Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Natural Carbohydrates-based Nanoparticles: A Review of Pharmaceutical Applications

Author(s): Karan Kumar, Sheetu Wadhwa, Arun Sharma, Gurvinder Singh and Rajesh Kumar*

Volume 13, Issue 5, 2023

Published on: 13 October, 2022

Article ID: e260822208049 Pages: 21

DOI: 10.2174/2210315512666220826145928

Price: $65

conference banner
Abstract

Carbohydrates are the most common biopolymers with the capability to construct supramolecular structures. For biomedical purposes, a variety of carbohydrate-based nanoparticles have been used. Basic monosaccharides or disaccharides, along with sophisticated polymeric systems, are used to create these structures. The shape and properties of these materials can be modified using chemical alterations. Carbohydrates-based nanogels and nanoparticles have been used for drug delivery, tissue engineering, and cell imaging. Carbohydrate-based elements are excellent derivatives for the production of responsive systems because of the reversible character of the assembly, which is frequently based on a mixture of hydrophobic interactions and hydrogen bonding. The present manuscript attempts to review the recent studies on carbohydrate-based nanomaterials and an update on the patents granted for the same.

Keywords: Carbohydrates, Nanoparticles, Polysaccharides, Pharmaceutical applications, Drug delivery.

Graphical Abstract

[1]
Rojo, J.; Morales, J.C.; Penadés, S. Carbohydrate-Carbohydrate Interactions in Biological and Model Systems;, 2002, 2018, 45-92. Spring: Berlin,
[http://dx.doi.org/10.1007/3-540-45010-6_2]
[2]
Fasting, C.; Schalley, C.A.; Weber, M.; Seitz, O.; Hecht, S.; Koksch, B.; Dernedde, J.; Graf, C.; Knapp, E.W.; Haag, R. Multivalency as a chemical organization and action principle. Angew. Chem. Int. Ed., 2012, 51(42), 10472-10498.
[http://dx.doi.org/10.1002/anie.201201114] [PMID: 22952048]
[3]
Chabre, Y.M.; Roy, R. Multivalent glycoconjugate syntheses and applications using aromatic scaffolds. Chem. Soc. Rev., 2013, 42(11), 4657-4708.
[http://dx.doi.org/10.1039/c3cs35483k] [PMID: 23400414]
[4]
Delbianco, M.; Bharate, P.; Varela-Aramburu, S.; Seeberger, P.H. Carbohydrates in supramolecular chemistry. Chem. Rev., 2016, 116(4), 1693-1752.
[http://dx.doi.org/10.1021/acs.chemrev.5b00516] [PMID: 26702928]
[5]
Kadokawa, J. Precision polysaccharide synthesis catalyzed by enzymes. Chem. Rev., 2011, 111(7), 4308-4345.
[http://dx.doi.org/10.1021/cr100285v] [PMID: 21319765]
[6]
Garcia-Vaquero, M.; Rajauria, G.; O’Doherty, J.V.; Sweeney, T. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Res. Int., 2017, 99(Pt 3), 1011-1020.
[http://dx.doi.org/10.1016/j.foodres.2016.11.016] [PMID: 28865611]
[7]
Fox, S.C.; Li, B.; Xu, D.; Edgar, K.J. Regioselective esterification and etherification of cellulose: a review. Biomacromolecules, 2011, 12(6), 1956-1972.
[http://dx.doi.org/10.1021/bm200260d] [PMID: 21524055]
[8]
Hu, J.; Seeberger, P.H.; Yin, J. Using carbohydrate-based biomaterials as scaffolds to control human stem cell fate. Org. Biomol. Chem., 2016, 14(37), 8648-8658.
[http://dx.doi.org/10.1039/C6OB01124A]
[9]
Gim, S.; Zhu, Y.; Seeberger, P.H.; Delbianco, M. Carbohydrate-based nanomaterials for biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(5), e1558.
[http://dx.doi.org/10.1002/wnan.1558] [PMID: 31063240]
[10]
Sun, L.; Ma, X.; Dong, C.M.; Zhu, B.; Zhu, X. NIR-responsive and lectin-binding doxorubicin-loaded nanomedicine from Janus-type dendritic PAMAM amphiphiles. Biomacromolecules, 2012, 13(11), 3581-3591.
[http://dx.doi.org/10.1021/bm3010325] [PMID: 23017146]
[11]
Crini, G. Review: A history of cyclodextrins. Chem. Rev., 2014, 114(21), 10940-10975.
[http://dx.doi.org/10.1021/cr500081p] [PMID: 25247843]
[12]
Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed., 2005, 44(22), 3358-3393.
[http://dx.doi.org/10.1002/anie.200460587] [PMID: 15861454]
[13]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40(7), 3941-3994.
[http://dx.doi.org/10.1039/c0cs00108b] [PMID: 21566801]
[14]
Kargarzadeh, H.; Mariano, M.; Gopakumar, D.; Ahmad, I.; Thomas, S.; Dufresne, A.; Huang, J.; Lin, N. Advances in cellulose nanomaterials. Cellulose, 2018, 25(4), 2151-2189.
[http://dx.doi.org/10.1007/s10570-018-1723-5]
[15]
Amalraj, A.; Gopi, S.; Thomas, S.; Haponiuk, J.T. Cellulose nanomaterials in biomedical, food, and nutraceutical applications: A review. Macromol. Symp., 2018, 380(1), 1800115.
[http://dx.doi.org/10.1002/masy.201800115]
[16]
Dai, L.; Si, C.L. Cellulose-graft-poly(methyl methacrylate) nanoparticles with high biocompatibility for hydrophobic anti-cancer drug delivery. Mater. Lett., 2017, 207, 213-216.
[http://dx.doi.org/10.1016/j.matlet.2017.07.090]
[17]
Fischer, S.; Thümmler, K.; Volkert, B.; Hettrich, K.; Schmidt, I.; Fischer, K. Properties and applications of cellulose acetate. Macromol. Symp., 2008, 262(1), 89-96.
[http://dx.doi.org/10.1002/masy.200850210]
[18]
Guo, Y.; Wang, X.; Shu, X.; Shen, Z.; Sun, R.C. Self-assembly and paclitaxel loading capacity of cellulose-graft-poly(lactide) nanomicelles. J. Agric. Food Chem., 2012, 60(15), 3900-3908.
[http://dx.doi.org/10.1021/jf3001873] [PMID: 22439596]
[19]
Rahimian, K.; Wen, Y.; Oh, J.K. Redox-responsive cellulose-based thermoresponsive grafted copolymers and in-situ disulfide crosslinked nanogels. Polymer (Guildf.), 2015, 72, 387-394.
[http://dx.doi.org/10.1016/j.polymer.2015.01.024]
[20]
Agarwal, T.; Narayana, S.N.G.H.; Pal, K.; Pramanik, K.; Giri, S.; Banerjee, I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int. J. Biol. Macromol., 2015, 75, 409-417.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.052] [PMID: 25680962]
[21]
Naessens, M.; Cerdobbel, A.; Soetaert, W.; Vandamme, E.J. Leuconostoc dextransucrase and dextran: production, properties and applications. J. Chem. Technol. Biotechnol., 2005, 80(8), 845-860.
[http://dx.doi.org/10.1002/jctb.1322]
[22]
Bachelder, E.M.; Pino, E.N.; Ainslie, K.M. Acetalated dextran: a tunable and acid-labile biopolymer with facile synthesis and a range of applications. Chem. Rev., 2017, 117(3), 1915-1926.
[http://dx.doi.org/10.1021/acs.chemrev.6b00532] [PMID: 28032507]
[23]
Singh, R.S.; Saini, G.K.; Kennedy, J.F. Pullulan: Microbial sources, production and applications. Carbohydr. Polym., 2008, 73(4), 515-531.
[http://dx.doi.org/10.1016/j.carbpol.2008.01.003] [PMID: 26048217]
[24]
Zhang, M.; Wang, J.; Jin, Z. Supramolecular hydrogel formation between chitosan and hydroxypropyl β-cyclodextrin via Diels-Alder reaction and its drug delivery. Int. J. Biol. Macromol., 2018, 114, 381-391.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.106] [PMID: 29581001]
[25]
Gao, W.; Liu, Y.; Jing, G.; Li, K.; Zhao, Y.; Sha, B.; Wang, Q.; Wu, D. Rapid and efficient crossing blood-brain barrier: Hydrophobic drug delivery system based on propionylated amylose helix nanoclusters. Biomaterials, 2017, 113, 133-144.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.045] [PMID: 27815997]
[26]
Gopinath, V.; Saravanan, S.; Al-Maleki, A.R.; Ramesh, M.; Vadivelu, J. A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed. Pharmacother., 2018, 107, 96-108.
[http://dx.doi.org/10.1016/j.biopha.2018.07.136] [PMID: 30086465]
[27]
Aranaz, I.; Mengibar, M.; Harris, R.; Miralles, B.; Acosta, N.; Calderon, L.; Sanchez, A.; Heras, A. Role of physicochemical properties of chitin and chitosan on their functionality. Curr. Chem. Biol., 2014, 8(1), 27-42.
[http://dx.doi.org/10.2174/221279680801141112095704]
[28]
Silva, S.S.; Mano, J.F.; Reis, R.L. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem., 2017, 19(5), 1208-1220.
[http://dx.doi.org/10.1039/C6GC02827F]
[29]
Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 2006, 31(7), 603-632.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001]
[30]
Esko, J.D.; Kimata, K.; Lindahl, U.; Varki, A.; Cummings, R.D.; Esko, J.D.; Freeze, H.H.; Stanley, P.; Bertozzi, C.R.; Hart, G.W.; Etzler, M.E. Proteoglycans and Sulfated Glycosaminoglycans. In: Essentials of Glycobiology. 2nd ed. Cold Spring Harbor: NY., 2009.
[31]
Fu, L.; Suflita, M.; Linhardt, R.J. Bioengineered heparins and heparan sulfates. Adv. Drug Deliv. Rev., 2016, 97, 237-249.
[http://dx.doi.org/10.1016/j.addr.2015.11.002] [PMID: 26555370]
[32]
Abedini, F.; Ebrahimi, M.; Roozbehani, A.H.; Domb, A.J.; Hosseinkhani, H. Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polym. Adv. Technol., 2018, 29(10), 2564-2573.
[http://dx.doi.org/10.1002/pat.4375]
[33]
Cunha, L.; Grenha, A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar. Drugs, 2016, 14(3), 42.
[http://dx.doi.org/10.3390/md14030042] [PMID: 26927134]
[34]
Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery system. Drug Dev. Ind. Pharm., 2002, 28(6), 621-630.
[35]
Morelli, A.; Chiellini, F. Ulvan as a new type of biomaterial from renewable resources: functionalization and hydrogel preparation. Macromol. Chem. Phys., 2010, 211(7), 821-832.
[http://dx.doi.org/10.1002/macp.200900562]
[36]
Caffall, K.H.; Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res., 2009, 344(14), 1879-1900.
[http://dx.doi.org/10.1016/j.carres.2009.05.021] [PMID: 19616198]
[37]
Patel, S.; Goyal, A. Applications of natural polymer gum Arabic: a review. Int. J. Food Prop., 2015, 18(5), 986-998.
[http://dx.doi.org/10.1080/10942912.2013.809541]
[38]
Osmałek, T.; Froelich, A.; Tasarek, S. Application of gellan gum in pharmacy and medicine. Int. J. Pharm., 2014, 466(1-2), 328-340.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.038] [PMID: 24657577]
[39]
Salim, M.; Abou-Zied, O.K.; Kulathunga, H.U.; Baskaran, A.; Kuppusamy, U.R.; Hashim, R. Alkyl mono- and di-glucoside sugar vesicles as potential drug delivery vehicles: detecting drug release using fluorescence. RSC Advances, 2015, 5(68), 55536-55543.
[http://dx.doi.org/10.1039/C5RA09183G]
[40]
Lis, H.; Sharon, N. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev., 1998, 98(2), 637-674.
[http://dx.doi.org/10.1021/cr940413g] [PMID: 11848911]
[41]
Lim, Y.; Park, S.; Lee, E.; Jeong, H.; Ryu, J.H.; Lee, M.S.; Lee, M. Glycoconjugate nanoribbons from the self-assembly of carbohydrate-peptide block molecules for controllable bacterial cell cluster formation. Biomacromolecules, 2007, 8(5), 1404-1408.
[http://dx.doi.org/10.1021/bm0700901] [PMID: 17397218]
[42]
Roy, R.; Kim, J.M. Cu(II)-Self-assembling bipyridyl-glycoclusters and dendrimers bearing the Tn-antigen cancer marker: syntheses and lectin binding properties. Tetrahedron, 2003, 59(22), 3881-3893.
[http://dx.doi.org/10.1016/S0040-4020(03)00438-1]
[43]
Yadav, R.; Kikkeri, R. Carbohydrate functionalized iron(iii) complexes as biomimetic siderophores. Chem. Commun. (Camb.), 2012, 48(11), 1704-1706.
[http://dx.doi.org/10.1039/c2cc16656a] [PMID: 22212450]
[44]
Yan, G.; Yamaguchi, T.; Suzuki, T.; Yanaka, S.; Sato, S.; Fujita, M.; Kato, K. Hyper-assembly of self-assembled glycoclusters mediated by specific carbohydrate-carbohydrate interactions. Chem. Asian J., 2017, 12(9), 968-972.
[http://dx.doi.org/10.1002/asia.201700202] [PMID: 28317269]
[45]
Lee, S.S.; Fyrner, T.; Chen, F.; Álvarez, Z.; Sleep, E.; Chun, D.S.; Weiner, J.A.; Cook, R.W.; Freshman, R.D.; Schallmo, M.S.; Katchko, K.M.; Schneider, A.D.; Smith, J.T.; Yun, C.; Singh, G.; Hashmi, S.Z.; McClendon, M.T.; Yu, Z.; Stock, S.R.; Hsu, W.K.; Hsu, E.L.; Stupp, S.I. Sulfated glycopeptide nanostructures for multipotent protein activation. Nat. Nanotechnol., 2017, 12(8), 821-829.
[http://dx.doi.org/10.1038/nnano.2017.109] [PMID: 28650443]
[46]
Morris, J.; Bietsch, J.; Bashaw, K.; Wang, G. Recently developed carbohydrate based gelators and their applications. Gels, 2021, 7(1), 24.
[http://dx.doi.org/10.3390/gels7010024] [PMID: 33652820]
[47]
Ustun Yaylaci, S.; Sardan Ekiz, M.; Arslan, E.; Can, N.; Kilic, E.; Ozkan, H.; Orujalipoor, I.; Ide, S.; Tekinay, A.B.; Guler, M.O. Supramolecular GAG-like self-assembled glycopeptide nanofibers induce chondrogenesis and cartilage regeneration. Biomacromolecules, 2016, 17(2), 679-689.
[http://dx.doi.org/10.1021/acs.biomac.5b01669] [PMID: 26716910]
[48]
Latxague, L.; Ramin, M.A.; Appavoo, A.; Berto, P.; Maisani, M.; Ehret, C.; Chassande, O.; Barthélémy, P. Control of stem-cell behavior by fine tuning the supramolecular assemblies of low-molecular-weight gelators. Angew. Chem. Int. Ed., 2015, 54(15), 4517-4521.
[http://dx.doi.org/10.1002/anie.201409134] [PMID: 25693962]
[49]
Pires, R.A.; Abul-Haija, Y.M.; Costa, D.S.; Novoa-Carballal, R.; Reis, R.L.; Ulijn, R.V.; Pashkuleva, I. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile. J. Am. Chem. Soc., 2015, 137(2), 576-579.
[http://dx.doi.org/10.1021/ja5111893] [PMID: 25539667]
[50]
Xiong, T.; Li, X.; Zhou, Y.; Song, Q.; Zhang, R.; Lei, L.; Li, X. Glycosylation-enhanced biocompatibility of the supramolecular hydrogel of an anti-inflammatory drug for topical suppression of inflammation. Acta Biomater., 2018, 73, 275-284.
[http://dx.doi.org/10.1016/j.actbio.2018.04.019] [PMID: 29660509]
[51]
Wen, L.; Edmunds, G.; Gibbons, C.; Zhang, J.; Gadi, M.R.; Zhu, H.; Fang, J.; Liu, X.; Kong, Y.; Wang, P.G. Toward automated enzymatic synthesis of oligosaccharides. Chem. Rev., 2018, 118(17), 8151-8187.
[http://dx.doi.org/10.1021/acs.chemrev.8b00066] [PMID: 30011195]
[52]
Stella, V.J.; Rajewski, R.A. Cyclodextrins: Their future in drug formulation and delivery. Pharm. Res., 1997, 14(5), 556-567.
[http://dx.doi.org/10.1023/A:1012136608249] [PMID: 9165524]
[53]
Rajendiran, N.; Sankaranarayanan, R.K.; Saravanan, J. A study of supramolecular host–guest interaction of dothiepin and doxepin drugs with cyclodextrin macrocycles. J. Mol. Struct., 2014, 1067(1), 252-260.
[http://dx.doi.org/10.1016/j.molstruc.2014.03.051]
[54]
Liu, N.; Higashi, K.; Ueda, K.; Moribe, K. Effect of guest drug character encapsulated in the cavity and intermolecular spaces of γ-cyclodextrins on the dissolution property of ternary γ-cyclodextrin complex. Int. J. Pharm., 2017, 531(2), 543-549.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.049] [PMID: 28450165]
[55]
Varan, G.; Varan, C.; Erdoğar, N.; Hıncal, A.A.; Bilensoy, E. Amphiphilic cyclodextrin nanoparticles. Int. J. Pharm., 2017, 531(2), 457-469.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.010] [PMID: 28596142]
[56]
Evrard, B.; Bertholet, P.; Gueders, M.; Flament, M.P.; Piel, G.; Delattre, L.; Gayot, A.; Leterme, P.; Foidart, J.M.; Cataldo, D. Cyclodextrins as a potential carrier in drug nebulization. J. Control. Release, 2004, 96(3), 403-410.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.010] [PMID: 15120897]
[57]
Dufour, G.; Bigazzi, W.; Wong, N.; Boschini, F.; de Tullio, P.; Piel, G.; Cataldo, D.; Evrard, B. Interest of cyclodextrins in spray-dried microparticles formulation for sustained pulmonary delivery of budesonide. Int. J. Pharm., 2015, 495(2), 869-878.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.052] [PMID: 26410753]
[58]
Jóhannsdóttir, S.; Jansook, P.; Stefánsson, E.; Loftsson, T. Development of a cyclodextrin-based aqueous cyclosporin A eye drop formulations. Int. J. Pharm., 2015, 493(1-2), 86-95.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.040] [PMID: 26220650]
[59]
Meng, X.; Yang, D.; Keyvan, G.; Michniak-Kohn, B.; Mitra, S. Synthesis and immobilization of micro-scale drug particles in presence of β-cyclodextrins. Colloids Surf. B Biointerfaces, 2012, 92, 213-222.
[http://dx.doi.org/10.1016/j.colsurfb.2011.11.043] [PMID: 22186134]
[60]
Varan, G.; Benito, J.M.; Mellet, C.O.; Bilensoy, E. Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery. Beilstein J. Nanotechnol., 2017, 8(1), 1457-1468.
[http://dx.doi.org/10.3762/bjnano.8.145] [PMID: 28900599]
[61]
S, S.; S, A.; Krishnamoorthy, K.; Rajappan, M. Nanosponges: a novel class of drug delivery system-review. J. Pharm. Pharm. Sci., 2012, 15(1), 103-111.
[http://dx.doi.org/10.18433/J3K308] [PMID: 22365092]
[62]
Lembo, D.; Swaminathan, S.; Donalisio, M.; Civra, A.; Pastero, L.; Aquilano, D.; Vavia, P.; Trotta, F.; Cavalli, R. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int. J. Pharm., 2013, 443(1-2), 262-272.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.031] [PMID: 23279938]
[63]
Olteanu, A.A. Aramă, C.C.; Radu, C.; Mihăescu, C.; Monciu, C.M. Effect of β-cyclodextrins based nanosponges on the solubility of lipophilic pharmacological active substances (repaglinide). J. Incl. Phenom. Macrocycl. Chem., 2014, 80(1-2), 17-24.
[http://dx.doi.org/10.1007/s10847-014-0406-6]
[64]
Trotta, F.; Caldera, F.; Dianzani, C.; Argenziano, M.; Barrera, G.; Cavalli, R. Glutathione bioresponsive cyclodextrin nanosponges. ChemPlusChem, 2016, 81(5), 439-443.
[http://dx.doi.org/10.1002/cplu.201500531]
[65]
Giglio, V.; Viale, M.; Bertone, V.; Maric, I.; Vaccarone, R.; Vecchio, G. Cyclodextrin polymers as nanocarriers for sorafenib. Invest. New Drugs, 2018, 36(3), 370-379.
[http://dx.doi.org/10.1007/s10637-017-0538-9] [PMID: 29116478]
[66]
Martínez, Á.; Ortiz Mellet, C.; García Fernández, J.M. Cyclodextrin-based multivalent glycodisplays: covalent and supramolecular conjugates to assess carbohydrate–protein interactions. Chem. Soc. Rev., 2013, 42(11), 4746-4773.
[http://dx.doi.org/10.1039/c2cs35424a] [PMID: 23340678]
[67]
Toomari, Y.; Namazi, H.; Akbar, E.A. Synthesis of the dendritic type β-cyclodextrin on primary face via click reaction applicable as drug nanocarrier. Carbohydr. Polym., 2015, 132, 205-213.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.087] [PMID: 26256342]
[68]
Ye, Z.; Zhang, Q.; Wang, S.; Bharate, P.; Varela-Aramburu, S.; Lu, M.; Seeberger, P.H.; Yin, J. Tumour-targeted drug delivery with mannose-functionalized nanoparticles self-assembled from amphiphilic β-cyclodextrins. Chemistry, 2016, 22(43), 15216-15221.
[http://dx.doi.org/10.1002/chem.201603294] [PMID: 27714939]
[69]
Schulze, P.; Gericke, M.; Scholz, F.; Wondraczek, H.; Miethe, P.; Heinze, T. Incorporation of hydrophobic dyes within cellulose acetate and acetate phthalate based nanoparticles. Macromol. Chem. Phys., 2016, 217(16), 1823-1833.
[http://dx.doi.org/10.1002/macp.201600160]
[70]
Tsiapla, A.R.; Karagkiozaki, V.; Bakola, V.; Pappa, F.; Gkertsiou, P.; Pavlidou, E.; Logothetidis, S. Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants. Beilstein J. Nanotechnol., 2018, 9(1), 1986-1994.
[http://dx.doi.org/10.3762/bjnano.9.189] [PMID: 30116690]
[71]
De Carvalho, L.D.; Urbanetto Peres, B.; Maezomo, H.; Shen, Y.; Haapasalo, M.; Manso, A.P.; Ko, F.; Carvalho, R.M. Chlorhexidine-containing electrospun nanofibers: Effect of production mode on chlorhexidine release. Dent. Mater., 2017, 33(33), e17-e18.
[http://dx.doi.org/10.1016/j.dental.2017.08.033]
[72]
Kumbar, S.G.; Toti, U.S.; Deng, M.; James, R.; Laurencin, C.T.; Aravamudhan, A.; Harmon, M.; Ramos, D.M. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering. Biomed. Mater., 2011, 6(6), 065005.
[http://dx.doi.org/10.1088/1748-6041/6/6/065005] [PMID: 22089383]
[73]
Dong, Y.; Lu, X.; Wang, P.; Liu, W.; Zhang, S.; Wu, Z.; Chen, H. Facile fabrication of a “Catch and Release” cellulose acetate nanofiber interface: a platform for reversible glycoprotein capture and bacterial attachment. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(42), 6744-6751.
[http://dx.doi.org/10.1039/C8TB02291G] [PMID: 32254691]
[74]
Phaechamud, T.; Mahadlek, J. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs. Int. J. Pharm., 2015, 494(1), 381-392.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.047] [PMID: 26302862]
[75]
Chang, C.; He, M.; Zhou, J.; Zhang, L. Swelling behaviors of pH- and salt-responsive cellulose-based hydrogels. Macromolecules, 2011, 44(6), 1642-1648.
[http://dx.doi.org/10.1021/ma102801f]
[76]
Li, Z.; Wang, Y.; Pei, Y.; Xiong, W.; Xu, W.; Li, B.; Li, J. Effect of substitution degree on carboxymethylcellulose interaction with lysozyme. Food Hydrocoll., 2017, 62, 222-229.
[http://dx.doi.org/10.1016/j.foodhyd.2016.07.020]
[77]
Matea, C.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[78]
Mandal, B.; Das, D.; Rameshbabu, A.P.; Dhara, S.; Pal, S. A biodegradable, biocompatible transdermal device derived from carboxymethyl cellulose and multi-walled carbon nanotubes for sustained release of diclofenac sodium. RSC Advances, 2016, 6(23), 19605-19611.
[http://dx.doi.org/10.1039/C6RA00260A]
[79]
Capanema, N.S.V.; Mansur, A.A.P.; Carvalho, S.M.; Carvalho, I.C.; Chagas, P.; de Oliveira, L.C.A.; Mansur, H.S. Bioengineered carboxymethyl cellulose-doxorubicin prodrug hydrogels for topical chemotherapy of melanoma skin cancer. Carbohydr. Polym., 2018, 195, 401-412.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.105] [PMID: 29804993]
[80]
Hoang, B.; Ernsting, M.J.; Roy, A.; Murakami, M.; Undzys, E.; Li, S.D. Docetaxel-carboxymethylcellulose nanoparticles target cells via a SPARC and albumin dependent mechanism. Biomaterials, 2015, 59, 66-76.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.032] [PMID: 25956852]
[81]
Laffleur, F.; Messirek, A. Development of mucoadhesive thio-carboxymethyl cellulose for application in buccal delivery of drugs. Ther. Deliv., 2016, 7(2), 63-71.
[http://dx.doi.org/10.4155/tde.15.91] [PMID: 26769109]
[82]
Dai, L.; Liu, K.F.; Si, C.L.; He, J.; Lei, J.D.; Guo, L.Q. A novel self-assembled targeted nanoparticle platform based on carboxymethylcellulose co-delivery of anticancer drugs. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(32), 6605-6617.
[http://dx.doi.org/10.1039/C5TB00900F] [PMID: 32262797]
[83]
Monier, M.; Abdel-Latif, D.A.; Ji, H.F. Synthesis and application of photo-active carboxymethyl cellulose derivatives. React. Funct. Polym., 2016, 102, 137-146.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2016.03.013]
[84]
Sood, S.; Gupta, V.K.; Agarwal, S.; Dev, K.; Pathania, D. Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly(lactic acid-co-itaconic acid) hydrogel. Int. J. Biol. Macromol., 2017, 101, 612-620.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.103] [PMID: 28344094]
[85]
Varshosaz, J.; Ahmadi, F.; Emami, J.; Tavakoli, N.; Minaiyan, M.; Mahzouni, P.; Dorkoosh, F. Microencapsulation of budesonide with dextran by spray drying technique for colon-targeted delivery: An in vitro/in vivo evaluation in induced colitis in rat. J. Microencapsul., 2011, 28(1), 62-73.
[http://dx.doi.org/10.3109/02652048.2010.529947] [PMID: 21171817]
[86]
Chen, Z.; Krishnamachary, B.; Penet, M.F.; Bhujwalla, Z.M. Acid-degradable dextran as an image guided siRNA carrier for COX-2 downregulation. Theranostics, 2018, 8(1), 1-12.
[http://dx.doi.org/10.7150/thno.21052] [PMID: 29290789]
[87]
Joshy, K.S.; George, A.; Snigdha, S.; Joseph, B.; Kalarikkal, N.; Pothen, L.A.; Thomas, S. Novel core-shell dextran hybrid nanosystem for anti-viral drug delivery. Mater. Sci. Eng. C, 2018, 93, 864-872.
[http://dx.doi.org/10.1016/j.msec.2018.08.015] [PMID: 30274122]
[88]
Gallovic, M.D.; Schully, K.L.; Bell, M.G.; Elberson, M.A.; Palmer, J.R.; Darko, C.A.; Bachelder, E.M.; Wyslouzil, B.E.; Keane-Myers, A.M.; Ainslie, K.M. Acetalated dextran microparticulate vaccine formulated via coaxial electrospray preserves toxin neutralization and enhances murine survival following inhalational Bacillus Anthracis exposure. Adv. Healthc. Mater., 2016, 5(20), 2617-2627.
[http://dx.doi.org/10.1002/adhm.201600642] [PMID: 27594343]
[89]
Cohen, J.A.; Beaudette, T.T.; Cohen, J.L.; Broaders, K.E.; Bachelder, E.M.; Fréchet, J.M.J. Acetal-modified dextran microparticles with controlled degradation kinetics and surface functionality for gene delivery in phagocytic and non-phagocytic cells. Adv. Mater., 2010, 22(32), 3593-3597.
[http://dx.doi.org/10.1002/adma.201000307] [PMID: 20518040]
[90]
Yoo, W.; Yoo, D.; Hong, E.; Jung, E.; Go, Y.; Singh, S.V.B.; Khang, G.; Lee, D. Acid-activatable oxidative stress-inducing polysaccharide nanoparticles for anticancer therapy. J. Control. Release, 2018, 269, 235-244.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.023] [PMID: 29146242]
[91]
Bachelder, E.M.; Beaudette, T.T.; Broaders, K.E.; Fréchet, J.M.J.; Albrecht, M.T.; Mateczun, A.J.; Ainslie, K.M.; Pesce, J.T.; Keane-Myers, A.M. In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants. Mol. Pharm., 2010, 7(3), 826-835.
[http://dx.doi.org/10.1021/mp900311x] [PMID: 20230025]
[92]
Liu, W.; Quan, P.; Li, Q.; Tang, P.; Chen, J.; Jiang, T.; Cai, W. Dextran-based biodegradable nanoparticles: an alternative and convenient strategy for treatment of traumatic spinal cord injury. Int. J. Nanomedicine, 2018, 13, 4121-4132.
[http://dx.doi.org/10.2147/IJN.S171925] [PMID: 30038493]
[93]
Meenach, S.A.; Kim, Y.J.; Kauffman, K.J.; Kanthamneni, N.; Bachelder, E.M.; Ainslie, K.M. Synthesis, optimization, and characterization of camptothecin-loaded acetalated dextran porous microparticles for pulmonary delivery. Mol. Pharm., 2012, 9(2), 290-298.
[http://dx.doi.org/10.1021/mp2003785] [PMID: 22149217]
[94]
Pramod, P.S.; Shah, R.; Chaphekar, S.; Balasubramanian, N.; Jayakannan, M. Polysaccharide nano-vesicular multidrug carriers for synergistic killing of cancer cells. Nanoscale, 2014, 6(20), 11841-11855.
[http://dx.doi.org/10.1039/C4NR03514C] [PMID: 25171376]
[95]
He, S.; Cong, Y.; Zhou, D.; Li, J.; Xie, Z.; Chen, X.; Jing, X.; Huang, Y. A dextran-platinum (IV) conjugate as a reduction-responsive carrier for triggered drug release. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(41), 8203-8211.
[http://dx.doi.org/10.1039/C5TB01496D] [PMID: 32262878]
[96]
Li, S.; Yi, J.; Li, W.; Wang, L.; Wang, Z. Synthesis and characterization of three novel amphiphilic dextran self-assembled micelles as potential drug delivery system. J. Mater. Sci., 2017, 52(21), 12593-12607.
[http://dx.doi.org/10.1007/s10853-017-1249-5]
[97]
Niu, X.; Zhang, Z.; Zhong, Y. Hydrogel loaded with self-assembled dextran sulfate-doxorubicin complexes as a delivery system for chemotherapy. Mater. Sci. Eng. C, 2017, 77, 888-894.
[http://dx.doi.org/10.1016/j.msec.2017.04.013] [PMID: 28532106]
[98]
Heo, R.; You, D.G.; Um, W.; Choi, K.Y.; Jeon, S.; Park, J.S.; Choi, Y.; Kwon, S.; Kim, K.; Kwon, I.C.; Jo, D.G.; Kang, Y.M.; Park, J.H. Dextran sulfate nanoparticles as a theranostic nanomedicine for rheumatoid arthritis. Biomaterials, 2017, 131, 15-26.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.044] [PMID: 28371624]
[99]
Azzam, T.; Eliyahu, H.; Makovitzki, A.; Domb, A.J. Dextran-spermine conjugate: an efficient vector for gene delivery. Macromol. Symp., 2003, 195(1), 247-262.
[http://dx.doi.org/10.1002/masy.200390130]
[100]
Ferreira, M.P.A.; Talman, V.; Torrieri, G.; Liu, D.; Marques, G.; Moslova, K.; Liu, Z.; Pinto, J.F.; Hirvonen, J.; Ruskoaho, H.; Santos, H.A. Dual-drug delivery using dextran-functionalized nanoparticles targeting cardiac fibroblasts for cellular reprogramming. Adv. Funct. Mater., 2018, 28(15), 1705134.
[http://dx.doi.org/10.1002/adfm.201705134]
[101]
Jafarzadeh-Holagh, S.; Hashemi-Najafabadi, S.; Shaki, H.; Vasheghani-Farahani, E. Self-assembled and pH-sensitive mixed micelles as an intracellular doxorubicin delivery system. J. Colloid Interface Sci., 2018, 523, 179-190.
[http://dx.doi.org/10.1016/j.jcis.2018.02.076] [PMID: 29621645]
[102]
Morimoto, N.; Hirano, S.; Takahashi, H.; Loethen, S.; Thompson, D.H.; Akiyoshi, K. Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromolecules, 2013, 14(1), 56-63.
[http://dx.doi.org/10.1021/bm301286h] [PMID: 23215439]
[103]
Perrone, M.; Lopalco, A.; Lopedota, A.; Cutrignelli, A.; Laquintana, V.; Douglas, J.; Franco, M.; Liberati, E.; Russo, V.; Tongiani, S.; Denora, N.; Bernkop-Schnürch, A. Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery. Eur. J. Pharm. Biopharm., 2017, 119, 161-169.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.011] [PMID: 28610879]
[104]
Rosselgong, J.; Chemin, M.; Almada, C.C.; Hemery, G.; Guigner, J.M.; Chollet, G.; Labat, G.; Da Silva Perez, D.; Ham-Pichavant, F.; Grau, E.; Grelier, S.; Lecommandoux, S.; Cramail, H. Synthesis and self-assembly of xylan-based amphiphiles: from bio-based vesicles to antifungal properties. Biomacromolecules, 2019, 20(1), 118-129.
[http://dx.doi.org/10.1021/acs.biomac.8b01210] [PMID: 30347145]
[105]
George, A.; Shah, P.A.; Shrivastav, P.S. Guar gum: Versatile natural polymer for drug delivery applications. Eur. Polym. J., 2019, 112, 722-735.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.10.042]
[106]
Shivhare, K.; Garg, C.; Priyam, A.; Gupta, A.; Sharma, A.K.; Kumar, P. Enzyme sensitive smart inulin-dehydropeptide conjugate self-assembles into nanostructures useful for targeted delivery of ornidazole. Int. J. Biol. Macromol., 2018, 106, 775-783.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.071] [PMID: 28818724]
[107]
Venugopal, J.; Rajeswari, R.; Shayanti, M.; Sridhar, R.; Sundarrajan, S.; Balamurugan, R.; Ramakrishna, S. Xylan polysaccharides fabricated into nanofibrous substrate for myocardial infarction. Mater. Sci. Eng. C, 2013, 33(3), 1325-1331.
[http://dx.doi.org/10.1016/j.msec.2012.12.032] [PMID: 23827578]
[108]
Sami, A.J.; Khalid, M.; Jamil, T.; Aftab, S.; Mangat, S.A.; Shakoori, A.R.; Iqbal, S. Formulation of novel chitosan guargum based hydrogels for sustained drug release of paracetamol. Int. J. Biol. Macromol., 2018, 108, 324-332.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.008] [PMID: 29217184]
[109]
Hassanzadeh, P.; Kazemzadeh-Narbat, M.; Rosenzweig, R.; Zhang, X.; Khademhosseini, A.; Annabi, N.; Rolandi, M. Ultrastrong and flexible hybrid hydrogels based on solution self-assembly of chitin nanofibers in gelatin methacryloyl (GelMA). J. Mater. Chem. B Mater. Biol. Med., 2016, 4(15), 2539-2543.
[http://dx.doi.org/10.1039/C6TB00021E] [PMID: 27453781]
[110]
Hamedi, H.; Moradi, S.; Hudson, S.M.; Tonelli, A.E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr. Polym., 2018, 199, 445-460.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.114] [PMID: 30143150]
[111]
Qi, L.; Xu, Z.; Jiang, X.; Hu, C.; Zou, X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res., 2004, 339(16), 2693-2700.
[http://dx.doi.org/10.1016/j.carres.2004.09.007] [PMID: 15519328]
[112]
Sung, H.W.; Sonaje, K.; Liao, Z.X.; Hsu, L.W.; Chuang, E.Y. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc. Chem. Res., 2012, 45(4), 619-629.
[http://dx.doi.org/10.1021/ar200234q] [PMID: 22236133]
[113]
Pardeshi, C.V.; Belgamwar, V.S. N,N,N-trimethyl chitosan modified flaxseed oil based mucoadhesive neuronanoemulsions for direct nose to brain drug delivery. Int. J. Biol. Macromol., 2018, 120(Pt B), 2560-2571.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.032] [PMID: 30201564]
[114]
Dimassi, S.; Tabary, N.; Chai, F.; Blanchemain, N.; Martel, B. Sulfonated and sulfated chitosan derivatives for biomedical applications: A review. Carbohydr. Polym., 2018, 202, 382-396.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.011] [PMID: 30287013]
[115]
Cao, L.; Wang, J.; Hou, J.; Xing, W.; Liu, C. Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2. Biomaterials, 2014, 35(2), 684-698.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.005] [PMID: 24140042]
[116]
Yu, Y.; Chen, J.; Chen, R.; Cao, L.; Tang, W.; Lin, D.; Wang, J.; Liu, C. enhancement of VEGF-mediated angiogenesis by 2- N, 6- O-sulfated chitosan-coated hierarchical PLGA scaffolds. ACS Appl. Mater. Interfaces, 2015, 7(18), 9982-9990.
[http://dx.doi.org/10.1021/acsami.5b02324] [PMID: 25905780]
[117]
Tian, Q.; Wang, X.H.; Wang, W.; Zhang, C.N.; Wang, P.; Yuan, Z. Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid. Nanomedicine , 2012, 8(6), 870-879.
[http://dx.doi.org/10.1016/j.nano.2011.11.002] [PMID: 22100756]
[118]
Li, W.; Yi, X.; Liu, X.; Zhang, Z.; Fu, Y.; Gong, T. Hyaluronic acid ion-pairing nanoparticles for targeted tumor therapy. J. Control. Release, 2016, 225, 170-182.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.049] [PMID: 26826304]
[119]
Vafaei, S.Y.; Esmaeili, M.; Amini, M.; Atyabi, F.; Ostad, S.N.; Dinarvand, R. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa. Carbohydr. Polym., 2016, 144, 371-381.
[http://dx.doi.org/10.1016/j.carbpol.2016.01.026] [PMID: 27083829]
[120]
Bongiovì, F.; Fiorica, C.; Palumbo, F.S.; Di Prima, G.; Giammona, G.; Pitarresi, G. Imatinib-loaded micelles of hyaluronic acid derivatives for potential treatment of neovascular ocular diseases. Mol. Pharm., 2018, 15(11), 5031-5045.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00620] [PMID: 30248267]
[121]
Huerta-Angeles, G.; Brandejsová, M.; Kulhánek, J.; Pavlík, V.; Šmejkalová, D.; Vágnerová, H.; Velebný, V. Linolenic acid grafted hyaluronan: Process development, structural characterization, biological assessing, and stability studies. Carbohydr. Polym., 2016, 152, 815-824.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.030] [PMID: 27516333]
[122]
Matelová, A.; Huerta-Angeles, G.; Šmejkalová, D. Brůnová, Z.; Dušek, J.; Vícha, R.; Velebný, V. Synthesis of novel amphiphilic hyaluronan containing-aromatic fatty acids for fabrication of polymeric micelles. Carbohydr. Polym., 2016, 151, 1175-1183.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.085] [PMID: 27474668]
[123]
Gomes, A.J.; Lunardi, C.N.; Tedesco, A.C. Characterization of biodegradable poly(D,L-lactide-co-glycolide) nanoparticles loaded with bacteriochlorophyll-a for photodynamic therapy. Photomed. Laser Surg., 2007, 25(5), 428-435.
[http://dx.doi.org/10.1089/pho.2007.2089] [PMID: 17975957]
[124]
Liao, J.; Zheng, H.; Fei, Z.; Lu, B.; Zheng, H.; Li, D.; Xiong, X.; Yi, Y. Tumor-targeting and pH-responsive nanoparticles from hyaluronic acid for the enhanced delivery of doxorubicin. Int. J. Biol. Macromol., 2018, 113, 737-747.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.004] [PMID: 29505869]
[125]
Manzi, G.; Zoratto, N.; Matano, S.; Sabia, R.; Villani, C.; Coviello, T.; Matricardi, P.; Di Meo, C. “Click” hyaluronan based nanohydrogels as multifunctionalizable carriers for hydrophobic drugs. Carbohydr. Polym., 2017, 174, 706-715.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.003] [PMID: 28821122]
[126]
Choi, Y.R.; Kim, H.J.; Ahn, G.Y.; Lee, M.J.; Park, J.R.; Jun, D.R.; Ryu, T.K.; Park, J.W.; Shin, E.; Choi, S.W. Fabrication of dihydroxyflavone-conjugated hyaluronic acid nanogels for targeted antitumoral effect. Colloids Surf. B Biointerfaces, 2018, 171, 690-697.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.003] [PMID: 30114654]
[127]
Elamin, K.M.; Yamashita, Y.; Higashi, T.; Motoyama, K.; Arima, H. Supramolecular Complex of Methyl-β-cyclodextrin with Adamantane-Grafted Hyaluronic Acid as a Novel Antitumor Agent. Chem. Pharm. Bull. (Tokyo), 2018, 66(3), 277-285.
[http://dx.doi.org/10.1248/cpb.c17-00824] [PMID: 29269686]
[128]
Pedrosa, S.S.; Pereira, P.; Correia, A.; Moreira, S.; Rocha, H.; Gama, F.M. Biocompatibility of a self-assembled crosslinkable hyaluronic acid nanogel. Macromol. Biosci., 2016, 16(11), 1610-1620.
[http://dx.doi.org/10.1002/mabi.201600221] [PMID: 27456215]
[129]
Zhu, Y.; Wang, X.; Chen, J.; Zhang, J.; Meng, F.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. Bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels for targeted X-ray computed tomography imaging and chemotherapy of breast tumors. J. Control. Release,, 2016, 244(Pt B), 229-239.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.027] [PMID: 27568289]
[130]
Gu, Z.; Wang, X.; Cheng, R.; Cheng, L.; Zhong, Z. Hyaluronic acid shell and disulfide-crosslinked core micelles for in vivo targeted delivery of bortezomib for the treatment of multiple myeloma. Acta Biomater., 2018, 80, 288-295.
[http://dx.doi.org/10.1016/j.actbio.2018.09.022] [PMID: 30240956]
[131]
Yang, X.; Cai, X.; Yu, A.; Xi, Y.; Zhai, G. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. J. Colloid Interface Sci., 2017, 496, 311-326.
[http://dx.doi.org/10.1016/j.jcis.2017.02.033] [PMID: 28237749]
[132]
Mei, L.; Liu, Y.; Zhang, H.; Zhang, Z.; Gao, H.; He, Q. Antitumor and antimetastasis activities of heparin-based micelle served as both carrier and drug. ACS Appl. Mater. Interfaces, 2016, 8(15), 9577-9589.
[http://dx.doi.org/10.1021/acsami.5b12347] [PMID: 27058058]
[133]
Aparna, V.; Melge, A.R.; Rajan, V.K.; Biswas, R.; Jayakumar, R.; Gopi Mohan, C. Carboxymethylated ɩ-carrageenan conjugated amphotericin B loaded gelatin nanoparticles for treating intracellular Candida glabrata infections. Int. J. Biol. Macromol., 2018, 110, 140-149.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.126] [PMID: 29169943]
[134]
Sonawane, R.O.; Patil, S.D. Fabrication and statistical optimization of starch-κ-carrageenan cross-linked hydrogel composite for extended release pellets of zaltoprofen. Int. J. Biol. Macromol.,, 2018, 120(Pt B), 2324-2334.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.177] [PMID: 30171959]
[135]
Nair, A.V.; Raman, M.; Doble, M. Cyclic β-(1→3) (1→6) glucan/carrageenan hydrogels for wound healing applications. RSC Advances, 2016, 6(100), 98545-98553.
[http://dx.doi.org/10.1039/C6RA23386D]
[136]
Wu, M.; Ni, C.; Yao, B.; Zhu, C.; Huang, B.; Zhang, L. Covalently cross-linked and hydrophobically modified alginic acid hydrogels and their application as drug carriers. Polym. Eng. Sci., 2013, 53(8), 1583-1589.
[http://dx.doi.org/10.1002/pen.23415]
[137]
Tada, D.; Tanabe, T.; Tachibana, A.; Yamauchi, K. Albumin-crosslinked alginate hydrogels as sustained drug release carrier. Mater. Sci. Eng. C, 2007, 27(4), 870-874.
[http://dx.doi.org/10.1016/j.msec.2006.10.008]
[138]
Tziveleka, L.A.; Pippa, N.; Georgantea, P.; Ioannou, E.; Demetzos, C.; Roussis, V. Marine sulfated polysaccharides as versatile polyelectrolytes for the development of drug delivery nanoplatforms: Complexation of ulvan with lysozyme. Int. J. Biol. Macromol.,, 2018, 118(Pt A), 69-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.050] [PMID: 29906535]
[139]
Barros, A.A.A.; Alves, A.; Nunes, C.; Coimbra, M.A.; Pires, R.A.; Reis, R.L. Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements. Acta Biomater., 2013, 9(11), 9086-9097.
[http://dx.doi.org/10.1016/j.actbio.2013.06.036] [PMID: 23816652]
[140]
Cacicedo, M.L.; Islan, G.A.; Drachemberg, M.F.; Alvarez, V.A.; Bartel, L.C.; Bolzán, A.D.; Castro, G.R. Hybrid bacterial cellulose–pectin films for delivery of bioactive molecules. New J. Chem., 2018, 42(9), 7457-7467.
[http://dx.doi.org/10.1039/C7NJ03973E]
[141]
Hanif, M.; Abbas, G. pH-responsive alginate-pectin polymeric rafts and their characterization. Adv. Polym. Technol., 2018, 37(5), 1496-1506.
[http://dx.doi.org/10.1002/adv.21808]
[142]
Li, M.; Li, H.; Li, X.; Zhu, H.; Xu, Z.; Liu, L.; Ma, J.; Zhang, M. A bioinspired alginate-gum arabic hydrogel with micro-/nanoscale structures for controlled drug release in chronic wound healing. ACS Appl. Mater. Interfaces, 2017, 9(27), 22160-22175.
[http://dx.doi.org/10.1021/acsami.7b04428] [PMID: 28640580]
[143]
Musazzi, U.M.; Cencetti, C.; Franzé, S.; Zoratto, N.; Di Meo, C.; Procacci, P.; Matricardi, P.; Cilurzo, F. Gellan nanohydrogels: novel nanodelivery systems for cutaneous administration of piroxicam. Mol. Pharm., 2018, 15(3), 1028-1036.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00926] [PMID: 29366318]
[144]
Agrawal, G.; Agrawal, R. Stimuli-responsive microgels and microgel-based systems: advances in the exploitation of microgel colloidal properties and their interfacial activity. Polymers (Basel), 2018, 10(4), 418.
[http://dx.doi.org/10.3390/polym10040418] [PMID: 30966453]
[145]
Azeredo, H.M.C.; Waldron, K.W. Crosslinking in polysaccharide and protein films and coatings for food contact – A review. Trends Food Sci. Technol., 2016, 52, 109-122.
[http://dx.doi.org/10.1016/j.tifs.2016.04.008]
[146]
Kraisomdet, P.; Pratess, T.; Na Nakorn, P.; Sangkaew, P.; Naneto, A.; Inprakon, P.; Panbangred, W.; Patikarnmonthon, N. Amphiphilic dextran-vinyl laurate-based nanoparticles: formation, characterization, encapsulation, and cytotoxicity on human intestinal cell line. Prog. Biomater., 2020, 9(1-2), 15-23.
[http://dx.doi.org/10.1007/s40204-020-00128-1] [PMID: 32072566]
[147]
Dong, H.; Xu, Q.; Li, Y.; Mo, S.; Cai, S.; Liu, L. The synthesis of biodegradable graft copolymer cellulose-graft-poly(l-lactide) and the study of its controlled drug release. Colloids Surf. B Biointerfaces, 2008, 66(1), 26-33.
[http://dx.doi.org/10.1016/j.colsurfb.2008.05.007] [PMID: 18583109]
[148]
Zu, M.; Ma, L.; Zhang, X.; Xie, D.; Kang, Y.; Xiao, B. Chondroitin sulfate-functionalized polymeric nanoparticles for colon cancer-targeted chemotherapy. Colloids Surf. B Biointerfaces, 2019, 177, 399-406.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.031] [PMID: 30785037]
[149]
Pedroso-Santana, S.; Fleitas-Salazar, N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym. Int., 2020, 69(5), 443-447.
[http://dx.doi.org/10.1002/pi.5970]
[150]
Wu, J.; Wang, Y.; Yang, H.; Liu, X.; Lu, Z. Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles. Carbohydr. Polym., 2017, 175, 170-177.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.058] [PMID: 28917853]
[151]
Fenn, S.L.; Miao, T.; Scherrer, R.M.; Floreani, R.A. Dual-cross-linked methacrylated alginate sub-microspheres for intracellular chemotherapeutic delivery. ACS Appl. Mater. Interfaces, 2016, 8(28), 17775-17783.
[http://dx.doi.org/10.1021/acsami.6b03245] [PMID: 27378419]
[152]
Copes, F.; Chevallier, P.; Loy, C.; Pezzoli, D.; Boccafoschi, F.; Mantovani, D. Heparin-modified collagen gels for controlled release of pleiotrophin: Potential for vascular applications. Front. Bioeng. Biotechnol., 2019, 7(APR), 74.
[http://dx.doi.org/10.3389/fbioe.2019.00074] [PMID: 31024906]
[153]
Yang, Hu SGHHML Carbohydrate-functionalized nanoparticles and uses thereof. WO Patent 2018081517, 2017.
[154]
Lyndon William James.; Frank.; Shengyan. Mucoadhesive nanoparticle delivery system. EP Patent 2863892A4. 2013.
[155]
Pyonteck, S.M.; Akkari, L.; Schuhmacher, A.J.; Bowman, R.L.; Sevenich, L.; Quail, D.F.; Olson, O.C.; Quick, M.L.; Huse, J.T.; Teijeiro, V.; Setty, M.; Leslie, C.S.; Oei, Y.; Pedraza, A.; Zhang, J.; Brennan, C.W.; Sutton, J.C.; Holland, E.C.; Daniel, D.; Joyce, J.A. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med., 2013, 19(10), 1264-1272.
[http://dx.doi.org/10.1038/nm.3337] [PMID: 24056773]
[156]
Eichmann, SL; Somerville, MA; Schmidt, HK Polysaccharide coated nanoparticle compositions comprising ions. WO Patent 2017011335A1, 2019.
[157]
Loftsson, T. Formation of cyclosporin A/cyclodextrin nanoparticles. CA Patent 2986297A1, 2016.
[158]
Jon, G.; Phillip, W.; Meike, R. Nanoparticles and their use in cancer therapy. WO Patent 2016102613A1, 2017.
[159]
Avci,; Kasper, Glycoconjugate vaccines. CA Patent 2756170C, 2010.
[160]
Panu, Lahtinen VS Starch nanoparticles and process for the manufacture thereof. WO Patent 2015144983A1, 2015.
[161]
Borrelli, M.J. Malshe, Ajay P.; Hamilton, E.; SMITHSON, K. Sonolysis with biodegradable nanoparticles. WO Patent 2014052311A1, 2013.
[162]
Bhunia, A.K.; Yao, Y. Carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. US Patent 20140066363A1, 2012.
[163]
Attama, A.A.; Charles, L. Nanoparticles for drug delivery. Handbook of Functional Nanomaterials, , 2013; 2, pp. 1-41.
[164]
Ciach, T.; Wasiak, I. Process for the preparation of polysaccharide nanoparticles. WO Patent 2013137755A1, 2013.
[165]
Zhou, Preparing carbohydrate microarrays and conjugated nanoparticles. US Patent 20120040872A1, 2011.
[166]
Ma, J.A.F.; Maria, B.S.R. Nanoparticles of chitosan and hyaluronan for the administration of active molecules. JP Patent 2012529458A, 2007.
[167]
Penades, U.S.; Garcia, I.; Gallo, P.J. Gold-coated magnetic glyconanoparticles functionalized with proteins for use as diagnostic and therapeutic agents. EP Patent 2305310, 2011.
[168]
Robert, J.; Dutcher, J.R. Polysaccharide nanoparticles. US Patent 20180135079A1, 2008.
[169]
Bodnár, M.; Hartmann, J.F.; Borbély, J. Nanoparticles from Chitosan. Macromol. Symp., 2005, 227(1), 321-326.
[http://dx.doi.org/10.1002/masy.200550932]
[170]
Chun-Cheng, T. L.; Chia-Chu, C.; Yi-Chun, W. Carbohydrate encapsulated nanoparticles. US Patent 7695738B2, 2004.
[171]
Himmler, G.; Mudde, GC.; Kircheis, R.; Rademacher, TW.; Ullate, SP.; Lomas, MM. Nanoparticles comprising antigens and adjuvants, and immunogenic structures. WO Patent 2005GB03791 2015.
[172]
Lin, C-C.; Chen, Y-J. Bond, JR Carbohydrate encapsulated nanoparticle based affinity mass spectrometry. US20050287552A1, 2005.
[173]
Ratner, D.M.; Cambridge, M.A. Microarrays and microspheres comprising oligosaccharides, complex carbohydrates or glycoproteins. US Patent 20050221337A1, 2004.
[174]
Johannes, Jeroen. Hubertus, Frank Method for the preparation of starch particles. US Patent 6755915B1, 1999.
[175]
Heerze, LD.; Armstrong, GD. Llp, M Treatment of C. difficile toxin B associated conditions 2000.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy