.; Salami, M.; Salami, R.; Vakili, O.; Aghadavod, E. Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol. Res. Pract., 2021, 227, 153618.
[http://dx.doi.org/10.1016/j.prp.2021.153618] [PMID: 34649056]
[118]
Biolo, A.; Ramamurthy, S.; Connors, L.H.; O’Hara, C.J.; Meier-Ewert, H.K.; Soo Hoo, P.T.; Sawyer, D.B.; Seldin, D.S.; Sam, F. Matrix metalloproteinases and their tissue inhibitors in cardiac amyloidosis: Relationship to structural, functional myocardial changes and to light chain amyloid deposition. Circ. Heart Fail., 2008, 1(4), 249-257.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.108.788687] [PMID: 19808299]
[119]
Xu, W.W.; Guan, M.P.; Zheng, Z.J.; Gao, F.; Zeng, Y.M.; Qin, Y.; Xue, Y.M. Exendin-4 alleviates high glucose-induced rat mesangial cell dysfunction through the AMPK pathway. Cell. Physiol. Biochem., 2014, 33(2), 423-432.
[http://dx.doi.org/10.1159/000358623] [PMID: 24556697]
[120]
Zeng, Y.; Li, C.; Guan, M.; Zheng, Z.; Li, J.; Xu, W.; Wang, L.; He, F.; Xue, Y. The DPP-4 inhibitor sitagliptin attenuates the progress of atherosclerosis in apolipoprotein-E-knockout mice via AMPK- and MAPK-dependent mechanisms. Cardiovasc. Diabetol., 2014, 13(1), 32.
[http://dx.doi.org/10.1186/1475-2840-13-32] [PMID: 24490809]
[121]
Bouchi, R.; Nakano, Y.; Fukuda, T.; Takeuchi, T.; Murakami, M.; Minami, I.; Izumiyama, H.; Hashimoto, K.; Yoshimoto, T.; Ogawa, Y. Reduction of visceral fat by liraglutide is associated with ameliorations of hepatic steatosis, albuminuria, and micro-inflammation in type 2 diabetic patients with insulin treatment: A randomized control trial. Endocr. J., 2016, EJ16-EJ0449.
[PMID: 27916783]
[122]
Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Botros, F.T.; Riddle, M.C.; Rydén, L.; Xavier, D.; Atisso, C.M.; Dyal, L.; Hall, S.; Rao-Melacini, P.; Wong, G.; Avezum, A.; Basile, J.; Chung, N.; Conget, I.; Cushman, W.C.; Franek, E.; Hancu, N.; Hanefeld, M.; Holt, S.; Jansky, P.; Keltai, M.; Lanas, F.; Leiter, L.A.; Lopez-Jaramillo, P.; Cardona Munoz, E.G.; Pirags, V.; Pogosova, N.; Raubenheimer, P.J.; Shaw, J.E.; Sheu, W.H.H.; Temelkova-Kurktschiev, T.; Abella, M.; Alebuena, A.; Almagro, S.; Amoroso, E.; Anadon, P.; Andreu, E.; Aristimuño, G.; Arzadun, M.; Barbieri, M.; Barcudi, R.; Bartolacci, I.; Bolobanich, G.; Bordonava, A.; Bustamante Labarta, M.; Bustos, B.; Caccavo, A.; Camino, A.; Cantero, M.; Carignano, M.; Cartasegna, L.; Cipullo, M.; Commendatore, V.; Conosciuto, V.; Costamagna, O.; Crespo, C.; Cuello, J.; Cuneo, C.; Cusimano, S.; Dean, S.; Dituro, C.; Dominguez, A.; Farah, M.; Fernandez, A.; Fernandez, F.; Ferrari, A.; Flammia, P.; Fuentealba, J.; Gallardo, K.B.; Garcia, C.; Garcia Duran, R.; Garrido, M.; Gavicola, R.; Gerbaudo, C.; Gilli, G.; Giotto, A.P.; Godoy Bolzán, P.; Gomez Vilamajo, O.; Guerlloy, F.; Guridi, C.; Gutierrez Garrido, N.; Hasbani, E.; Hermida, S.; Hominal, M.; Hrabar, A.; Ingaramo, A.; Izzicupo, A.; Krynski, M.; Lagrutta, M.; Lanchiotti, P.; Langhe, M.; Leonard, V.; Llanos, J.; Lopez Santi, R.; Lowenstein, J.; Luquez, C.; Mackinnon, I.; Mana, M.; Manzur, S.; Marino, J.; Martella, C.; Martinez, R.; Matias, R.; Matkovich, J.; Meritano, M.; Montaña, O.; Mulazzi, M.; Ochoa, J.; Paterlini, G.; Pelagagge, M.; Peralta Lopez, M.E.; Prado, A.; Pruyas, L.; Racca, M.; Ricotti, C.; Rodriguez, C.; Romero Vidomlansky, M.; Ronderos, R.; Sadowski, A.L.; Sala, J.; Sánchez, A.; Santoro, A.; Schiavi, L.; Sein, M.; Sernia, V.; Serra, L.; Sicer, M.; Smith, T.; Soso, L.; Sposetti, G.; Steinacher, A.; Stival, J.; Tedesco, J.; Tonin, H.; Tortolo, M.; Ulla, M.; Vallejos, J.; Vico, M.; Virgillito, L.; Visco, V.; Vogel, D.; Waisman, F.; Zaidman, C.; Zucchiatti, N.; Badshah, I.; Cohen, N.; Colman, P.; Colquhoun, D.; Davis, T.; Fourlanos, S.; Fulcher, G.; Hamlyn, J.; Haywood, C.; Hocking, S.; Huchinson, M.; Jeffries, W.; Kyl, M.; Lo, C.; Mah, P.M.; Makepeace, A.; Marope, D.; Nanayakkar, N.; Nankervis, A.; Palmer, N.; Palolus, B.; Pillai, S.; Price, S.; Price, S.; Proietto, J.; Reutens, A.; Rodrigo, N.; Sheikh, A.; Smith, G.; So, M.; Soldatos, G.; Stuckey, B.; Sumithran, P.; Teede, H.; Vora, P.; Williams, L.; Abib, E.; Adão Poço, C.; Alves, É.F.; Andreatta Bernardi Barea, J.; Avezum Oliveira, L.; Castro, D.L.C.; Correa da Cruz, I.; Costa, M.; Cruz, I.; Cunha, S.; Da Silva, M.A.V.; de Carvalho Camara Bona, R.; de Paula, B.; Eliaschewitz, F.; Fazolli, G.; Ferreira Filho, C.A.; Fortes, J.; França, C.; Franco, D.R.; Genestreti, P.R.; Giorgeto, F.; Gonçalves, R.M.; Grossman, M.E.; Henrique Marcelino, A.C.; Hernandes, M.; Horta, A.; Jaeger, C.; Kaneblai, M.; Kauffman Rutenberg, C.; Kerr Saraiva, J.F.; Lemos, M.A.; Maia, L.; Manenti, E.R.; Marques, M.; Melissa Valerio, C.; Moreira, R.; Mothé, F.; Mouco, O.M.; Moura, P.; Moura Jorge, J.C.; Nakashima, C.; Nakazone, M.; Napoli, T.; Nunes, C.; Nunes Salles, J.E.; Oliveira, K.; Oliveira, M.; Pantano, G.S.; Petri, F.; Piazza, L.; Pires, A.C.; Pizzato, P.; Prata, S.; Precoma, D.; Rech, R.; Reis, G.; Reis, H.; Resende, E.; Ribas Fortes, J.; Rodovalho, S.; Rossi dos Santos, F.; Salles, J.E.; Sampaio, C.R.; Santos, T.; Santos dos Santos, V.; Silva e Quadros, T.; Silveira, D.; Siqueira, K.N.; Teireira, M.; Uehara, M.; Valerio, C.; Vianna, H.; Vidotti, M.H.; Visconti, G.L.; Zanella, M.T.; Andreeva, V.; Borisov, R.; Botushanov, N.; Dimitrov, G.; Dimova, K.; Dragoychev, T.; Grigorova, V.; Gushterova, V.; Ivanov, I.; Kocelova, T.; Kurktschiev, D.; Miletieva, M.; Nenkova-Gugusheva, N.; Pancheva, R.; Pavlova, M.; Raev, D.; Spasova, V.; Stoikov, A.; Troev, D.; Yanev, T.; Yoncheva-Mihaylova, M.; Abitbol, A.; Ajala, B.; Alguwaihes, A.; Ardilouze, J-L.; Aris-Jilwan, N.; Arnaout, A.; Aronson, R.; Aslam, N.; Babin, S.; Bailargeon, J-P.; Bailey, A.; Bajaj, H.; Beauchesne, C.; Beca, S.; Belanger, A.; Bell, A.; Bellabarba, D.; Berard, L.; Berenbaum, B.; Bergeron, V.; Berlingieri, J.; Bernier, F.; Bishara, P.; Blank, D.; Blumer, I.; Brault, S.; Breton, D.; Carpentier, A.; Cha, J.; Chandra, P.; Chiasson, J-L.; Conway, J.R.; Couture, G.; Couture, N.; Dagenais, G.; Datta, D.; D’Ignazio, G.; Dumas, R.; Fay, D.; Frechette, A.; Frenette, L.; Fung, D.; Gagnon, N.; Galter, M.; Garon, J.; Gauthier, J.S.; Geadah, C.; Gilbert, J.; Girard, R.; Goldenberg, R.; Grossman, L.D.; Gupta, N.; Halle, J-P.; Hivert, M-F.; Houde, G.; Houlden, R.; Hramiak, I.; Jablonski, T.; Jain, A.J.; Khandwala, H.; Khosla, M.; Lachance, C.; Laflamme, E.; Langlois, M-F.; Larivee, L.; Liutkus, J.; Lochnan, H.; Malik, S.; McDonald, C.; Mehta, P.; Mihailidis, J.; Milot, A.; Narula, P.; Nault, P.; Nayar, A.; Nisker, W.; Ouellet, G.; Palardy, J.; Patel, M.; Paul, T.; Pedersen, S.; Perron, P.; Pesant, M-H.; Poirier, P.; Poulin, M-C.; Punthakee, Z.; Rehman, W.; Ross, S.; Sagar, P.; Saliba, N.; Sandler, S.; Schiffrin, A.; Schlosser, R.; Seth-Sharma, A.; Sherman, M.; Sionit, D.; Sivakumar, T.; Soto, J.; St-Amour, E.; Steen, O.; Sussman, J.; Telner, A.; Tobe, S.; Twum-Barima, D-Y.; Van Zanten, A.; VanRossum, N.; Vecchiarelli, J.; Ward, R.; Wessengel, J.; Weisnagel, S.; Wilderman, I.; Woo, V.; Yakubovich, N.; Yale, J-F.; Yared, Z.; Acevedo, M.; Aguirre, M.L.; Aizman, A.; Barroso, M.S.; Cobos, L.; Danin Vargas, A.; Descalzi, B.; Godoy, G.; Grumberg, E.; Lahsen, R.; Larenas, G.; Ortiz, E.; Paredes, J.; Potthoff, S.; Retamal, E.; Rojas, L.; Salgado, M.; Santibanez, C.; Solis, C.; Stokins, B.; Accini, J.; Acebedo, J.; Agudelo Baena, L.M.; Alarcon, S.; Angel, J.; Arcos, E.; Aroca Martinez, M.; Atuesta, L.; Balaguera, J.; Ballestas, D.; Barrera, S.I.; Barrios Reyes, R.; Bayona, A.; Bermudez, A.; Bernal, D.Z.; Blanquicett, M.; Bravo, V.; Bueno, W.; Burbano Delgado, A.; Cadena, A.; Cadena, A.; Caicedo, S.; Celemin, C.; Consuegra, R.; Contreras Pimienta, C.; Corredor, K.J.; Cure, C.; De La Hoz Rueda, L.D.; Delgado, E.; Diaz, S.; Diego, M.; Donado, A.; Encinales Sanabria, W.; Escobar, J.; Escorcia, G.; Forero, L.; Fuentes, L.; Garcia, M.; Garcia Lozada, H.; Garcia Ortiz, L.; Giraldo, A.; Gomez Gonzalez, L.; Granada, J.; Gutierrez, C.; Henao, N.; Hernandez, E.; Herrera Uejbe, O.M.; Higuera Cobos, J.D.; Ibarra Gómez, J.; Jaimes, E.H.; Jaramillo, M.; Jaramillo, N.; Jaramillo Gomez, C.; Jaramillo Sanchez, M.; Jarava Durán, I.; Lopez Ceballos, C.; Madrid, C.; María Amastha, E.; Mercado, J.; Molina, D.I.; Molina Soto, J.; Montoya, C.; Morales, A.; Muñoz, C.; Orozco, L.A.; Osorio, O.; Palmera Sanchez, J.M.; Peña, A.; Perez, J.; Perez Agudelo, J.; Pérez Amador, G.; Pertuz, C.; Posada, I.; Puerta, C.; Quintero, A.; Quiroz, D.; Rendon, C.; Reyes, A.; Reyes, A.; Ripoll, D.; Rivera, C.; Rocha, M.; Rodriguez, J.F.; Rodriguez Villanueva, K.A.; Rodriguez Zabala, J.E.; Rojas, S.; Romero, M.; Rosero, R.; Rosillo Cardenas, A.R.; Rueda, L.; Sanchez, G.; Sanchez, T.; Sotomayor Herazo, A.; Suarez, M.; Torres, M.; Trujillo, F.; Urina, M.; Van Strahlen, L.; Velandia, C.; Velasquez Guzman, C.; Velazquez, E.; Vidal Prada, T.; Yepez Alvaran, J.P.; Zarate, D.; Andelova, J.; Benesova, R.; Buzova, B.; Cech, V.; Chodova, I.; Choura, M.; Dufka, A.; Gamova, A.; Gorgol, J.; Hala, T.; Havlova, H.; Hlavkova, D.; Horanska, P.; Ilcisin-Valova, J.; Jenickova, P.; Jerabek, O.; Kantorova, I.; Kolomaznikova, K.; Kopeckova, I.; Kopeckova, M.; Linhart, K.; Linhart, T.; Malecha, J.; Malicherova, E.; Neubauerova, D.; Oznerova, M.; Partys, R.; Pederzoliova, E.; Petrusova, M.; Prymkova, V.; Racicka, E.; Reissova, I.; Roderova, E.; Stanek, L.; Striova, A.; Svarcova, D.; Svoboda, P.; Szeghy Malicharova, E.; Urge, J.; Vesely, L.; Wasserburger, B.; Wasserburgerova, H.; Zahumensky, E.; Zamrazil, V.; Alawi, H.; Anastasiadis, E.; Axthelm, E.; Bieler, T.; Buhrig, C.; Degtyareva, E.; Dellanna, F.; Derwahl, K-M.; Diessel, S.; Dogiami, B.; Dorn-Weitzel, K.; Ernst, M.; Faulmann, G.; Fetscher, B.; Forst, T.; Freyer-Lahres, G.; Funke, K.; Ganz, X.; Gleixner, C.; Hanefeld, C.; Heinrichs, S.; Helleberg, S.; Henkel, E.; Hetzel, G.R.; Hoffmann, C.; Jacob, F.; Jacob, S.; John, F.; Jonczyk, A.; Kamke, W.; Klein, C.; Kleinhardt, M.; Kleophas, W.; Kosch, C.; Kreutzmann, K.; Kühn, A.; Lee-Barkey, Y.H.; Lier, A.; Maatouk, S.; Minnich, J.; Mitry, M.; Muessig, I.; Nicula, D.; Niemann, M.; Nothroff, J.; Ott, P.; Pfuetzner, A.; Pfützner, A.; Pistrosch, F.; Pohl, W.; Prochazkova, Z.; Retkowska, M.; Rosin, H.; Sachsenheimer, D.; Samer, H.; Sanuri, M.; Schaefer, A.; Schaper, F.; Schulze, E-D.; Schulze, M.; Schumann, M.; Segiet, T.; Sowa, V.; Stahl, H-D.; Steinfeldt, F.; Teige, M.; Trieb, B.; Tschoepe, D.; Uebel, P.; Warken, B.; Weigmann, I.; Weyland, K.; Wilhelm, K.; Balo, T.; Balsay, M.; Bende, I.; Bezzegh, K.; Birkus, Z.; Buday, B.; Csomai, M.; Deak, L.; Dezso, E.; Faludi, P.; Faluvegi, M.; Fazekas, I.; Feher, A.; Fejer, C.; Finta, E.; Fulcz, A.; Gaal, Z.; Gurzo, M.; Hati, K.; Herczeg, G.; Jozsef, I.; Juhasz, M.; Keltai, K.; Koranyi, L.; Kulcsar, E.; Kun, K.; Laczko, A.; Literáti-Nagy, B.; Mezo, I.; Mileder, M.; Moricz, I.; Nagy, K.; Nagybaczoni, B.; Nemeth, C.; Oze, A.; Pauer, J.; Peterfai, E.; Polocsanyi, B.; Poor, F.; Reiber, I.; Salamon, C.; Sebestyen, J.; Torok, I.; Tuu, M.; Varga, A.; Vass, V.; Ahn, C.M.; Ahn, C.; ByungWon, P.; Chang, H-J.; Chang, K.; Choi, E-Y.; Choi, H.S.; Chung, J-W.; Hong, B-K.; Hong, Y.J.; Hyon, M.S.; Jeong, M.H.; Kang, S.; Kim, B-K.; Kim, J-H.; Kim, J.H.; Kim, K-S.; Kim, K-S.; Kim, M.H.; Kim, P-J.; Kim, S-K.; Kim, Y-S.; Kim, Y.K.; Koh, Y.S.; Kwon, H.M.; Lee, B.K.; Lee, B-W.; Lee, J.B.; Lee, M-M.; Lim, Y-M.; Min, P.K.; Park, J.S.; Park, J.; Park, K.H.; Park, S.; Pyun, W.B.; Rim, S.J.; Ryu, D-R.; Seo, H-S.; Seung, K.B.; Shin, D-H.; Sim, D.S.; Yoon, Y.W.; Andersone, I.; Babicka, K.; Balcere, I.; Barons, R.; Capkovska, I.; Geldnere, K.; Grigane, I.; Jegere, B.; Lagzdina, I.; Mora, L.; Pastare, S.; Ritenberga, R.; Romanova, J.; Saknite, I.; Sidlovska, N.; Sokolova, J.; Steina, S.; Strizko, I.; Teterovska, D.; Vizina, B.; Barsiene, L.; Belozariene, G.; Daugintyte-Petrusiene, L.; Drungiliene, N.; Garsviene, N.; Grigiene, A.; Grizas, V.; Jociene, V.; Kalvaitiene, D.; Kaupiene, J.; Kavaliauskiene, J.; Kozloviene, D.; Lapteva, I.; Maneikiene, B.; Marcinkeviciene, J.; Markauskiene, V.; Meiluniene, S.; Norkus, A.; Norviliene, R.; Petrenko, V.; Radzeviciene, R.; Sakalyte, G.; Urbonas, G.; Urbutiene, S.; Vasiliauskas, D.; Velickiene, D.; Aguilar, C.; Alcocer, M.; Avalos-Ramirez, J.A.; Banda-Elizondo, R.; Bricio-Ramirez, R.; Cardenas Mejia, K.; Cavazos, F.; Chapa, J.; Cienfuegos, E.; De la Peña, A.; de la Peña Topete, G.; De los Rios Ibarra, M.O.; Elias, D.; Flores-Moreno, C.; Garcia Hernandez, P.; Gonzalez, L.G.; Guerra Moya, R.L.; Guerra-Lopez, A.; Hernandez Baylon, R.; Herrera Colorado, C.; Herrera-Marmolejo, M.; Islas-Palacios, N.; Lopez, E.; Lopez, F.; Lopez Alvarado, A.; Luna Ceballos, R.I.; Morales Villegas, E.; Moreno-Virgen, G.; Parra Perez, R.L.; Pascoe Gonzalez, S.; Peralta-Cantu, I.; Previn, R.; Ramirez, R.; Ramirez, R.; Ramos Zavala, M.G.; Rodriguez, M.; Salgado-Sedano, R.; Sanchez-Aguilar, A.C.; Santa Rosa Franco, E.; Sauque-Reyna, L.; Suarez Otero, R.; Torres, I.; Velarde-Harnandez, E.; Villagordoa, J.; Villeda-Espinoza, E.; Vital-Lopez, J.; Zavala- Bello, C.J.; Baker, J.; Barrington-Ward, E.; Brownless, T.; Carroll, R.; Carson, S.; Choe, M.; Corin, A.; Corley, B.; Cutfield, R.; Dalaman, N.; Dixon, P.; Drury, P.; Dyson, K.; Florkowski, C.; Ford, M.; Frengley, W.; Helm, C.; Katzen, C.; Kerr, J.; Khanolkar, M.; Kim, D.; Koops, R.; Krebs, J.; Leikis, R.; Low, K.; Luckey, A.; Luke, R.; Macaulay, S.; Marks, R.; McNamara, C.; Millar-Coote, D.; Miller, S.; Mottershead, N.; Reid, J.; Robertson, N.; Rosen, I.; Rowe, D.; Schmiedel, O.; Scott, R.; Sebastian, J.; Sheahan, D.; Stiebel, V.; Ternouth, I.; Tofield, C.; Venter, D.; Williams, M.; Williams, M.; Wu, F.; Young, S.; Arciszewska, M.; Bochenek, A.; Borkowski, P.; Borowy, P.; Chrzanowski, T.; Czerwinski, E.; Dwojak, M.; Grodzicka, A.; Janiec, I.; Jaruga, J.; Jazwinska-Tarnawska, E.K.; Jedynasty, K.; Juzwiak-Czapiewska, D.; Karczewicz-Janowska, J.; Konieczny, J.; Konieczny, M.; Korol, M.; Kozina, M.; Krzyzagorska, E.; Kucharczyk-Petryka, E.; Laz, R.; Majchrzak, A.; Mrozowska, Z.; Mularczyk, M.; Nowacka, E.; Peczynska, J.; Petryka, R.; Pietrzak, R.; Pisarczyk-Wiza, D.; Rozanska, A.; Ruzga, Z.; Rzeszotarska, E.; Sacha, M.; Sekulska, M.; Sidorowicz-Bialynicka, A.; Stasinska, T.; Strzelecka-Sosik, A.; Swierszcz, T.; Szymkowiak, K.M.; Turowska, O.; Wisniewska, K.; Wiza, M.; Wozniak, I.; Zelazowska, K.; Ziolkowska-Gawron, B.; Zytkiewicz-Jaruga, D.; Albota, A.; Alexandru, C.; Avram, R.; Bala, C.; Barbonta, D.; Barbu, R.; Braicu, D.; Calutiu, N.; Catrinoiu, D.; Cerghizan, A.; Ciorba, A.; Craciun, A.; Doros, R.; Duma, L.; Dumitrache, A.; Ferariu, I.; Ferician Moza, A.; Ghergan, A.; Ghise, G.; Graur, M.; Gribovschi, M.; Mihai, B.; Mihalache, L.; Mihalcea, M.; Mindrescu, N.; Morosanu, M.; Morosoanu, A.; Mota, M.; Moza, A.; Nafornita, V.; Natea, N.; Nicodim, S.; Nita, C.; Onaca, A.; Onaca, M.; Pop, C.; Pop, L.; Popa, A.; Popescu, A.; Pruna, L.; Roman, G.; Rosu, M.; Sima, A.; Sipciu, D.; Sitterli-Natea, C.N.; Szilagyi, I.; Tapurica, M.; Tase, A.; Tutescu, A-C.; Vanghelie, L.; Verde, I.; Vlad, A.; Zarnescu, M.; Akhmetov, R.; Allenova, I.; Avdeeva, I.; Baturina, O.; Biserova, I.; Bokovin, N.; Bondar, I.; Burova, N.; Chufeneva, G.; Chumachek, E.; Demidova, M.; Demin, A.; Drobysheva, V.; Egorova, I.; Esenyan, L.; Gelig, E.; Gilyarevsky, S.; Golshmid, M.; Goncharov, A.; Gorbunova, A.; Gordeev, I.; Gorelysheva, V.; Goryunova, T.; Grebenshchikova, I.; Ilchenko, R.; Ivannikova, M.; Karabalieva, S.; Karpeeva, J.; Khaykina, E.; Kobalava, Z.; Kononenko, I.; Korolik, O.; Korshunova, A.; Kostenko, V.; Krasnopevtseva, I.; Krylova, L.; Kulkova, P.; Kuzmina, I.; Ledyaeva, A.; Levashov, S.; Lokhovinina, N.; Lvov, V.; Martirosyan, N.; Nedogoda, S.; Nilk, R.; Osmolovskaya, Y.; Panov, A.; Paramonova, O.; Pavlova, E.; Pekareva, E.; Petunina, N.; Ponamareva, S.; Reshedko, G.; Salasyuk, A.; Sepkhanyan, M.; Serebrov, A.; Shabelnikova, O.; Skvortsov, A.; Smirnova, O.; Spiridonova, O.; Strogova, S.; Taratukhin, E.; Tereschenko, S.; Trukhina, L.; Tsarkova, O.; Tsoma, V.; Tumarov, F.; Tyan, N.; Tyurina, T.; Villevalde, S.; Yankovaya, E.; Zarutskaya, L.; Zenkova, E.; Badat, A.; Bester, F.; Blignaut, S.; Blom, D.; Booysen, S.; Boyd, W.; Brice, B.; Brown, S.; Burgess, L.; Cawood, R.; Coetzee, K.; Conradie, H.; Cronje, T.; de Jong, D.; Ellis, G.; Emanuel, S.; Engelbrecht, I.; Foulkes, S.; Fourie, D.; Gibson, G.; Govender, T.; Hansa, S.; Hemus, A.C.; Hendricks, F.; Heradien, M.; Holmgren, C.; Hoosain, Z.; Horak, E.; Howard, J.; Immink, I.; Janari, E.; Jivan, D.; Klusmann, K.; Labuschagne, W.; Lai, Y.; Latiff, G.; Lombaard, J.; Lottering, H.; Meeding, R.; Middlemost, S.; Mitha, H.; Mitha, I.; Mkhwanazi, S.; Moodley, R.; Murray, A.; Musungaie, D.; Osman, Y.; Peacey, K.; Pillay-Ramaya, L.; Pretorius, C.; Prozesky, H.; Sarvan, M.; Scholtz, E.; Sebesteny, A.; Skinner, B.; Skriker, M.; Smit, M.; Stapelberg, A-M.; Swanepoel, N.; Urbach, D.; van Aswegen, D.; van Zyl, F.; Van Zyl, L.; Venter, E.; Wadvalla, S.; Wing, J.; Wolmarans, K.; Abreu, C.; Aguilà, P.; Aguilera, E.; Alonso, N.; Alvarez, C.; Cajas, P.; Castro, J.C.; Codinachs, R.; Contreras, J.; Coves, M.J.; Fajardo, C.; Ferrer, J.C.; Font, N.; Garcia, M.; Gil, M.A.; Gomez, F.; Gomez, L.A.; Gonzalbez, J.; Griera, J.L.; Masmiquel, L.; Mauricio, D.; Narejos Perez, S.; Nicolau, J.A.; Noheda Contreras, O.; Olivan, J.; Olivares, J.; Ortega, E.; Pellitero, S.; Pertusa, S.; Rius, F.; Rodriguez, I.; Sánchez-Juan, C.; Santos, D.; Soldevila, B.; Subias, D.; Terns, M.; Trescoli, C.; Vilaplana, J.; Villanueva, A.; Albo, J.; Antus, K.; Axelsson, M.; Bergström, L.; Binsell-Gerdin, E.; Boman, K.; Botond, F.; Dotevall, A.; Graipe, A.; Jarnet, C.; Kaminska, J.; Kempe, A.; Korhonen, M.; Linderfalk, C.; Liu, B.; Ljungstroem, K.; Ljungström, K.; Malmqvist, L.; Mellbin, L.; Mooe, T.; Nicol, P.; Norrby, A.; Ohlsson, A.; Rosengren, A.; Saaf, J.; Salmonsson, S.; Strandberg, O.; Svensson, K-A.; Tengmark, B-O.; Tsatsaris, G.; Ulvenstam, A.; Vasko, P.; Chang, C-T.; Chang, H-M.; Chen, J-F.; Chen, T-P.; Chung, M-M.; Fu, C-P.; Hsia, T-L.; Hua, S-C.; Kuo, M-C.; Lee, C.; Lee, I-T.; Liang, K-W.; Lin, S.Y.; Lu, C-H.; Ma, W-Y.; Pei, D.; Shen, F-C.; Su, C-C.; Su, S-W.; Tai, T-S.; Tsai, W-N.; Tsai, Y-T.; Tung, S-C.; Wang, J-S.; Yu, H-I.; Al-Qaissi, A.; Arutchelvam, V.; Atkin, S.; Au, S.; Aye, M.M.; Bain, S.; Bejnariu, C.; Bell, P.; Bhatnagar, D.; Bilous, R.; Black, N.; Brennan, U.; Brett, B.; Bujanova, J.; Chow, E.; Collier, A.; Combe, A.; Courtney, C.; Courtney, H.; Crothers, J.; Eavis, P.; Elliott, J.; Febbraro, S.; Finlayson, J.; Gandhi, R.; Gillings, S.; Hamling, J.; Harper, R.; Harris, T.; Hassan, K.; Heller, S.; Jane, A.; Javed, Z.; Johnson, T.; Jones, S.; Kennedy, A.; Kerr, D.; Kilgallon, B.; Konya, J.; Lindsay, J.; Lomova-Williams, L.; Looker, H.; MacFarlane, D.; Macrury, S.; Malik, I.; McCrimmon, R.; McKeith, D.; McKnight, J.; Mishra, B.; Mukhtar, R.; Mulligan, C.; O’Kane, M.; Olateju, T.; Orpen, I.; Richardson, T.; Rooney, D.; Ross, S.B.; Sathyapalan, T.; Siddaramaiah, N.; Sit, L.E.; Stephens, J.; Turtle, F.; Wakil, A.; Walkinshaw, E.; Ali, A.; Anderson, R.; Arakaki, R.; Aref, O.; Ariani, M.K.; Arkin, D.; Banarer, S.; Barchini, G.; Bhan, A.; Branch, K.; Brautigam, D.; Brietzke, S.; Brinas, M.; Brito, Y.; Carter, C.; Casagni, K.; Casula, S.; Chakko, S.; Charatz, S.; Childress, D.; Chow, L.; Chustecka, M.; Clarke, S.; Cohen, L.; Collins, B.; Colon Vega, G.; Comulada-Rivera, A.; Cortes-Maisonet, G.; Davis, M.; de Souza, J.; Desouza, C.; Dinnan, M.; Duffy-Hidalgo, B.; Dunn, B.; Dunn, J.; Elman, M.; Felicetta, J.; Finkelstein, S.; Fitz-Patrick, D.; Florez, H.; Forker, A.; Fowler, W.; Fredrickson, S.; Freedman, Z.; Gainey Narron, B.; Gainey-Ferree, K.; Gardner, M.; Gastelum, C.; Giddings, S.; Gillespie, E.; Gimness, M.P.; Goldstein, G.; Gomes, M.; Gomez, N.; Gorman, T.; Goswami, K.; Graves, A.; Hacking, S.; Hall, C.; Hanson, L.; Harman, S.; Heber, D.; Henry, R.; Hiner, J.; Hirsch, I.; Hollander, P.; Hooker, T.; Horowitz, B.; Hoste, L.; Huang, L.; Huynh, M.; Hyman, D.; Idriss, S.; Iranmanesh, A.; Karounos, D.; Kashyap, M.; Katz, L.; Kaye, W.; Khaiton, Y.; Khardori, R.; Kitchen, T.; Klein, A.; Knffem, W.; Kosiborod, M.; Kreglinger, N.; Kruger, D.; Kumar, A.; Laboy, I.; Larrabee, P.; Larrick, L.; Lawson, D.; Ledet, M.; Lenhard, J.; Levy, J.; Li, G.; Li, Z.; Lieb, D.; Limcolioc, A.; Lions-Patterson, J.; Lorber, D.; Lorch, D.; Lorrello, M.; Lu, P.; Lucas, K.J.; Ma, S-L.; MacAdams, M.; Magee, M.; Magno, A.; Mahakala, A.R.; Marks, J.; McCall, A.; McClanahan, W., Jr; McClary, C.; Melendez, L.; Melish, J.; Michaud, D.; Miller, C.; Miller, N.; Mora, P.; Moten, M.; Mudaliar, S.; Myrick, G.; Narayan, P.; Nassif, M.; Neri, K.; Newton, T.; Niblack, P.; Nicol, P.; Nyenwe, E.; Odugbesan, A.O.; Okorocha, Y.; Ortiz Carrasquillo, R.; Osei, K.; Palermo, C.; Patel, H.; Patel, K.; Pau, C.; Perley, M.; Plevin, S.; Plummer, E.; Powell, R.; Qintar, M.; Rawls, R.; Reyes-Castano, J.; Reynolds, L.; Richards, R.; Rosenstock, J.; Rowe, C.; Saleh, J.; Sam, S.; Sanchez, A.; Sander, D.; Sanderson, B.; Savin, V.; Seaquist, E.; Shah, J.; Shi, S.; Shivaswamy, V.; Shlotzhauer, T.; Shore, D.; Skukowski, B.; Soe, K.; Solheim, V.; Soufer, J.; Steinberg, H.; Steinsapir, J.; Tarkington, P.; Thayer, D.; Thomson, S.; Thrasher, J.; Tibaldi, J.; Tjaden, J.; Tores, O.; Trence, D.; Trikudanathan, S.; Ullal, J.; Uwaifo, G.; Vo, A.; Vu, K.; Walia, D.; Weiland, K.; Whitehouse, F.; Wiegmann, T.; Wyne, K.; Wynne, A.; Yuen, K.; Zaretzky, J.; Zebrack, J.; Zieve, F.; Zigrang, W. Dulaglutide and renal outcomes in type 2 diabetes: An exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet, 2019, 394(10193), 131-138.
[http://dx.doi.org/10.1016/S0140-6736(19)31150-X] [PMID: 31189509]
[123]
Awal, H.B.; Nandula, S.R.; Domingues, C.C.; Dore, F.J.; Kundu, N.; Brichacek, B.; Fakhri, M.; Elzarki, A.; Ahmadi, N.; Safai, S.; Fosso, M.; Amdur, R.L.; Sen, S. Linagliptin, when compared to placebo, improves CD34+ve endothelial progenitor cells in type 2 diabetes subjects with chronic kidney disease taking metformin and/or insulin: A randomized controlled trial. Cardiovasc. Diabetol., 2020, 19(1), 72.
[http://dx.doi.org/10.1186/s12933-020-01046-z] [PMID: 32493344]
[124]
Liu, X.; Huang, J.; Li, J.; Mao, Q.; He, J. Effects of liraglutide combined with insulin on oxidative stress and serum MCP-1 and NF-kB levels in Type 2 diabetes. J. Coll. Physicians Surg. Pak., 2019, 29(3), 218-221.
[http://dx.doi.org/10.29271/jcpsp.2019.03.218] [PMID: 30823945]
[125]
Ott, C.; Raff, U.; Schmidt, S.; Kistner, I.; Friedrich, S.; Bramlage, P.; Harazny, J.M.; Schmieder, R.E. Effects of saxagliptin on early microvascular changes in patients with type 2 diabetes. Cardiovasc. Diabetol., 2014, 13(1), 19.
[http://dx.doi.org/10.1186/1475-2840-13-19] [PMID: 24423149]
[126]
Johansen, N.J.; Dejgaard, T.F.; Lund, A.; Schlüntz, C.; Frandsen, C.S.; Forman, J.L.; Wewer Albrechtsen, N.J.; Holst, J.J.; Pedersen-Bjergaard, U.; Madsbad, S.; Vilsbøll, T.; Andersen, H.U.; Knop, F.K. Efficacy and safety of meal-time administration of short-acting exenatide for glycaemic control in type 1 diabetes (MAG1C): A randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol., 2020, 8(4), 313-324.
[http://dx.doi.org/10.1016/S2213-8587(20)30030-9] [PMID: 32135138]
[127]
Tanimura-Inagaki, K.; Nagao, M.; Harada, T.; Sugihara, H.; Moritani, S.; Sasaki, J.; Kono, S.; Oikawa, S. Sitagliptin improves plasma apolipoprotein profile in type 2 diabetes: A randomized clinical trial of sitagliptin effect on lipid and glucose metabolism (SLIM) study. Diabetes Res. Clin. Pract., 2020, 162, 108119.
[http://dx.doi.org/10.1016/j.diabres.2020.108119] [PMID: 32194219]
[128]
Jaiswal, M.; Martin, C.L.; Brown, M.B.; Callaghan, B.; Albers, J.W.; Feldman, E.L.; Pop-Busui, R. Effects of exenatide on measures of diabetic neuropathy in subjects with type 2 diabetes: results from an 18-month proof-of-concept open-label randomized study. J. Diabetes Complications, 2015, 29(8), 1287-1294.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.07.013] [PMID: 26264399]
[129]
Brock, C.; Hansen, C.S.; Karmisholt, J.; Møller, H.J.; Juhl, A.; Farmer, A.D.; Drewes, A.M.; Riahi, S.; Lervang, H.H.; Jakobsen, P.E.; Brock, B. Liraglutide treatment reduced interleukin‐6 in adults with type 1 diabetes but did not improve established autonomic or polyneuropathy. Br. J. Clin. Pharmacol., 2019, 85(11), 2512-2523.
[http://dx.doi.org/10.1111/bcp.14063] [PMID: 31338868]
[130]
Zavattaro, M.; Caputo, M.; Samà, M.T.; Mele, C.; Chasseur, L.; Marzullo, P.; Pagano, L.; Mauri, M.G.; Ponziani, M.C.; Aimaretti, G.; Prodam, F. One-year treatment with liraglutide improved renal function in patients with type 2 diabetes: a pilot prospective study. Endocrine, 2015, 50(3), 620-626.
[http://dx.doi.org/10.1007/s12020-014-0519-0] [PMID: 25572181]
[131]
von Scholten, B.J.; Persson, F.; Rosenlund, S.; Hovind, P.; Faber, J.; Hansen, T.W.; Rossing, P. The effect of liraglutide on renal function: A randomized clinical trial. Diabetes Obes. Metab., 2017, 19(2), 239-247.
[http://dx.doi.org/10.1111/dom.12808] [PMID: 27753201]
[132]
Tuttle, K.R.; Lakshmanan, M.C.; Rayner, B.; Busch, R.S.; Zimmermann, A.G.; Woodward, D.B.; Botros, F.T. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): A multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol., 2018, 6(8), 605-617.
[http://dx.doi.org/10.1016/S2213-8587(18)30104-9] [PMID: 29910024]
[133]
Varadhan, L.; Humphreys, T.; Walker, A.B.; Varughese, G.I. The impact of improved glycaemic control with GLP-1 receptor agonist therapy on diabetic retinopathy. Diabetes Res. Clin. Pract., 2014, 103(3), e37-e39.
[http://dx.doi.org/10.1016/j.diabres.2013.12.041] [PMID: 24456992]
[134]
Bethel, M.A.; Mentz, R.J.; Merrill, P.; Buse, J.B.; Chan, J.C.; Goodman, S.G.; Iqbal, N.; Jakuboniene, N.; Katona, B.; Lokhnygina, Y.; Lopes, R.D.; Maggioni, A.P.; Ohman, P.; Tankova, T.; Bakris, G.L.; Hernandez, A.F.; Holman, R.R. Microvascular and cardiovascular outcomes according to renal function in patients treated with once-weekly exenatide: Insights from the EXSCEL trial. Diabetes Care, 2020, 43(2), 446-452.
[http://dx.doi.org/10.2337/dc19-1065] [PMID: 31757838]
[135]
Rizzo, M.; Rizvi, A.A.; Patti, A.M.; Nikolic, D.; Giglio, R.V.; Castellino, G.; Li Volti, G.; Caprio, M.; Montalto, G.; Provenzano, V.; Genovese, S.; Ceriello, A. Liraglutide improves metabolic parameters and carotid intima-media thickness in diabetic patients with the metabolic syndrome: An 18-month prospective study. Cardiovasc. Diabetol., 2016, 15(1), 162.
[http://dx.doi.org/10.1186/s12933-016-0480-8] [PMID: 27912784]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy