Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Recent Advances on Type-2 Cannabinoid (CB2) Receptor Agonists and their Therapeutic Potential

Author(s): Valeria Gasperi*, Tatiana Guzzo*, Alessandra Topai, Nicola Gambacorta, Fulvio Ciriaco, Orazio Nicolotti and Mauro Maccarrone

Volume 30, Issue 12, 2023

Published on: 27 October, 2022

Page: [1420 - 1457] Pages: 38

DOI: 10.2174/0929867329666220825161603

Price: $65

Abstract

In the last decade, selective modulators of type-2 cannabinoid receptor (CB2) have become a major focus to target endocannabinoid signaling in humans. Indeed, heterogeneously expressed within our body, CB2 actively regulates several physio-pathological processes, thus representing a promising target for developing specific and safe therapeutic drugs. If CB2 modulation has been extensively studied since the very beginning for the treatment of pain and inflammation, the more recent involvement of this receptor in other pathological conditions has further strengthened the pursuit of novel CB2 agonists in the last five years.

Against this background, here we discuss the most recent evidence of the protective effects of CB2 against pathological conditions, emphasizing central nervous system disorders, bone and synovial diseases, and cancer. We also summarize the most recent advances in the development of CB2 agonists, focusing on the correlation between different chemical classes and diverse therapeutic applications. Data mining includes a review of the CB2 ligands disclosed in patents also released in the last five years. Finally, we discuss how the recent elucidation of CB2 tertiary structure has provided new details for the rational design of novel and more selective CB2 agonists, thus supporting innovative strategies to develop effective therapeutics.

Our overview of the current knowledge on CB2 agonists provides pivotal information on the structure and function of different classes of molecules and opens possible avenues for future research.

Keywords: Biased signaling, drug design, endocannabinoid, human disease, signal transduction, therapy, type-2 cannabinoid receptor.

[1]
Thomsen, W.; Frazer, J.; Unett, D. Functional assays for screening GPCR targets. Curr. Opin. Biotechnol., 2005, 16(6), 655-665.
[http://dx.doi.org/10.1016/j.copbio.2005.10.008] [PMID: 16257523]
[2]
Devane, W.A.; Dysarz, F.A., III; Johnson, M.R.; Melvin, L.S.; Howlett, A.C. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol., 1988, 34(5), 605-613.
[PMID: 2848184]
[3]
Matsuda, L.A.; Lolait, S.J.; Brownstein, M.J.; Young, A.C.; Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 1990, 346(6284), 561-564.
[http://dx.doi.org/10.1038/346561a0] [PMID: 2165569]
[4]
Gérard, C.M.; Mollereau, C.; Vassart, G.; Parmentier, M. Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem. J., 1991, 279(Pt 1), 129-134.
[http://dx.doi.org/10.1042/bj2790129] [PMID: 1718258]
[5]
Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature, 1993, 365(6441), 61-65.
[http://dx.doi.org/10.1038/365061a0] [PMID: 7689702]
[6]
Griffin, G.; Tao, Q.; Abood, M.E. Cloning and pharmacological characterization of the rat CB(2) cannabinoid receptor. J. Pharmacol. Exp. Ther., 2000, 292(3), 886-894.
[PMID: 10688601]
[7]
Maccarrone, M. Missing pieces to the endocannabinoid puzzle. Trends Mol. Med., 2020, 26(3), 263-272.
[http://dx.doi.org/10.1016/j.molmed.2019.11.002] [PMID: 31822395]
[8]
Guba, W.; Nazaré, M.; Grether, U. Chapter 4. Natural compounds and synthetic drugs to target type-2 Cannabinoid (CB2) receptor. In: RSC Drug Discovery Series; RSC Publishing: London, UK, 2020; p. 89.
[http://dx.doi.org/10.1039/9781839160752-00089]
[9]
Glass, M.; Dragunow, M.; Faull, R.L. Cannabinoid receptors in the human brain: A detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience, 1997, 77(2), 299-318.
[http://dx.doi.org/10.1016/S0306-4522(96)00428-9] [PMID: 9472392]
[10]
Busquets-Garcia, A.; Bains, J.; Marsicano, G. CB1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity. Neuropsychopharmacology, 2018, 43(1), 4-20.
[http://dx.doi.org/10.1038/npp.2017.206] [PMID: 28862250]
[11]
O’Sullivan, S.E.; Yates, A.S.; Porter, R.K. The peripheral cannabinoid receptor type 1 (CB1) as a molecular target for modulating body weight in man. Molecules, 2021, 26(20), 6178.
[http://dx.doi.org/10.3390/molecules26206178] [PMID: 34684760]
[12]
Mendizabal-Zubiaga, J.; Melser, S.; Bénard, G.; Ramos, A.; Reguero, L.; Arrabal, S.; Elezgarai, I.; Gerrikagoitia, I.; Suarez, J.; Rodríguez De Fonseca, F.; Puente, N.; Marsicano, G.; Grandes, P. Cannabinoid CB1 receptors are localized in striated muscle mitochondria and regulate mitochondrial respiration. Front. Physiol., 2016, 7, 476.
[http://dx.doi.org/10.3389/fphys.2016.00476] [PMID: 27826249]
[13]
D’Addario, C.; Micale, V.; Di Bartolomeo, M.; Stark, T.; Pucci, M.; Sulcova, A.; Palazzo, M.; Babinska, Z.; Cremaschi, L.; Drago, F.; Carlo Altamura, A.; Maccarrone, M.; Dell’Osso, B. A preliminary study of endocannabinoid system regulation in psychosis: Distinct alterations of CNR1 promoter DNA methylation in patients with schizophrenia. Schizophr. Res., 2017, 188, 132-140.
[http://dx.doi.org/10.1016/j.schres.2017.01.022] [PMID: 28108228]
[14]
Schwitzer, T.; Schwan, R.; Angioi-Duprez, K.; Giersch, A.; Laprevote, V. The endocannabinoid system in the retina: from physiology to practical and therapeutic applications. Neural Plast., 2016, 2016, 2916732.
[http://dx.doi.org/10.1155/2016/2916732] [PMID: 26881099]
[15]
Laezza, C.; Pagano, C.; Navarra, G.; Pastorino, O.; Proto, M.C.; Fiore, D.; Piscopo, C.; Gazzerro, P.; Bifulco, M. The Endocannabinoid System: A target for cancer treatment. Int. J. Mol. Sci., 2020, 21(3), 747.
[http://dx.doi.org/10.3390/ijms21030747] [PMID: 31979368]
[16]
Kim, Y.; Gautam, S.; Aseer, K.R.; Kim, J.; Chandrasekaran, P.; Mazucanti, C.H.; Ghosh, P.; O’Connell, J.F.; Doyle, M.E.; Appleton, A.; Lehrmann, E.; Liu, Q-R.; Egan, J.M. Hepatocyte cannabinoid 1 receptor nullification alleviates toxin-induced liver damage via NF-κB signaling. Cell Death Dis., 2020, 11(12), 1044.
[http://dx.doi.org/10.1038/s41419-020-03261-8] [PMID: 33298885]
[17]
Zou, S.; Kumar, U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and function in the central nervous system. Int. J. Mol. Sci., 2018, 19(3), 833.
[http://dx.doi.org/10.3390/ijms19030833] [PMID: 29533978]
[18]
Pi-Sunyer, F.X.; Aronne, L.J.; Heshmati, H.M.; Devin, J.; Rosenstock, J. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: A randomized controlled trial. JAMA, 2006, 295(7), 761-775.
[http://dx.doi.org/10.1001/jama.295.7.761] [PMID: 16478899]
[19]
Galiègue, S.; Mary, S.; Marchand, J.; Dussossoy, D.; Carrière, D.; Carayon, P.; Bouaboula, M.; Shire, D.; Le Fur, G.; Casellas, P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem., 1995, 232(1), 54-61.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20780.x] [PMID: 7556170]
[20]
Turcotte, C.; Blanchet, M-R.; Laviolette, M.; Flamand, N. The CB2 receptor and its role as a regulator of inflammation. Cell. Mol. Life Sci., 2016, 73(23), 4449-4470.
[http://dx.doi.org/10.1007/s00018-016-2300-4] [PMID: 27402121]
[21]
Staiano, R.I.; Loffredo, S.; Borriello, F.; Iannotti, F.A.; Piscitelli, F.; Orlando, P.; Secondo, A.; Granata, F.; Lepore, M.T.; Fiorelli, A.; Varricchi, G.; Santini, M.; Triggiani, M.; Di Marzo, V.; Marone, G. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors. J. Leukoc. Biol., 2016, 99(4), 531-540.
[http://dx.doi.org/10.1189/jlb.3HI1214-584R] [PMID: 26467187]
[22]
Romano, B.; Borrelli, F.; Fasolino, I.; Capasso, R.; Piscitelli, F.; Cascio, M.; Pertwee, R.; Coppola, D.; Vassallo, L.; Orlando, P.; Di Marzo, V.; Izzo, A. The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis. Br. J. Pharmacol., 2013, 169(1), 213-229.
[http://dx.doi.org/10.1111/bph.12120] [PMID: 23373571]
[23]
Denaës, T.; Lodder, J.; Chobert, M-N.; Ruiz, I.; Pawlotsky, J-M.; Lotersztajn, S.; Teixeira-Clerc, F. The cannabinoid receptor 2 protects against alcoholic liver disease via a macrophage autophagy-dependent pathway. Sci. Rep., 2016, 6(1), 28806.
[http://dx.doi.org/10.1038/srep28806] [PMID: 27346657]
[24]
Carlisle, S.J.; Marciano-Cabral, F.; Staab, A.; Ludwick, C.; Cabral, G.A. Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation. Int. Immunopharmacol., 2002, 2(1), 69-82.
[http://dx.doi.org/10.1016/S1567-5769(01)00147-3] [PMID: 11789671]
[25]
Cassano, T.; Calcagnini, S.; Pace, L.; De Marco, F.; Romano, A.; Gaetani, S. Cannabinoid receptor 2 signaling in neurodegenerative disorders: From pathogenesis to a promising therapeutic target. Front. Neurosci., 2017, 11, 30.
[http://dx.doi.org/10.3389/fnins.2017.00030] [PMID: 28210207]
[26]
Oláh, A.; Szekanecz, Z.; Bíró, T. Targeting cannabinoid signaling in the immune system: “High”-ly exciting questions, possibilities, and challenges. Front. Immunol., 2017, 8, 1487.
[http://dx.doi.org/10.3389/fimmu.2017.01487] [PMID: 29176975]
[27]
Weis, F.; Beiras-Fernandez, A.; Sodian, R.; Kaczmarek, I.; Reichart, B.; Beiras, A.; Schelling, G.; Kreth, S. Substantially altered expression pattern of cannabinoid receptor 2 and activated endocannabinoid system in patients with severe heart failure. J. Mol. Cell. Cardiol., 2010, 48(6), 1187-1193.
[http://dx.doi.org/10.1016/j.yjmcc.2009.10.025] [PMID: 19931541]
[28]
Rajesh, M.; Mukhopadhyay, P.; Haskó, G.; Huffman, J.W.; Mackie, K.; Pacher, P. CB2 cannabinoid receptor agonists attenuate TNF-α-induced human vascular smooth muscle cell proliferation and migration. Br. J. Pharmacol., 2008, 153(2), 347-357.
[http://dx.doi.org/10.1038/sj.bjp.0707569] [PMID: 17994109]
[29]
Ramirez, S.H.; Haskó, J.; Skuba, A.; Fan, S.; Dykstra, H.; McCormick, R.; Reichenbach, N.; Krizbai, I.; Mahadevan, A.; Zhang, M.; Tuma, R.; Son, Y-J.; Persidsky, Y. Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood-brain barrier dysfunction under inflammatory conditions. J. Neurosci., 2012, 32(12), 4004-4016.
[http://dx.doi.org/10.1523/JNEUROSCI.4628-11.2012] [PMID: 22442067]
[30]
Grimaldi, P.; Orlando, P.; Di Siena, S.; Lolicato, F.; Petrosino, S.; Bisogno, T.; Geremia, R.; De Petrocellis, L.; Di Marzo, V. The endocannabinoid system and pivotal role of the CB2 receptor in mouse spermatogenesis. Proc. Natl. Acad. Sci. USA, 2009, 106(27), 11131-11136.
[http://dx.doi.org/10.1073/pnas.0812789106] [PMID: 19541620]
[31]
Ofek, O.; Karsak, M.; Leclerc, N.; Fogel, M.; Frenkel, B.; Wright, K.; Tam, J.; Attar-Namdar, M.; Kram, V.; Shohami, E.; Mechoulam, R.; Zimmer, A.; Bab, I. Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc. Natl. Acad. Sci. USA, 2006, 103(3), 696-701.
[http://dx.doi.org/10.1073/pnas.0504187103] [PMID: 16407142]
[32]
Rossi, F.; Siniscalco, D.; Luongo, L.; De Petrocellis, L.; Bellini, G.; Petrosino, S.; Torella, M.; Santoro, C.; Nobili, B.; Perrotta, S.; Di Marzo, V.; Maione, S. The endovanilloid/endocannabinoid system in human osteoclasts: Possible involvement in bone formation and resorption. Bone, 2009, 44(3), 476-484.
[http://dx.doi.org/10.1016/j.bone.2008.10.056] [PMID: 19059369]
[33]
Çakır, M.; Tekin, S.; Doğanyiğit, Z.; Çakan, P.; Kaymak, E. The protective effect of cannabinoid type 2 receptor activation on renal ischemia-reperfusion injury. Mol. Cell. Biochem., 2019, 462(1-2), 123-132.
[http://dx.doi.org/10.1007/s11010-019-03616-6] [PMID: 31446615]
[34]
Fantauzzi, M.F.; Aguiar, J.A.; Tremblay, B.J-M.; Mansfield, M.J.; Yanagihara, T.; Chandiramohan, A.; Revill, S.; Ryu, M.H.; Carlsten, C.; Ask, K.; Stämpfli, M.; Doxey, A.C.; Hirota, J.A. Expression of endocannabinoid system components in human airway epithelial cells: Impact of sex and chronic respiratory disease status. ERJ Open Res., 2020, 6(4), 00128-02020.
[http://dx.doi.org/10.1183/23120541.00128-2020] [PMID: 33344628]
[35]
Zhou, L.; Zhou, S.; Yang, P.; Tian, Y.; Feng, Z.; Xie, X-Q.; Liu, Y. Targeted inhibition of the type 2 cannabinoid receptor is a novel approach to reduce renal fibrosis. Kidney Int., 2018, 94(4), 756-772.
[http://dx.doi.org/10.1016/j.kint.2018.05.023] [PMID: 30093080]
[36]
Suriano, F.; Manca, C.; Flamand, N.; Depommier, C.; Van Hul, M.; Delzenne, N.M.; Silvestri, C.; Cani, P.D.; Di Marzo, V. Exploring the endocannabinoidome in genetically obese (ob/ob) and diabetic (db/db) mice: Links with inflammation and gut microbiota. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2022, 1867(1), 159056.
[http://dx.doi.org/10.1016/j.bbalip.2021.159056] [PMID: 34606993]
[37]
Chen, D.J.; Gao, M.; Gao, F.F.; Su, Q.X.; Wu, J. Brain cannabinoid receptor 2: Expression, function and modulation. Acta Pharmacol. Sin., 2017, 38(3), 312-316.
[http://dx.doi.org/10.1038/aps.2016.149] [PMID: 28065934]
[38]
Kim, J.; Li, Y. Chronic activation of CB2 cannabinoid receptors in the hippocampus increases excitatory synaptic transmission. J. Physiol., 2015, 593(4), 871-886.
[http://dx.doi.org/10.1113/jphysiol.2014.286633] [PMID: 25504573]
[39]
Onaivi, E.S. Neuropsychobiological evidence for the functional presence and expression of cannabinoid CB2 receptors in the brain. Neuropsychobiology, 2006, 54(4), 231-246.
[http://dx.doi.org/10.1159/000100778] [PMID: 17356307]
[40]
Rogers, N. Cannabinoid receptor with an ‘identity crisis’ gets a second look. Nat. Med., 2015, 21(9), 966-967.
[http://dx.doi.org/10.1038/nm0915-966] [PMID: 26340113]
[41]
Stempel, A.V.; Stumpf, A.; Zhang, H-Y.; Özdoğan, T.; Pannasch, U.; Theis, A-K.; Otte, D-M.; Wojtalla, A.; Rácz, I.; Ponomarenko, A.; Xi, Z-X.; Zimmer, A.; Schmitz, D. Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron, 2016, 90(4), 795-809.
[http://dx.doi.org/10.1016/j.neuron.2016.03.034] [PMID: 27133464]
[42]
Viscomi, M.T.; Oddi, S.; Latini, L.; Pasquariello, N.; Florenzano, F.; Bernardi, G.; Molinari, M.; Maccarrone, M. Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/Akt pathway. J. Neurosci., 2009, 29(14), 4564-4570.
[http://dx.doi.org/10.1523/JNEUROSCI.0786-09.2009] [PMID: 19357281]
[43]
Liu, Q-R.; Pan, C-H.; Hishimoto, A.; Li, C-Y.; Xi, Z-X.; Llorente-Berzal, A.; Viveros, M-P.; Ishiguro, H.; Arinami, T.; Onaivi, E.S.; Uhl, G.R. Species differences in cannabinoid receptor 2 (CNR2 gene): Identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav., 2009, 8(5), 519-530.
[http://dx.doi.org/10.1111/j.1601-183X.2009.00498.x] [PMID: 19496827]
[44]
Stahl, E.L.; Schmid, C.L.; Acevedo-Canabal, A.; Read, C.; Grim, T.W.; Kennedy, N.M.; Bannister, T.D.; Bohn, L.M. G protein signaling-biased mu opioid receptor agonists that produce sustained G protein activation are noncompetitive agonists. Proc. Natl. Acad. Sci. USA, 2021, 118(48), e2102178118.
[http://dx.doi.org/10.1073/pnas.2102178118] [PMID: 34819362]
[45]
Gillis, A.; Sreenivasan, V.; Christie, M.J. Intrinsic efficacy of opioid ligands and its importance for apparent bias, operational analysis, and therapeutic window. Mol. Pharmacol., 2020, 98(4), 410-424.
[http://dx.doi.org/10.1124/mol.119.119214] [PMID: 32665252]
[46]
Von Moo, E.; Harpsøe, K.; Hauser, A. S.; Masuho, I.; Bräuner-Osborne, H.; Gloriam, D. E.; Martemyanov, K. A. Ligand-directed bias of g protein signaling at the dopamine D2 receptor. Cell Chem Biol, 2021, S2451-9456(21), 00314-00317.
[http://dx.doi.org/10.1016/j.chembiol.2021.07.004]
[47]
Ibsen, M.S.; Connor, M.; Glass, M. Cannabinoid CB1 and CB2 receptor signaling and bias. Cannabis Cannabinoid Res., 2017, 2(1), 48-60.
[http://dx.doi.org/10.1089/can.2016.0037] [PMID: 28861504]
[48]
Patel, M.; Finlay, D.B.; Glass, M. Biased agonism at the cannabinoid receptors - Evidence from synthetic cannabinoid receptor agonists. Cell. Signal., 2021, 78, 109865.
[http://dx.doi.org/10.1016/j.cellsig.2020.109865] [PMID: 33259937]
[49]
Glass, M.; Northup, J.K. Agonist selective regulation of G proteins by cannabinoid CB(1) and CB(2) receptors. Mol. Pharmacol., 1999, 56(6), 1362-1369.
[http://dx.doi.org/10.1124/mol.56.6.1362] [PMID: 10570066]
[50]
Saroz, Y.; Kho, D.T.; Glass, M.; Graham, E.S.; Grimsey, N.L. Cannabinoid receptor 2 (CB2) signals via G-alpha-s and induces IL-6 and IL-10 cytokine secretion in human primary leukocytes. ACS Pharmacol. Transl. Sci., 2019, 2(6), 414-428.
[http://dx.doi.org/10.1021/acsptsci.9b00049] [PMID: 32259074]
[51]
Bouaboula, M.; Poinot-Chazel, C.; Marchand, J.; Canat, X.; Bourrié, B.; Rinaldi-Carmona, M.; Calandra, B.; Le Fur, G.; Casellas, P. Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression. Eur. J. Biochem., 1996, 237(3), 704-711.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0704p.x] [PMID: 8647116]
[52]
Cudaback, E.; Marrs, W.; Moeller, T.; Stella, N. The expression level of CB1 and CB2 receptors determines their efficacy at inducing apoptosis in astrocytomas. PLoS One, 2010, 5(1), e8702.
[http://dx.doi.org/10.1371/journal.pone.0008702] [PMID: 20090845]
[53]
Ibsen, M.S.; Finlay, D.B.; Patel, M.; Javitch, J.A.; Glass, M.; Grimsey, N.L. Cannabinoid CB1 and CB2 receptor-mediated arrestin translocation: Species, subtype, and agonist-dependence. Front. Pharmacol., 2019, 10, 350.
[http://dx.doi.org/10.3389/fphar.2019.00350] [PMID: 31024316]
[54]
Soethoudt, M.; Grether, U.; Fingerle, J.; Grim, T.W.; Fezza, F.; de Petrocellis, L.; Ullmer, C.; Rothenhäusler, B.; Perret, C.; van Gils, N.; Finlay, D.; MacDonald, C.; Chicca, A.; Gens, M.D.; Stuart, J.; de Vries, H.; Mastrangelo, N.; Xia, L.; Alachouzos, G.; Baggelaar, M.P.; Martella, A.; Mock, E.D.; Deng, H.; Heitman, L.H.; Connor, M.; Di Marzo, V.; Gertsch, J.; Lichtman, A.H.; Maccarrone, M.; Pacher, P.; Glass, M.; van der Stelt, M. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat. Commun., 2017, 8(1), 13958.
[http://dx.doi.org/10.1038/ncomms13958] [PMID: 28045021]
[55]
Grimsey, N.L.; Goodfellow, C.E.; Dragunow, M.; Glass, M. Cannabinoid receptor 2 undergoes Rab5-mediated internalization and recycles via a Rab11-dependent pathway. Biochim. Biophys. Acta, 2011, 1813(8), 1554-1560.
[http://dx.doi.org/10.1016/j.bbamcr.2011.05.010] [PMID: 21640764]
[56]
Bouaboula, M.; Dussossoy, D.; Casellas, P. Regulation of peripheral cannabinoid receptor CB2 phosphorylation by the inverse agonist SR 144528. Implications for receptor biological responses. J. Biol. Chem., 1999, 274(29), 20397-20405.
[http://dx.doi.org/10.1074/jbc.274.29.20397] [PMID: 10400664]
[57]
Carrier, E.J.; Kearn, C.S.; Barkmeier, A.J.; Breese, N.M.; Yang, W.; Nithipatikom, K.; Pfister, S.L.; Campbell, W.B.; Hillard, C.J. Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol. Pharmacol., 2004, 65(4), 999-1007.
[http://dx.doi.org/10.1124/mol.65.4.999] [PMID: 15044630]
[58]
Shoemaker, J.L.; Ruckle, M.B.; Mayeux, P.R.; Prather, P.L. Agonist-directed trafficking of response by endocannabinoids acting at CB2 receptors. J. Pharmacol. Exp. Ther., 2005, 315(2), 828-838.
[http://dx.doi.org/10.1124/jpet.105.089474] [PMID: 16081674]
[59]
Atwood, B.K.; Wager-Miller, J.; Haskins, C.; Straiker, A.; Mackie, K. Functional selectivity in CB(2) cannabinoid receptor signaling and regulation: Implications for the therapeutic potential of CB(2) ligands. Mol. Pharmacol., 2012, 81(2), 250-263.
[http://dx.doi.org/10.1124/mol.111.074013] [PMID: 22064678]
[60]
Aronne, L.J.; Tonstad, S.; Moreno, M.; Gantz, I.; Erondu, N.; Suryawanshi, S.; Molony, C.; Sieberts, S.; Nayee, J.; Meehan, A.G.; Shapiro, D.; Heymsfield, S.B.; Kaufman, K.D.; Amatruda, J.M. A clinical trial assessing the safety and efficacy of taranabant, a CB1R inverse agonist, in obese and overweight patients: A high-dose study. Int. J. Obes., 2010, 34(5), 919-935.
[http://dx.doi.org/10.1038/ijo.2010.21] [PMID: 20157323]
[61]
Charif, S.E.; Vassallu, M.F.; Salvañal, L.; Igaz, L.M. Protein synthesis modulation as a therapeutic approach for amyotrophic lateral sclerosis and frontotemporal dementia. Neural Regen. Res., 2022, 17(7), 1423-1430.
[http://dx.doi.org/10.4103/1673-5374.330593] [PMID: 34916412]
[62]
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet, 2021, 397(10284), 1577-1590.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[63]
Kim, S.D.; Allen, N.E.; Canning, C.G.; Fung, V.S.C. Parkinson disease. Handb. Clin. Neurol., 2018, 159, 173-193.
[http://dx.doi.org/10.1016/B978-0-444-63916-5.00011-2] [PMID: 30482313]
[64]
Pandya, V.A.; Patani, R. Region-specific vulnerability in neurodegeneration: Lessons from normal ageing. Ageing Res. Rev., 2021, 67, 101311.
[http://dx.doi.org/10.1016/j.arr.2021.101311] [PMID: 33639280]
[65]
Maresz, K.; Carrier, E.J.; Ponomarev, E.D.; Hillard, C.J.; Dittel, B.N. Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J. Neurochem., 2005, 95(2), 437-445.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03380.x] [PMID: 16086683]
[66]
Walter, L.; Franklin, A.; Witting, A.; Wade, C.; Xie, Y.; Kunos, G.; Mackie, K.; Stella, N. Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J. Neurosci., 2003, 23(4), 1398-1405.
[http://dx.doi.org/10.1523/JNEUROSCI.23-04-01398.2003] [PMID: 12598628]
[67]
López, A.; Aparicio, N.; Pazos, M.R.; Grande, M.T.; Barreda-Manso, M.A.; Benito-Cuesta, I.; Vázquez, C.; Amores, M.; Ruiz-Pérez, G.; García-García, E.; Beatka, M.; Tolón, R.M.; Dittel, B.N.; Hillard, C.J.; Romero, J. Cannabinoid CB2 receptors in the mouse brain: Relevance for Alzheimer’s disease. J. Neuroinflammation, 2018, 15(1), 158.
[http://dx.doi.org/10.1186/s12974-018-1174-9] [PMID: 29793509]
[68]
Ehrhart, J.; Obregon, D.; Mori, T.; Hou, H.; Sun, N.; Bai, Y.; Klein, T.; Fernandez, F.; Tan, J.; Shytle, R.D. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J. Neuroinflammation, 2005, 2(1), 29.
[http://dx.doi.org/10.1186/1742-2094-2-29] [PMID: 16343349]
[69]
Ma, L.; Jia, J.; Liu, X.; Bai, F.; Wang, Q.; Xiong, L. Activation of murine microglial N9 cells is attenuated through cannabinoid receptor CB2 signaling. Biochem. Biophys. Res. Commun., 2015, 458(1), 92-97.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.073] [PMID: 25637536]
[70]
Martín-Moreno, A.M.; Brera, B.; Spuch, C.; Carro, E.; García-García, L.; Delgado, M.; Pozo, M.A.; Innamorato, N.G.; Cuadrado, A.; de Ceballos, M.L. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J. Neuroinflammation, 2012, 9(1), 8.
[http://dx.doi.org/10.1186/1742-2094-9-8] [PMID: 22248049]
[71]
Mecha, M.; Feliú, A.; Carrillo-Salinas, F.J.; Rueda-Zubiaurre, A.; Ortega-Gutiérrez, S.; de Sola, R.G.; Guaza, C. Endocannabinoids drive the acquisition of an alternative phenotype in microglia. Brain Behav. Immun., 2015, 49, 233-245.
[http://dx.doi.org/10.1016/j.bbi.2015.06.002] [PMID: 26086345]
[72]
Price, D.A.; Martinez, A.A.; Seillier, A.; Koek, W.; Acosta, Y.; Fernandez, E.; Strong, R.; Lutz, B.; Marsicano, G.; Roberts, J.L.; Giuffrida, A. WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Eur. J. Neurosci., 2009, 29(11), 2177-2186.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06764.x] [PMID: 19490092]
[73]
Reusch, N.; Ravichandran, K.A.; Olabiyi, B.F.; Komorowska-Müller, J.A.; Hansen, J.N.; Ulas, T.; Beyer, M.; Zimmer, A.; Schmöle, A.C. Cannabinoid receptor 2 is necessary to induce toll-like receptor-mediated microglial activation. Glia, 2022, 70(1), 71-88.
[http://dx.doi.org/10.1002/glia.24089] [PMID: 34499767]
[74]
Fiebich, B.L.; Batista, C.R.A.; Saliba, S.W.; Yousif, N.M.; de Oliveira, A.C.P. Role of microglia TLRs in neurodegeneration. Front. Cell. Neurosci., 2018, 12, 329.
[http://dx.doi.org/10.3389/fncel.2018.00329] [PMID: 30333729]
[75]
Jia, Y.; Deng, H.; Qin, Q.; Ma, Z. JWH133 inhibits MPP+-induced inflammatory response and iron influx in astrocytes. Neurosci. Lett., 2020, 720, 134779.
[http://dx.doi.org/10.1016/j.neulet.2020.134779] [PMID: 31981721]
[76]
Rizzo, M.D.; Crawford, R.B.; Bach, A.; Sermet, S.; Amalfitano, A.; Kaminski, N.E.Δ. Δ9-Tetrahydrocannabinol suppresses monocyte-mediated astrocyte production of monocyte chemoattractant protein 1 and interleukin-6 in a toll-like receptor 7-stimulated human coculture. J. Pharmacol. Exp. Ther., 2019, 371(1), 191-201.
[http://dx.doi.org/10.1124/jpet.119.260661] [PMID: 31383729]
[77]
Cardinal von Widdern, J.; Hohmann, T.; Dehghani, F. Abnormal cannabidiol affects production of pro-inflammatory mediators and astrocyte wound closure in primary astrocytic-microglial cocultures. Molecules, 2020, 25(3), 496.
[http://dx.doi.org/10.3390/molecules25030496] [PMID: 31979350]
[78]
Espejo-Porras, F.; Fernández-Ruiz, J.; de Lago, E. Analysis of endocannabinoid receptors and enzymes in the post-mortem motor cortex and spinal cord of amyotrophic lateral sclerosis patients. Amyotroph. Lateral Scler. Frontotemporal Degener., 2018, 19(5-6), 377-386.
[http://dx.doi.org/10.1080/21678421.2018.1425454] [PMID: 29334787]
[79]
Espejo-Porras, F.; Piscitelli, F.; Verde, R.; Ramos, J.A.; Di Marzo, V.; de Lago, E.; Fernández-Ruiz, J. Changes in the endocannabinoid signaling system in CNS structures of TDP-43 transgenic mice: Relevance for a neuroprotective therapy in TDP-43-related disorders. J. Neuroimmune Pharmacol., 2015, 10(2), 233-244.
[http://dx.doi.org/10.1007/s11481-015-9602-4] [PMID: 25819934]
[80]
Haider, A.; Spinelli, F.; Herde, A.M.; Mu, B.; Keller, C.; Margelisch, M.; Weber, M.; Schibli, R.; Mu, L.; Ametamey, S.M. Evaluation of 4-oxo-quinoline-based CB2 PET radioligands in R6/2 chorea huntington mouse model and human ALS spinal cord tissue. Eur. J. Med. Chem., 2018, 145, 746-759.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.097] [PMID: 29353725]
[81]
Grünblatt, E.; Zander, N.; Bartl, J.; Jie, L.; Monoranu, C-M.; Arzberger, T.; Ravid, R.; Roggendorf, W.; Gerlach, M.; Riederer, P. Comparison analysis of gene expression patterns between sporadic Alzheimer’s and Parkinson’s disease. J. Alzheimers Dis., 2007, 12(4), 291-311.
[http://dx.doi.org/10.3233/JAD-2007-12402] [PMID: 18198416]
[82]
Concannon, R.M.; Okine, B.N.; Finn, D.P.; Dowd, E. Differential upregulation of the cannabinoid CB2 receptor in neurotoxic and inflammation-driven rat models of Parkinson’s disease. Exp. Neurol., 2015, 269, 133-141.
[http://dx.doi.org/10.1016/j.expneurol.2015.04.007] [PMID: 25895887]
[83]
Solas, M.; Francis, P.T.; Franco, R.; Ramirez, M.J. CB2 receptor and amyloid pathology in frontal cortex of Alzheimer’s disease patients. Neurobiol. Aging, 2013, 34(3), 805-808.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.06.005] [PMID: 22763024]
[84]
García, M.C.; Cinquina, V.; Palomo-Garo, C.; Rábano, A.; Fernández-Ruiz, J. Identification of CB₂ receptors in human nigral neurons that degenerate in Parkinson’s disease. Neurosci. Lett., 2015, 587, 1-4.
[http://dx.doi.org/10.1016/j.neulet.2014.12.003] [PMID: 25481767]
[85]
Gómez-Gálvez, Y.; Palomo-Garo, C.; Fernández-Ruiz, J.; García, C. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 200-208.
[http://dx.doi.org/10.1016/j.pnpbp.2015.03.017] [PMID: 25863279]
[86]
Navarrete, F.; García-Gutiérrez, M.S.; Aracil-Fernández, A.; Lanciego, J.L.; Manzanares, J. Cannabinoid CB1 and CB2 receptors, and monoacylglycerol lipase gene expression alterations in the basal ganglia of patients with parkinson’s disease. Neurotherapeutics, 2018, 15(2), 459-469.
[http://dx.doi.org/10.1007/s13311-018-0603-x] [PMID: 29352424]
[87]
Dowie, M.J.; Grimsey, N.L.; Hoffman, T.; Faull, R.L.M.; Glass, M. Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington’s disease brain. J. Chem. Neuroanat., 2014, 59-60, 62-71.
[http://dx.doi.org/10.1016/j.jchemneu.2014.06.004] [PMID: 24978314]
[88]
Palazuelos, J.; Aguado, T.; Pazos, M.R.; Julien, B.; Carrasco, C.; Resel, E.; Sagredo, O.; Benito, C.; Romero, J.; Azcoitia, I.; Fernández-Ruiz, J.; Guzmán, M.; Galve-Roperh, I. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain, 2009, 132(Pt 11), 3152-3164.
[http://dx.doi.org/10.1093/brain/awp239] [PMID: 19805493]
[89]
Yiangou, Y.; Facer, P.; Durrenberger, P.; Chessell, I.P.; Naylor, A.; Bountra, C.; Banati, R.R.; Anand, P. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol., 2006, 6(1), 12.
[http://dx.doi.org/10.1186/1471-2377-6-12] [PMID: 16512913]
[90]
Morales, P.; Blasco-Benito, S.; Andradas, C.; Gómez-Cañas, M.; Flores, J.M.; Goya, P.; Fernández-Ruiz, J.; Sánchez, C.; Jagerovic, N. Selective, nontoxic CB(2) cannabinoid o-quinone with in vivo activity against triple-negative breast cancer. J. Med. Chem., 2015, 58(5), 2256-2264.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00078] [PMID: 25671648]
[91]
Fernández-Trapero, M.; Espejo-Porras, F.; Rodríguez-Cueto, C.; Coates, J.R.; Pérez-Díaz, C.; de Lago, E.; Fernández-Ruiz, J. Upregulation of CB2 receptors in reactive astrocytes in canine degenerative myelopathy, a disease model of amyotrophic lateral sclerosis. Dis. Model. Mech., 2017, 10(5), 551-558.
[http://dx.doi.org/10.1242/dmm.028373] [PMID: 28069688]
[92]
Çakır, M.; Tekin, S.; Doğanyiğit, Z.; Erden, Y.; Soytürk, M.; Çiğremiş, Y.; Sandal, S. Cannabinoid type 2 receptor agonist JWH-133, attenuates Okadaic acid induced spatial memory impairment and neurodegeneration in rats. Life Sci., 2019, 217, 25-33.
[http://dx.doi.org/10.1016/j.lfs.2018.11.058] [PMID: 30500552]
[93]
Klegeris, A.; Bissonnette, C.J.; McGeer, P.L. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br. J. Pharmacol., 2003, 139(4), 775-786.
[http://dx.doi.org/10.1038/sj.bjp.0705304] [PMID: 12813001]
[94]
Li, C.; Shi, J.; Wang, B.; Li, J.; Jia, H. CB2 cannabinoid receptor agonist ameliorates novel object recognition but not spatial memory in transgenic APP/PS1 mice. Neurosci. Lett., 2019, 707, 134286.
[http://dx.doi.org/10.1016/j.neulet.2019.134286] [PMID: 31150731]
[95]
Navarro-Dorado, J.; Villalba, N.; Prieto, D.; Brera, B.; Martín-Moreno, A.M.; Tejerina, T.; de Ceballos, M.L. Vascular dysfunction in a transgenic model of Alzheimer’s Disease: Effects of CB1R and CB2R Cannabinoid Agonists. Front. Neurosci., 2016, 10, 422.
[http://dx.doi.org/10.3389/fnins.2016.00422] [PMID: 27695396]
[96]
Wang, L.; Shi, F-X.; Xu, W-Q.; Cao, Y.; Li, N.; Li, M.; Wang, Q.; Wang, J-Z.; Tian, Q.; Yu, L-K.; Zhou, X-W. The Down-Expression of ACE and IDE exacerbates exogenous Amyloid-β Neurotoxicity in CB2R-/- Mice. J. Alzheimers Dis., 2018, 64(3), 957-971.
[http://dx.doi.org/10.3233/JAD-180142] [PMID: 29991137]
[97]
Wu, J.; Hocevar, M.; Foss, J.F.; Bie, B.; Naguib, M. Activation of CB2 receptor system restores cognitive capacity and hippocampal Sox2 expression in a transgenic mouse model of Alzheimer’s disease. Eur. J. Pharmacol., 2017, 811, 12-20.
[http://dx.doi.org/10.1016/j.ejphar.2017.05.044] [PMID: 28551012]
[98]
Zhao, J.; Wang, M.; Liu, W.; Ma, Z.; Wu, J. Activation of cannabinoid receptor 2 protects rat hippocampal neurons against Aβ-induced neuronal toxicity. Neurosci. Lett., 2020, 735, 135207.
[http://dx.doi.org/10.1016/j.neulet.2020.135207] [PMID: 32592731]
[99]
Wang, L.; Liu, B-J.; Cao, Y.; Xu, W-Q.; Sun, D-S.; Li, M-Z.; Shi, F-X.; Li, M.; Tian, Q.; Wang, J-Z.; Zhou, X-W. Deletion of Type-2 cannabinoid receptor induces alzheimer’s disease-like tau pathology and memory impairment through AMPK/GSK3β pathway. Mol. Neurobiol., 2018, 55(6), 4731-4744.
[http://dx.doi.org/10.1007/s12035-017-0676-2] [PMID: 28717968]
[100]
Shi, J.; Cai, Q.; Zhang, J.; He, X.; Liu, Y.; Zhu, R.; Jin, L. AM1241 alleviates MPTP-induced Parkinson’s disease and promotes the regeneration of DA neurons in PD mice. Oncotarget, 2017, 8(40), 67837-67850.
[http://dx.doi.org/10.18632/oncotarget.18871] [PMID: 28978077]
[101]
Ternianov, A.; Pérez-Ortiz, J.M.; Solesio, M.E.; García-Gutiérrez, M.S.; Ortega-Álvaro, A.; Navarrete, F.; Leiva, C.; Galindo, M.F.; Manzanares, J. Overexpression of CB2 cannabinoid receptors results in neuroprotection against behavioral and neurochemical alterations induced by intracaudate administration of 6-hydroxydopamine. Neurobiol. Aging, 2012, 33(2), 421.e1-421.e16.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.09.012] [PMID: 20980074]
[102]
He, X.; Yang, L.; Huang, R.; Lin, L.; Shen, Y.; Cheng, L.; Jin, L.; Wang, S.; Zhu, R. Activation of CB2R with AM1241 ameliorates neurodegeneration via the Xist/miR-133b-3p/Pitx3 axis. J. Cell. Physiol., 2020, 235(9), 6032-6042.
[http://dx.doi.org/10.1002/jcp.29530] [PMID: 31989652]
[103]
Palazuelos, J.; Davoust, N.; Julien, B.; Hatterer, E.; Aguado, T.; Mechoulam, R.; Benito, C.; Romero, J.; Silva, A.; Guzmán, M.; Nataf, S.; Galve-Roperh, I. The CB(2) cannabinoid receptor controls myeloid progenitor trafficking: Involvement in the pathogenesis of an animal model of multiple sclerosis. J. Biol. Chem., 2008, 283(19), 13320-13329.
[http://dx.doi.org/10.1074/jbc.M707960200] [PMID: 18334483]
[104]
Zhang, M.; Martin, B.R.; Adler, M.W.; Razdan, R.J.; Kong, W.; Ganea, D.; Tuma, R.F. Modulation of cannabinoid receptor activation as a neuroprotective strategy for EAE and stroke. J. Neuroimmune Pharmacol., 2009, 4(2), 249-259.
[http://dx.doi.org/10.1007/s11481-009-9148-4] [PMID: 19255856]
[105]
Fu, W.; Taylor, B.K. Activation of cannabinoid CB2 receptors reduces hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Neurosci. Lett., 2015, 595, 1-6.
[http://dx.doi.org/10.1016/j.neulet.2015.04.002] [PMID: 25849525]
[106]
Alberti, T.B.; Barbosa, W.L.; Vieira, J.L.; Raposo, N.R.; Dutra, R.C. (-)-β-Caryophyllene, a CB2 receptor-selective phytocannabinoid, suppresses motor paralysis and neuroinflammation in a murine model of multiple sclerosis. Int. J. Mol. Sci., 2017, 18(4), 691.
[http://dx.doi.org/10.3390/ijms18040691] [PMID: 28368293]
[107]
Tiberi, M.; Evron, T.; Saracini, S.; Boffa, L.; Mercuri, N.B.; Chintalacharuvu, S.R.; Atamas, S.P.; Chiurchiù, V.; Potent, T. Cell-mediated Anti-inflammatory Role of the Selective CB2 Agonist Lenabasum in Multiple Sclerosis. Neuropathol. Appl. Neurobiol., 2022, 48(2), e12768.
[http://dx.doi.org/10.1111/nan.12768] [PMID: 34543449]
[108]
Kong, W.; Li, H.; Tuma, R.F.; Ganea, D. Selective CB2 receptor activation ameliorates EAE by reducing Th17 differentiation and immune cell accumulation in the CNS. Cell. Immunol., 2014, 287(1), 1-17.
[http://dx.doi.org/10.1016/j.cellimm.2013.11.002] [PMID: 24342422]
[109]
Shoemaker, J.L.; Seely, K.A.; Reed, R.L.; Crow, J.P.; Prather, P.L. The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset. J. Neurochem., 2007, 101(1), 87-98.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04346.x] [PMID: 17241118]
[110]
Kim, K.; Moore, D.H.; Makriyannis, A.; Abood, M.E. AM1241, a cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis. Eur. J. Pharmacol., 2006, 542(1-3), 100-105.
[http://dx.doi.org/10.1016/j.ejphar.2006.05.025] [PMID: 16781706]
[111]
Espejo-Porras, F.; García-Toscano, L.; Rodríguez-Cueto, C.; Santos-García, I.; de Lago, E.; Fernandez-Ruiz, J. Targeting glial cannabinoid CB2 receptors to delay the progression of the pathological phenotype in TDP-43 (A315T) transgenic mice, a model of amyotrophic lateral sclerosis. Br. J. Pharmacol., 2019, 176(10), 1585-1600.
[http://dx.doi.org/10.1111/bph.14216] [PMID: 29574689]
[112]
Rodríguez-Cueto, C.; Gómez-Almería, M.; García Toscano, L.; Romero, J.; Hillard, C.J.; de Lago, E.; Fernández-Ruiz, J. Inactivation of the CB2 receptor accelerated the neuropathological deterioration in TDP-43 transgenic mice, a model of amyotrophic lateral sclerosis. Brain Pathol., 2021, 31(6), e12972.
[http://dx.doi.org/10.1111/bpa.12972] [PMID: 33983653]
[113]
Rentsch, P.; Stayte, S.; Egan, T.; Clark, I.; Vissel, B. Targeting the cannabinoid receptor CB2 in a mouse model of l-dopa induced dyskinesia. Neurobiol. Dis., 2020, 134, 104646.
[http://dx.doi.org/10.1016/j.nbd.2019.104646] [PMID: 31669673]
[114]
Rivas-Santisteban, R.; Lillo, A.; Lillo, J.; Rebassa, J-B.; Contestí, J.S.; Saura, C.A.; Franco, R.; Navarro, G. N-Methyl-D-aspartate (NMDA) and cannabinoid CB2 receptors form functional complexes in cells of the central nervous system: Insights into the therapeutic potential of neuronal and microglial NMDA receptors. Alzheimers Res. Ther., 2021, 13(1), 184.
[http://dx.doi.org/10.1186/s13195-021-00920-6] [PMID: 34749800]
[115]
Navarro, G.; Borroto-Escuela, D.; Angelats, E.; Etayo, Í.; Reyes-Resina, I.; Pulido-Salgado, M.; Rodríguez-Pérez, A.I.; Canela, E.I.; Saura, J.; Lanciego, J.L.; Labandeira-García, J.L.; Saura, C.A.; Fuxe, K.; Franco, R. Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer’s disease and levodopa-induced dyskinesia. Brain Behav. Immun., 2018, 67, 139-151.
[http://dx.doi.org/10.1016/j.bbi.2017.08.015] [PMID: 28843453]
[116]
García-Gutiérrez, M.S.; Pérez-Ortiz, J.M.; Gutiérrez-Adán, A.; Manzanares, J. Depression-resistant endophenotype in mice overexpressing cannabinoid CB(2) receptors. Br. J. Pharmacol., 2010, 160(7), 1773-1784.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00819.x] [PMID: 20649579]
[117]
García-Gutiérrez, M.S.; Manzanares, J. Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiolytic action of alprazolam in mice. J. Psychopharmacol., 2011, 25(1), 111-120.
[http://dx.doi.org/10.1177/0269881110379507] [PMID: 20837564]
[118]
Ortega-Alvaro, A.; Aracil-Fernández, A.; García-Gutiérrez, M.S.; Navarrete, F.; Manzanares, J. Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice. Neuropsychopharmacology, 2011, 36(7), 1489-1504.
[http://dx.doi.org/10.1038/npp.2011.34] [PMID: 21430651]
[119]
García-Gutiérrez, M.S.; García-Bueno, B.; Zoppi, S.; Leza, J.C.; Manzanares, J. Chronic blockade of cannabinoid CB2 receptors induces anxiolytic-like actions associated with alterations in GABA(A) receptors. Br. J. Pharmacol., 2012, 165(4), 951-964.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01625.x] [PMID: 21838753]
[120]
Sahu, P.; Mudgal, J.; Arora, D.; Kinra, M.; Mallik, S.B.; Rao, C.M.; Pai, K.S.R.; Nampoothiri, M. Cannabinoid receptor 2 activation mitigates lipopolysaccharide-induced neuroinflammation and sickness behavior in mice. Psychopharmacology (Berl.), 2019, 236(6), 1829-1838.
[http://dx.doi.org/10.1007/s00213-019-5166-y] [PMID: 30666359]
[121]
García-Gutiérrez, M.S.; Navarrete, F.; Navarro, G.; Reyes-Resina, I.; Franco, R.; Lanciego, J.L.; Giner, S.; Manzanares, J. Alterations in gene and protein expression of Cannabinoid CB2 and GPR55 receptors in the dorsolateral prefrontal cortex of suicide victims. Neurotherapeutics, 2018, 15(3), 796-806.
[http://dx.doi.org/10.1007/s13311-018-0610-y] [PMID: 29435814]
[122]
Svízenská, I.H.; Brázda, V.; Klusáková, I.; Dubový, P. Bilateral changes of cannabinoid receptor type 2 protein and mRNA in the dorsal root ganglia of a rat neuropathic pain model. J. Histochem. Cytochem., 2013, 61(7), 529-547.
[http://dx.doi.org/10.1369/0022155413491269] [PMID: 23657829]
[123]
Bishay, P.; Schmidt, H.; Marian, C.; Häussler, A.; Wijnvoord, N.; Ziebell, S.; Metzner, J.; Koch, M.; Myrczek, T.; Bechmann, I.; Kuner, R.; Costigan, M.; Dehghani, F.; Geisslinger, G.; Tegeder, I. R-flurbiprofen reduces neuropathic pain in rodents by restoring endogenous cannabinoids. PLoS One, 2010, 5(5), e10628.
[http://dx.doi.org/10.1371/journal.pone.0010628] [PMID: 20498712]
[124]
Hossain, M.Z.; Ando, H.; Unno, S.; Kitagawa, J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and endocannabinoid-degrading enzymes for the treatment of neuropathic pain including neuropathic orofacial pain. Int. J. Mol. Sci., 2020, 21(4), 1423.
[http://dx.doi.org/10.3390/ijms21041423] [PMID: 32093166]
[125]
Naguib, M.; Xu, J.J.; Diaz, P.; Brown, D.L.; Cogdell, D.; Bie, B.; Hu, J.; Craig, S.; Hittelman, W.N. Prevention of paclitaxel-induced neuropathy through activation of the central cannabinoid type 2 receptor system. Anesth. Analg., 2012, 114(5), 1104-1120.
[http://dx.doi.org/10.1213/ANE.0b013e31824b0191] [PMID: 22392969]
[126]
Racz, I.; Nadal, X.; Alferink, J.; Baños, J.E.; Rehnelt, J.; Martín, M.; Pintado, B.; Gutierrez-Adan, A.; Sanguino, E.; Manzanares, J.; Zimmer, A.; Maldonado, R. Crucial role of CB(2) cannabinoid receptor in the regulation of central immune responses during neuropathic pain. J. Neurosci., 2008, 28(46), 12125-12135.
[http://dx.doi.org/10.1523/JNEUROSCI.3400-08.2008] [PMID: 19005077]
[127]
Xu, J.J.; Diaz, P.; Astruc-Diaz, F.; Craig, S.; Munoz, E.; Naguib, M. Pharmacological characterization of a novel cannabinoid ligand, MDA19, for treatment of neuropathic pain. Anesth. Analg., 2010, 111(1), 99-109.
[http://dx.doi.org/10.1213/ANE.0b013e3181e0cdaf] [PMID: 20522703]
[128]
Deng, L.; Guindon, J.; Cornett, B.L.; Makriyannis, A.; Mackie, K.; Hohmann, A.G. Chronic cannabinoid receptor 2 activation reverses paclitaxel neuropathy without tolerance or cannabinoid receptor 1-dependent withdrawal. Biol. Psychiatry, 2015, 77(5), 475-487.
[http://dx.doi.org/10.1016/j.biopsych.2014.04.009] [PMID: 24853387]
[129]
Wilkerson, J.L.; Gentry, K.R.; Dengler, E.C.; Wallace, J.A.; Kerwin, A.A.; Armijo, L.M.; Kuhn, M.N.; Thakur, G.A.; Makriyannis, A.; Milligan, E.D. Intrathecal cannabilactone CB(2)R agonist, AM1710, controls pathological pain and restores basal cytokine levels. Pain, 2012, 153(5), 1091-1106.
[http://dx.doi.org/10.1016/j.pain.2012.02.015] [PMID: 22425445]
[130]
Li, A-L.; Lin, X.; Dhopeshwarkar, A.S.; Thomaz, A.C.; Carey, L.M.; Liu, Y.; Nikas, S.P.; Makriyannis, A.; Mackie, K.; Hohmann, A.G. Cannabinoid CB2 Agonist AM1710 differentially suppresses distinct pathological pain states and attenuates morphine tolerance and withdrawal. Mol. Pharmacol., 2019, 95(2), 155-168.
[http://dx.doi.org/10.1124/mol.118.113233] [PMID: 30504240]
[131]
Hutchins, H.L.; Li, Y.; Hannon, K.; Watkins, B.A. Eicosapentaenoic acid decreases expression of anandamide synthesis enzyme and cannabinoid receptor 2 in osteoblast-like cells. J. Nutr. Biochem., 2011, 22(2), 195-200.
[http://dx.doi.org/10.1016/j.jnutbio.2010.06.001] [PMID: 20951563]
[132]
Xu, A.; Yang, Y.; Shao, Y.; Wu, M.; Sun, Y. Inhibiting effect of microRNA-187-3p on osteogenic differentiation of osteoblast precursor cells by suppressing cannabinoid receptor type 2. Differentiation, 2019, 109, 9-15.
[http://dx.doi.org/10.1016/j.diff.2019.07.002] [PMID: 31352121]
[133]
Sun, Y-X.; Xu, A-H.; Yang, Y.; Zhang, J-X.; Yu, A-W. Activation of cannabinoid receptor 2 enhances osteogenic differentiation of bone marrow derived mesenchymal stem cells. BioMed Res. Int., 2015, 2015, 874982.
[http://dx.doi.org/10.1155/2015/874982] [PMID: 25685815]
[134]
Bab, I.; Ofek, O.; Tam, J.; Rehnelt, J.; Zimmer, A. Endocannabinoids and the regulation of bone metabolism. J. Neuroendocrinol., 2008, 20(Suppl. 1), 69-74.
[http://dx.doi.org/10.1111/j.1365-2826.2008.01675.x] [PMID: 18426503]
[135]
Sophocleous, A.; Landao-Bassonga, E.; Van’t Hof, R.J.; Idris, A.I.; Ralston, S.H. The type 2 cannabinoid receptor regulates bone mass and ovariectomy-induced bone loss by affecting osteoblast differentiation and bone formation. Endocrinology, 2011, 152(6), 2141-2149.
[http://dx.doi.org/10.1210/en.2010-0930] [PMID: 21447627]
[136]
Hanus, L.; Breuer, A.; Tchilibon, S.; Shiloah, S.; Goldenberg, D.; Horowitz, M.; Pertwee, R.G.; Ross, R.A.; Mechoulam, R.; Fride, E. HU-308: A specific agonist for CB(2), a peripheral cannabinoid receptor. Proc. Natl. Acad. Sci. USA, 1999, 96(25), 14228-14233.
[http://dx.doi.org/10.1073/pnas.96.25.14228] [PMID: 10588688]
[137]
Malan, P.T., Jr; Ibrahim, M.M.; Deng, H.; Liu, Q.; Mata, H.P.; Vanderah, T.; Porreca, F.; Makriyannis, A. CB2 cannabinoid receptor-mediated peripheral antinociception. Pain, 2001, 93(3), 239-245.
[http://dx.doi.org/10.1016/S0304-3959(01)00321-9] [PMID: 11514083]
[138]
Ofek, O.; Attar-Namdar, M.; Kram, V.; Dvir-Ginzberg, M.; Mechoulam, R.; Zimmer, A.; Frenkel, B.; Shohami, E.; Bab, I. CB2 cannabinoid receptor targets mitogenic Gi protein-cyclin D1 axis in osteoblasts. J. Bone Miner. Res., 2011, 26(2), 308-316.
[http://dx.doi.org/10.1002/jbmr.228] [PMID: 20803555]
[139]
Xu, A.; Yang, Y.; Shao, Y.; Wu, M.; Sun, Y. Activation of cannabinoid receptor type 2-induced osteogenic differentiation involves autophagy induction and p62-mediated Nrf2 deactivation. Cell Commun. Signal., 2020, 18(1), 9.
[http://dx.doi.org/10.1186/s12964-020-0512-6] [PMID: 31941496]
[140]
Idris, A.I.; Sophocleous, A.; Landao-Bassonga, E.; van’t Hof, R.J.; Ralston, S.H. Regulation of bone mass, osteoclast function, and ovariectomy-induced bone loss by the type 2 cannabinoid receptor. Endocrinology, 2008, 149(11), 5619-5626.
[http://dx.doi.org/10.1210/en.2008-0150] [PMID: 18635663]
[141]
Li, W.; Sun, Y. Nrf2 is required for suppressing osteoclast RANKL-induced differentiation in RAW 264.7 cells via inactivating cannabinoid receptor type 2 with AM630. Regen. Ther., 2020, 14, 191-195.
[http://dx.doi.org/10.1016/j.reth.2020.02.001] [PMID: 32154333]
[142]
Sophocleous, A.; Marino, S.; Logan, J.G.; Mollat, P.; Ralston, S.H.; Idris, A.I. Bone cell-autonomous contribution of Type 2 Cannabinoid receptor to breast cancer-induced osteolysis. J. Biol. Chem., 2015, 290(36), 22049-22060.
[http://dx.doi.org/10.1074/jbc.M115.649608] [PMID: 26195631]
[143]
Wang, B.; Lian, K.; Li, J.; Mei, G. Restoration of osteogenic differentiation by overexpression of cannabinoid receptor 2 in bone marrow mesenchymal stem cells isolated from osteoporotic patients. Exp. Ther. Med., 2018, 15(1), 357-364.
[http://dx.doi.org/10.3892/etm.2017.5369] [PMID: 29250156]
[144]
Tian, F.; Yang, H.T.; Huang, T.; Chen, F.F.; Xiong, F.J. Involvement of CB2 signalling pathway in the development of osteoporosis by regulating the proliferation and differentiation of hBMSCs. J. Cell. Mol. Med., 2021, 25(5), 2426-2435.
[http://dx.doi.org/10.1111/jcmm.16128] [PMID: 33512770]
[145]
Sun, H.; Zhang, W.; Yang, N.; Xue, Y.; Wang, T.; Wang, H.; Zheng, K.; Wang, Y.; Zhu, F.; Yang, H.; Xu, W.; Xu, Y.; Geng, D. Activation of cannabinoid receptor 2 alleviates glucocorticoid-induced osteonecrosis of femoral head with osteogenesis and maintenance of blood supply. Cell Death Dis., 2021, 12(11), 1035.
[http://dx.doi.org/10.1038/s41419-021-04313-3] [PMID: 34718335]
[146]
Diomede, F.; Marconi, G.D.; Fonticoli, L.; Pizzicanella, J.; Merciaro, I.; Bramanti, P.; Mazzon, E.; Trubiani, O. Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int. J. Mol. Sci., 2020, 21(9), E3242.
[http://dx.doi.org/10.3390/ijms21093242] [PMID: 32375269]
[147]
Fedewa, M.V.; Bentley, J.L.; Higgins, S.; Kindler, J.M.; Esco, M.R.; MacDonald, H.V. Celiac disease and bone health in children and adolescents: a systematic review and meta-analysis. J. Clin. Densitom., 2020, 23(2), 200-211.
[http://dx.doi.org/10.1016/j.jocd.2019.02.003] [PMID: 30833087]
[148]
Tortora, C.; Punzo, F.; Argenziano, M.; Di Paola, A.; Tolone, C.; Strisciuglio, C.; Rossi, F. The role of Cannabinoid Receptor Type 2 in the bone loss associated with pediatric celiac disease. J. Pediatr. Gastroenterol. Nutr., 2020, 71(5), 633-640.
[http://dx.doi.org/10.1097/MPG.0000000000002863] [PMID: 33093370]
[149]
Karsak, M.; Cohen-Solal, M.; Freudenberg, J.; Ostertag, A.; Morieux, C.; Kornak, U.; Essig, J.; Erxlebe, E.; Bab, I.; Kubisch, C.; de Vernejoul, M-C.; Zimmer, A. Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum. Mol. Genet., 2005, 14(22), 3389-3396.
[http://dx.doi.org/10.1093/hmg/ddi370] [PMID: 16204352]
[150]
Yamada, Y.; Ando, F.; Shimokata, H. Association of candidate gene polymorphisms with bone mineral density in community-dwelling Japanese women and men. Int. J. Mol. Med., 2007, 19(5), 791-801.
[http://dx.doi.org/10.3892/ijmm.19.5.791] [PMID: 17390085]
[151]
Woo, J.H.; Kim, H.; Kim, J.H.; Kim, J.G. Cannabinoid receptor gene polymorphisms and bone mineral density in Korean postmenopausal women. Menopause, 2015, 22(5), 512-519.
[http://dx.doi.org/10.1097/GME.0000000000000339] [PMID: 25268406]
[152]
Zhang, C.; Ma, J.; Chen, G.; Fu, D.; Li, L.; Li, M. Evaluation of common variants in CNR2 gene for bone mineral density and osteoporosis susceptibility in postmenopausal women of Han Chinese. Osteoporos. Int., 2015, 26(12), 2803-2810.
[http://dx.doi.org/10.1007/s00198-015-3195-x] [PMID: 26055357]
[153]
Karsak, M.; Malkin, I.; Toliat, M.R.; Kubisch, C.; Nürnberg, P.; Zimmer, A.; Livshits, G. The cannabinoid receptor type 2 (CNR2) gene is associated with hand bone strength phenotypes in an ethnically homogeneous family sample. Hum. Genet., 2009, 126(5), 629-636.
[http://dx.doi.org/10.1007/s00439-009-0708-8] [PMID: 19565271]
[154]
Rossi, F.; Bellini, G.; Tolone, C.; Luongo, L.; Mancusi, S.; Papparella, A.; Sturgeon, C.; Fasano, A.; Nobili, B.; Perrone, L.; Maione, S.; del Giudice, E.M. The cannabinoid receptor type 2 Q63R variant increases the risk of celiac disease: Implication for a novel molecular biomarker and future therapeutic intervention. Pharmacol. Res., 2012, 66(1), 88-94.
[http://dx.doi.org/10.1016/j.phrs.2012.03.011] [PMID: 22465144]
[155]
Carrasquer, A.; Nebane, N.M.; Williams, W.M.; Song, Z-H. Functional consequences of nonsynonymous single nucleotide polymorphisms in the CB2 cannabinoid receptor. Pharmacogenet. Genomics, 2010, 20(3), 157-166.
[http://dx.doi.org/10.1097/FPC.0b013e3283367c6b] [PMID: 20124950]
[156]
Zhang, X.; Chen, X.; Hong, H.; Hu, R.; Liu, J.; Liu, C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact. Mater., 2021, 10, 15-31.
[http://dx.doi.org/10.1016/j.bioactmat.2021.09.014] [PMID: 34901526]
[157]
Zhou, W.; Li, Q.; Ma, R.; Huang, W.; Zhang, X.; Liu, Y.; Xu, Z.; Zhang, L.; Li, M.; Zhu, C. Modified alginate-based hydrogel as a carrier of the CB2 agonist JWH133 for bone engineering. ACS Omega, 2021, 6(10), 6861-6870.
[http://dx.doi.org/10.1021/acsomega.0c06057] [PMID: 33748600]
[158]
Jones, I.A.; Togashi, R.; Wilson, M.L.; Heckmann, N.; Vangsness, C.T., Jr Intra-articular treatment options for knee osteoarthritis. Nat. Rev. Rheumatol., 2019, 15(2), 77-90.
[http://dx.doi.org/10.1038/s41584-018-0123-4] [PMID: 30498258]
[159]
Mlost, J.; Kostrzewa, M.; Borczyk, M.; Bryk, M.; Chwastek, J.; Korostyński, M.; Starowicz, K. CB2 agonism controls pain and subchondral bone degeneration induced by mono-iodoacetate: Implications GPCR functional bias and tolerance development. Biomed. Pharmacother., 2021, 136, 111283.
[http://dx.doi.org/10.1016/j.biopha.2021.111283] [PMID: 33482616]
[160]
Rzeczycki, P.; Rasner, C.; Lammlin, L.; Junginger, L.; Goldman, S.; Bergman, R.; Redding, S.; Knights, A.J.; Elliott, M.; Maerz, T. Cannabinoid receptor type 2 is upregulated in synovium following joint injury and mediates anti-inflammatory effects in synovial fibroblasts and macrophages. Osteoarthritis Cartilage, 2021, 29(12), 1720-1731.
[http://dx.doi.org/10.1016/j.joca.2021.09.003] [PMID: 34537380]
[161]
Bai, J.; Ge, G.; Wang, Y.; Zhang, W.; Wang, Q.; Wang, W.; Guo, X.; Yu, B.; Xu, Y.; Yang, H.; Zhu, X.; Wang, M.; Geng, D. A selective CB2 agonist protects against the inflammatory response and joint destruction in collagen-induced arthritis mice. Biomed. Pharmacother., 2019, 116, 109025.
[http://dx.doi.org/10.1016/j.biopha.2019.109025] [PMID: 31154267]
[162]
Zhu, M.; Yu, B.; Bai, J.; Wang, X.; Guo, X.; Liu, Y.; Lin, J.; Hu, S.; Zhang, W.; Tao, Y.; Hu, C.; Yang, H.; Xu, Y.; Geng, D. Cannabinoid Receptor 2 agonist prevents local and systemic inflammatory bone destruction in rheumatoid arthritis. J. Bone Miner. Res., 2019, 34(4), 739-751.
[http://dx.doi.org/10.1002/jbmr.3637] [PMID: 30508319]
[163]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I. Global cancer observatory: Cancer today. Lyon, France: International agency for research on cancer. Available from: https://gco.iarc.fr/today (Accessed on: 2021 -12 -12).
[164]
Camacho, L.; Ouro, A.; Gomez-Larrauri, A.; Carracedo, A.; Gomez-Muñoz, A. Implication of Ceramide Kinase/C1P in cancer development and progression. Cancers (Basel), 2022, 14(1), 227.
[http://dx.doi.org/10.3390/cancers14010227] [PMID: 35008391]
[165]
Desjonqueres, E.; Campani, C.; Marra, F.; Zucman-Rossi, J.; Nault, J.C. Preneoplastic lesions in the liver: Molecular insights and relevance for clinical practice. Liver Int., 2022, 42(3), 492-506.
[http://dx.doi.org/10.1111/liv.15152] [PMID: 34982503]
[166]
Mortezaee, K.; Majidpoor, J. Key promoters of tumor hallmarks. Int. J. Clin. Oncol., 2021, 27, 45-58.
[http://dx.doi.org/10.1007/s10147-021-02074-9] [PMID: 34773527]
[167]
Popova, N.V.; Jücker, M. The functional role of extracellular matrix proteins in cancer. Cancers (Basel), 2022, 14(1), 238.
[http://dx.doi.org/10.3390/cancers14010238] [PMID: 35008401]
[168]
McAllister, S.D.; Chan, C.; Taft, R.J.; Luu, T.; Abood, M.E.; Moore, D.H.; Aldape, K.; Yount, G. Cannabinoids selectively inhibit proliferation and induce death of cultured human glioblastoma multiforme cells. J. Neurooncol., 2005, 74(1), 31-40.
[http://dx.doi.org/10.1007/s11060-004-5950-2] [PMID: 16078104]
[169]
Bettiga, A.; Aureli, M.; Colciago, G.; Murdica, V.; Moschini, M.; Lucianò, R.; Canals, D.; Hannun, Y.; Hedlund, P.; Lavorgna, G.; Colombo, R.; Bassi, R.; Samarani, M.; Montorsi, F.; Salonia, A.; Benigni, F. Bladder cancer cell growth and motility implicate cannabinoid 2 receptor-mediated modifications of sphingolipids metabolism. Sci. Rep., 2017, 7(1), 42157.
[http://dx.doi.org/10.1038/srep42157] [PMID: 28191815]
[170]
Capozzi, A.; Mattei, V.; Martellucci, S.; Manganelli, V.; Saccomanni, G.; Garofalo, T.; Sorice, M.; Manera, C.; Misasi, R. Anti-proliferative properties and proapoptotic function of new CB2 selective cannabinoid receptor agonist in jurkat leukemia cells. Int. J. Mol. Sci., 2018, 19(7), E1958.
[http://dx.doi.org/10.3390/ijms19071958] [PMID: 29973514]
[171]
Martínez-Martínez, E.; Martín-Ruiz, A.; Martín, P.; Calvo, V.; Provencio, M.; García, J.M. CB2 cannabinoid receptor activation promotes colon cancer progression via AKT/GSK3β signaling pathway. Oncotarget, 2016, 7(42), 68781-68791.
[http://dx.doi.org/10.18632/oncotarget.11968] [PMID: 27634891]
[172]
Pérez-Gómez, E.; Andradas, C.; Blasco-Benito, S.; Caffarel, M.M.; García-Taboada, E.; Villa-Morales, M.; Moreno, E.; Hamann, S.; Martín-Villar, E.; Flores, J.M.; Wenners, A.; Alkatout, I.; Klapper, W.; Röcken, C.; Bronsert, P.; Stickeler, E.; Staebler, A.; Bauer, M.; Arnold, N.; Soriano, J.; Pérez-Martínez, M.; Megías, D.; Moreno-Bueno, G.; Ortega-Gutiérrez, S.; Artola, M.; Vázquez-Villa, H.; Quintanilla, M.; Fernández-Piqueras, J.; Canela, E.I.; McCormick, P.J.; Guzmán, M.; Sánchez, C. Role of cannabinoid receptor CB2 in HER2 pro-oncogenic signaling in breast cancer. J. Natl. Cancer Inst., 2015, 107(6), djv077.
[http://dx.doi.org/10.1093/jnci/djv077] [PMID: 25855725]
[173]
Sánchez-Aparicio, P.; Florán, B.; Rodríguez Velázquez, D.; Ibancovichi, J.A.; Varela G , J.A.; Recillas, S. Cannabinoids CB2 receptors, one new promising drug target for chronic and degenerative pain conditions in equine veterinary patients. J. Equine Vet. Sci., 2020, 85, 102880.
[http://dx.doi.org/10.1016/j.jevs.2019.102880] [PMID: 31952645]
[174]
Velasco, G.; Sánchez, C.; Guzmán, M. Towards the use of cannabinoids as antitumour agents. Nat. Rev. Cancer, 2012, 12(6), 436-444.
[http://dx.doi.org/10.1038/nrc3247] [PMID: 22555283]
[175]
Xu, X.; Liu, Y.; Huang, S.; Liu, G.; Xie, C.; Zhou, J.; Fan, W.; Li, Q.; Wang, Q.; Zhong, D.; Miao, X. Overexpression of cannabinoid receptors CB1 and CB2 correlates with improved prognosis of patients with hepatocellular carcinoma. Cancer Genet. Cytogenet., 2006, 171(1), 31-38.
[http://dx.doi.org/10.1016/j.cancergencyto.2006.06.014] [PMID: 17074588]
[176]
Preet, A.; Qamri, Z.; Nasser, M.W.; Prasad, A.; Shilo, K.; Zou, X.; Groopman, J.E.; Ganju, R.K. Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis. Cancer Prev. Res. (Phila.), 2011, 4(1), 65-75.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0181] [PMID: 21097714]
[177]
Gasperi, V.; Evangelista, D.; Oddi, S.; Florenzano, F.; Chiurchiù, V.; Avigliano, L.; Catani, M.V.; Maccarrone, M. Regulation of inflammation and proliferation of human bladder carcinoma cells by type-1 and type-2 cannabinoid receptors. Life Sci., 2015, 138, 41-51.
[http://dx.doi.org/10.1016/j.lfs.2014.09.031] [PMID: 25445433]
[178]
Lee, X.C.; Werner, E.; Falasca, M. Molecular mechanism of autophagy and its regulation by cannabinoids in cancer. Cancers (Basel), 2021, 13(6), 1211.
[http://dx.doi.org/10.3390/cancers13061211] [PMID: 33802014]
[179]
Hanlon, K.E.; Lozano-Ondoua, A.N.; Umaretiya, P.J.; Symons-Liguori, A.M.; Chandramouli, A.; Moy, J.K.; Kwass, W.K.; Mantyh, P.W.; Nelson, M.A.; Vanderah, T.W. Modulation of breast cancer cell viability by a cannabinoid receptor 2 agonist, JWH-015, is calcium dependent. Breast Cancer (Dove Med. Press), 2016, 8, 59-71.
[PMID: 27186076]
[180]
Alenabi, A.; Malekinejad, H. Cannabinoids pharmacological effects are beyond the palliative effects: CB2 cannabinoid receptor agonist induced cytotoxicity and apoptosis in human colorectal cancer cells (HT-29). Mol. Cell. Biochem., 2021, 476(9), 3285-3301.
[http://dx.doi.org/10.1007/s11010-021-04158-6] [PMID: 33886060]
[181]
Vara, D.; Salazar, M.; Olea-Herrero, N.; Guzmán, M.; Velasco, G.; Díaz-Laviada, I. Anti-tumoral action of cannabinoids on hepatocellular carcinoma: Role of AMPK-dependent activation of autophagy. Cell Death Differ., 2011, 18(7), 1099-1111.
[http://dx.doi.org/10.1038/cdd.2011.32] [PMID: 21475304]
[182]
Prather, P.L.; FrancisDevaraj, F.; Dates, C.R.; Greer, A.K.; Bratton, S.M.; Ford, B.M.; Franks, L.N.; Radominska-Pandya, A. CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen. Biochem. Biophys. Res. Commun., 2013, 441(2), 339-343.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.057] [PMID: 24148245]
[183]
Nelson, H.D.; Smith, M.E.B.; Griffin, J.C.; Fu, R. Use of medications to reduce risk for primary breast cancer: A systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med., 2013, 158(8), 604-614.
[http://dx.doi.org/10.7326/0003-4819-158-8-201304160-00005] [PMID: 23588749]
[184]
Velasco, G.; Hernández-Tiedra, S.; Dávila, D.; Lorente, M. The use of cannabinoids as anticancer agents. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 259-266.
[http://dx.doi.org/10.1016/j.pnpbp.2015.05.010] [PMID: 26071989]
[185]
D’Ambra, T.E.; Estep, K.G.; Bell, M.R.; Eissenstat, M.A.; Josef, K.A.; Ward, S.J.; Haycock, D.A.; Baizman, E.R.; Casiano, F.M.; Beglin, N.C. Conformationally restrained analogues of pravadoline: Nanomolar potent, enantioselective, (aminoalkyl)indole agonists of the cannabinoid receptor. J. Med. Chem., 1992, 35(1), 124-135.
[http://dx.doi.org/10.1021/jm00079a016] [PMID: 1732519]
[186]
Serafimovska, T.; Darkovska-Serafimovska, M.; Stefkov, G.; Arsova-Sarafinovska, Z.; Balkanov, T. Pharmacotherapeutic considerations for use of cannabinoids to relieve symptoms of nausea and vomiting induced by chemotherapy. Folia Med. (Plovdiv), 2020, 62(4), 668-678.
[http://dx.doi.org/10.3897/folmed.62.e51478] [PMID: 33415919]
[187]
ClinicalTrials.gov. Identifier: NCT03984214. Efficacy and safety of dronabinol in the improvement of chemotherapy-induced and tumor-related symptoms in advanced pancreatic cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT03984214 (Accessed on Nov 11, 2021).
[188]
ClinicalTrials.gov. Identifier: NCT03451045. A multicenter, randomized, double-blind, placebo-controlled phase 2 trial to evaluate efficacy and safety of lenabasum in cystic fibrosis. Available from: https://clinicaltrials.gov/ct2/show/NCT03451045 (Accessed on Dec 12, 2021).
[189]
ClinicalTrials.gov. Identifier: NCT03398837. A Multicenter, Randomized, Double-Blind, Placebo-Controlled Phase 3 Trial to Evaluate Efficacy and Safety of Lenabasum in Diffuse Cutaneous Systemic Sclerosis. Available from: https://clinicaltrials.gov/ct2/show/NCT3398837 (Accessed on: Nov 01, 2021).
[190]
ClinicalTrials.gov. Identifier: NCT03813160. A multicenter, randomized, double-blind, placebo-controlled phase 3 trial to evaluate efficacy and safety of lenabasum in dermatomyositis. Available from: https://clinicaltrials.gov/ct2/show/NCT03813160 (Accessed on: Jun 25, 2021).
[191]
GlobeNewswire. GW Pharmaceuticals Announces Preliminary Results of Phase 2a Study for its Pipeline Compound GWP42006. Available from: https://www.globenewswire.com/news-release/2018/02/21/1372900/0/en/GW-Pharmaceuticals-Announces-Preliminary-Results-of-Phase-2a-Study-for-its-Pipeline-Compound-GWP42006.html (Accessed on: Aug 11, 2021).
[192]
ClinicalTrials.gov. Identifier: NCT04043455. A phase 2, multi-center, randomized, double-blind, placebo-controlled parallel-group study to evaluate the safety, tolerability, and efficacy of olorinab in subjects with irritable bowel syndrome experiencing abdominal pain. Available from: https://clinicaltrials.gov/ct2/show/NCT04043455 (Accessed on: Oct 10, 2021).
[193]
Castro, J.; Garcia-Caraballo, S.; Maddern, J.; Schober, G.; Lumsden, A.; Harrington, A.; Schmiel, S.; Lindstrom, B.; Adams, J.; Brierley, S.M. Olorinab (APD371), a peripherally acting, highly selective, full agonist of the cannabinoid receptor 2, reduces colitis-induced acute and chronic visceral hypersensitivity in rodents. Pain, 2022, 163(1), e72-e86.
[http://dx.doi.org/10.1097/j.pain.0000000000002314] [PMID: 33863856]
[194]
ClinicalTrials.gov. Identifier: NCT04857957. A study to evaluate the safety, tolerability, and pharmacokinetics of cntx-6016 in healthy subjects and a single cohort of subjects with painful diabetic neuropathy. Available from: https://clinicaltrials.gov/ct2/show/NCT04857957 (Accessed on: Jan 01, 2022).
[195]
ClinicalTrials.gov. Identifier: NCT04375436. NTRX 07-C101: A Phase 1, Randomized, Placebo-Controlled, Modified Parallel Design Single Ascending Dose Study of NTRX 07 to Assess Safety and Tolerability and Pharmacokinetics in Adult Healthy Volunteers. Available from: https://clinicaltrials.gov/ct2/show/NCT04375436 (Accessed on: Jan 01, 2022).
[196]
ISRCTN. Identifier:15607817 A trial of the synthetic cannabinoid ART27.13 to stimulate appetite in patients with cancer anorexia and weight loss. Available from: https://www.isrctn.com/ISRCTN15607817 (Accessed on: Jan 28, 2022).
[197]
Maccarrone, M. New Tools to Interrogate Endocannabinoid Signallin, Royal Soci; Maccarrone, M.; Discovery, D., Eds.; Royal Society of Chemistry: Cambridge, 2020.
[http://dx.doi.org/10.1039/9781839160752]
[198]
Han, S.; Thatte, J.; Buzard, D.J.; Jones, R.M. Therapeutic utility of cannabinoid receptor type 2 (CB(2)) selective agonists. J. Med. Chem., 2013, 56(21), 8224-8256.
[http://dx.doi.org/10.1021/jm4005626] [PMID: 23865723]
[199]
Manera, C.; Arena, C.; Chicca, A. Synthetic Cannabinoid receptor agonists and antagonists: Implication in CNS disorders. Recent Patents CNS Drug Discov., 2016, 10(2), 142-156.
[http://dx.doi.org/10.2174/1574889810666160519113853] [PMID: 27193072]
[200]
Han, S.; Chen, J-J.; Chen, J-Z. Latest progress in the identification of novel synthetic ligands for the cannabinoid CB2 receptor. Mini Rev. Med. Chem., 2014, 14(5), 426-443.
[http://dx.doi.org/10.2174/1389557514666140428105753] [PMID: 24766386]
[201]
Aghazadeh T , M.; Baraldi, P.G.; Borea, P.A.; Varani, K. Medicinal chemistry, pharmacology, and potential therapeutic benefits of Cannabinoid CB2 receptor agonists. Chem. Rev., 2016, 116(2), 519-560.
[http://dx.doi.org/10.1021/acs.chemrev.5b00411] [PMID: 26741146]
[202]
Spinelli, F.; Capparelli, E.; Abate, C.; Colabufo, N.A.; Contino, M. Perspectives of Cannabinoid Type 2 Receptor (CB2R) ligands in neurodegenerative disorders: Structure-Affinity Relationship (SAfiR) and Structure-Activity Relationship (SAR) Studies. J. Med. Chem., 2017, 60(24), 9913-9931.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00155] [PMID: 28608697]
[203]
Ghonim, A.E.; Ligresti, A.; Rabbito, A.; Mahmoud, A.M.; Di Marzo, V.; Osman, N.A.; Abadi, A.H. Structure-activity relationships of thiazole and benzothiazole derivatives as selective cannabinoid CB2 agonists with in vivo anti-inflammatory properties. Eur. J. Med. Chem., 2019, 180, 154-170.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.002] [PMID: 31302448]
[204]
Leleu-Chavain, N.; Baudelet, D.; Heloire, V.M.; Rocha, D.E.; Renault, N.; Barczyk, A.; Djouina, M.; Body-Malapel, M.; Carato, P.; Millet, R. Benzo[d]thiazol-2(3H)-ones as new potent selective CB2 agonists with anti-inflammatory properties. Eur. J. Med. Chem., 2019, 165, 347-362.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.008] [PMID: 30583970]
[205]
Rosenthaler, S.; Pöhn, B.; Kolmanz, C.; Huu, C.N.; Krewenka, C.; Huber, A.; Kranner, B.; Rausch, W-D.; Moldzio, R. Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures. Neurotoxicol. Teratol., 2014, 46, 49-56.
[http://dx.doi.org/10.1016/j.ntt.2014.09.003] [PMID: 25311884]
[206]
Udoh, M.; Santiago, M.; Devenish, S.; McGregor, I.S.; Connor, M. Cannabichromene is a cannabinoid CB2 receptor agonist. Br. J. Pharmacol., 2019, 176(23), 4537-4547.
[http://dx.doi.org/10.1111/bph.14815] [PMID: 31368508]
[207]
Gómez-Cañas, M.; Morales, P.; García-Toscano, L.; Navarrete, C.; Muñoz, E.; Jagerovic, N.; Fernández-Ruiz, J.; García-Arencibia, M.; Pazos, M.R. Biological characterization of PM226, a chromenoisoxazole, as a selective CB2 receptor agonist with neuroprotective profile. Pharmacol. Res., 2016, 110, 205-215.
[http://dx.doi.org/10.1016/j.phrs.2016.03.021] [PMID: 27013280]
[208]
Iwata, Y.; Ando, K.; Taniguchi, K.; Koba, N.; Sugiura, A.; Sudo, M. Identification of a highly potent and selective CB2 agonist, RQ-00202730, for the treatment of irritable bowel syndrome. Bioorg. Med. Chem. Lett., 2015, 25(2), 236-240.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.062] [PMID: 25499880]
[209]
Mugnaini, C.; Kostrzewa, M.; Bryk, M.; Mahmoud, A.M.; Brizzi, A.; Lamponi, S.; Giorgi, G.; Ferlenghi, F.; Vacondio, F.; Maccioni, P.; Colombo, G.; Mor, M.; Starowicz, K.; Di Marzo, V.; Ligresti, A.; Corelli, F. Design, synthesis, and physicochemical and pharmacological profiling of 7-Hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamide derivatives with antiosteoarthritic activity in vivo. J. Med. Chem., 2020, 63(13), 7369-7391.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00595] [PMID: 32515588]
[210]
Lin, X.; Dhopeshwarkar, A.S.; Huibregtse, M.; Mackie, K.; Hohmann, A.G. Slowly Signaling G Protein-Biased CB2 Cannabinoid Receptor Agonist LY2828360 suppresses neuropathic pain with sustained efficacy and attenuates morphine tolerance and dependence. Mol. Pharmacol., 2018, 93(2), 49-62.
[http://dx.doi.org/10.1124/mol.117.109355] [PMID: 29192123]
[211]
Qian, H-Y.; Wang, Z-L.; Xie, X-Y.; Pan, Y-L.; Li, G-J.; Xie, X.; Chen, J-Z. Developing pyridazine-3-carboxamides to be CB2 agonists: The design, synthesis, structure-activity relationships and docking studies. Eur. J. Med. Chem., 2017, 137, 598-611.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.060] [PMID: 28651225]
[212]
Porter, R.F.; Szczesniak, A-M.; Toguri, J.T.; Gebremeskel, S.; Johnston, B.; Lehmann, C.; Fingerle, J.; Rothenhäusler, B.; Perret, C.; Rogers-Evans, M.; Kimbara, A.; Nettekoven, M.; Guba, W.; Grether, U.; Ullmer, C.; Kelly, M.E.M. Selective Cannabinoid 2 receptor agonists as potential therapeutic drugs for the treatment of endotoxin-induced uveitis. Molecules, 2019, 24(18), 3338.
[http://dx.doi.org/10.3390/molecules24183338] [PMID: 31540271]
[213]
Nettekoven, M.; Adam, J-M.; Bendels, S.; Bissantz, C.; Fingerle, J.; Grether, U.; Grüner, S.; Guba, W.; Kimbara, A.; Ottaviani, G.; Püllmann, B.; Rogers-Evans, M.; Röver, S.; Rothenhäusler, B.; Schmitt, S.; Schuler, F.; Schulz-Gasch, T.; Ullmer, C. Novel Triazolopyrimidine-Derived Cannabinoid Receptor 2 agonists as potential treatment for inflammatory kidney diseases. ChemMedChem, 2016, 11(2), 179-189.
[http://dx.doi.org/10.1002/cmdc.201500218] [PMID: 26228928]
[214]
Moir, M.; Lane, S.; Lai, F.; Connor, M.; Hibbs, D.E.; Kassiou, M. Strategies to develop selective CB2 receptor agonists from indole carboxamide synthetic cannabinoids. Eur. J. Med. Chem., 2019, 180, 291-309.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.036] [PMID: 31319265]
[215]
Banister, S.D.; Adams, A.; Kevin, R.C.; Macdonald, C.; Glass, M.; Boyd, R.; Connor, M.; McGregor, I.S.; Havel, C.M.; Bright, S.J.; Vilamala, M.V.; Lladanosa, C.G.; Barratt, M.J.; Gerona, R.R. Synthesis and pharmacology of new psychoactive substance 5F-CUMYL-P7AICA, a scaffold- hopping analog of synthetic cannabinoid receptor agonists 5F-CUMYL-PICA and 5F-CUMYL-PINACA. Drug Test. Anal., 2019, 11(2), 279-291.
[http://dx.doi.org/10.1002/dta.2491] [PMID: 30151911]
[216]
Arena, C.; Gado, F.; Di Cesare Mannelli, L.; Cervetto, C.; Carpi, S.; Reynoso-Moreno, I.; Polini, B.; Vallini, E.; Chicca, S.; Lucarini, E.; Bertini, S.; D’Andrea, F.; Digiacomo, M.; Poli, G.; Tuccinardi, T.; Macchia, M.; Gertsch, J.; Marcoli, M.; Nieri, P.; Ghelardini, C.; Chicca, A.; Manera, C. The endocannabinoid system dual-target ligand N-cycloheptyl-1,2-dihydro-5-bromo-1-(4-fluorobenzyl)-6-methyl-2-oxo-pyridine-3-carboxamide improves disease severity in a mouse model of multiple sclerosis. Eur. J. Med. Chem., 2020, 208, 112858.
[http://dx.doi.org/10.1016/j.ejmech.2020.112858] [PMID: 33002735]
[217]
Gado, F.; Arena, C.; Fauci, C.; Reynoso-Moreno, I.; Bertini, S.; Digiacomo, M.; Meini, S.; Poli, G.; Macchia, M.; Tuccinardi, T.; Gertsch, J.; Chicca, A.; Manera, C. Modification on the 1,2-dihydro-2-oxo-pyridine-3-carboxamide core to obtain multi-target modulators of endocannabinoid system. Bioorg. Chem., 2020, 94, 103353.
[http://dx.doi.org/10.1016/j.bioorg.2019.103353] [PMID: 31668465]
[218]
Horti, A.G.; Raymont, V.; Terry, G.E. PET Imaging of Endocannabinoid System. In: PET and SPECT of Neurobiological Systems; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014; pp. 249-319.
[http://dx.doi.org/10.1007/978-3-642-42014-6_11]
[219]
Ahamed, M.; van Veghel, D.; Ullmer, C.; Van Laere, K.; Verbruggen, A.; Bormans, G.M. Synthesis, biodistribution and in vitro evaluation of brain permeable high affinity type 2 cannabinoid receptor agonists [11C]MA2 and [18F]MA3. Front. Neurosci., 2016, 10(SEP), 431.
[http://dx.doi.org/10.3389/fnins.2016.00431] [PMID: 27713686]
[220]
Riether, D. Selective cannabinoid receptor 2 modulators: A patent review 2009--present. Expert Opin. Ther. Pat., 2012, 22(5), 495-510.
[http://dx.doi.org/10.1517/13543776.2012.682570] [PMID: 22537079]
[221]
Morales, P.; Hernandez-Folgado, L.; Goya, P.; Jagerovic, N. Cannabinoid receptor 2 (CB2) agonists and antagonists: A patent update. Expert Opin. Ther. Pat., 2016, 26(7), 843-856.
[http://dx.doi.org/10.1080/13543776.2016.1193157] [PMID: 27215781]
[222]
Brennecke, B.; Gazzi, T.; Atz, K.; Fingerle, J.; Kuner, P.; Schindler, T.; Weck, G.; Nazaré, M.; Grether, U. Cannabinoid receptor type 2 ligands: An analysis of granted patents since 2010. Pharm. Pat. Anal., 2021, 10(3), 111-163.
[http://dx.doi.org/10.4155/ppa-2021-0002] [PMID: 34111979]
[223]
Bissantz, C.; Grether, U.; Hebeisen, P.; Kimbara, A.; Liu, Q.; Nettekoven, M.; Prunotto, M.; Roever, S.; Rogers-Evans, M.; Schulz-Gasch, T.; Ullmer, C.; Wang, Z.; Yang, W. Pyridine derivatives as agonists of the CB2 Receptor. U.S. Patent 9,321,727 B2, 2016.
[224]
Bendels, S.; Grether, U.; Kimbara, A.; Nettekoven, M.; Roever, S.; Rogers-Evans, M.; Schaffter, E.; Schulz-Gasch, T. Pyridine-2-amides useful as CB2 Agonists. U.S. Patent 9,303,012 B2, 2016.
[225]
Gavelle, O.; Grether, U.; Kimbara, A.; Nettekoven, M.; Roever, S.; Rogers-Evans, M.; Rombach, D.; Schulz-Gasch, T. Novel pyridine derivatives. European Patent 2,978,755 B1, 2018.
[226]
Grether, U.; Kimbara, A.; Nettekoven, M.; Ricklin, F.; Roever, S.; Rogers-Evans, M.; Rombach, D.; Schulz-Gasch, T.; Westphal, M. Pyridine-2-amides useful as CB2 agonists. U.S. Patent 9,409,866 B2, 2016.
[227]
Adam, J.M.; Bissantz, C.; Grether, U.; Kimbara, A.; Nettekoven, M.; Roever, S.; Rogers-Evans, M. 1.2.3 Triazolo 4,5-dipyrimidine derivatives. U.S. Patent 8,741,906 B2, 2014.
[228]
Gobbi, L.; Grether, U.; Guba, W.; Kretz, J.; Martin, R.E.; Westphal, V.M. [1,2,3]Triazolo[4,5-D]pyrimidine derivatives. U.S. Patent 20,190,127,384 A1, 2019.
[229]
Grether, U.; Kimbara, A.; Nettekoven, M.; Roever, S.; Rogers-Evans, M.; Schulz-Gasch, T. Pyrrolo[2,3-D]pyrimidine derivatives as CB2 receptor agonists. U.S. Patent 9,580,435 B2, 2017.
[230]
Ametamey, S.M.; Atz, K.; Gobbi, L.; Grether, U.; Guba, W.; Kretz, J. Pyridine and pyrazine derivatives as preferential cannabinoid 2 agonists. W.O. Patent 2,020,002,270 A1, 2020.
[231]
Slavik, R.; Grether, U.; Müller H , A.; Gobbi, L.; Fingerle, J.; Ullmer, C.; Krämer, S.D.; Schibli, R.; Mu, L.; Ametamey, S.M. Discovery of a high affinity and selective pyridine analog as a potential positron emission tomography imaging agent for cannabinoid type 2 receptor. J. Med. Chem., 2015, 58(10), 4266-4277.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00283] [PMID: 25950914]
[232]
Martella, A.; Sijben, H.; Rufer, A.C.; Grether, U.; Fingerle, J.; Ullmer, C.; Hartung, T.; IJzerman, A.P.; van der Stelt, M.; Heitman, L.H. A novel selective inverse agonist of the CB2 receptor as a radiolabeled tool compound for kinetic binding studies. Mol. Pharmacol., 2017, 92(4), 389-400.
[http://dx.doi.org/10.1124/mol.117.108605] [PMID: 28747489]
[233]
Gijsen, H.J.M.; Verbist, B.M.P.; Surkyn, M. Fluoroalkyl substituted benzimidazole cannabinoid agonists. European Patent 2,234,984 B1, 2016.
[234]
Meegalla, S.K.; Player, M.R. Hexahydro-5,8-epoxycyclohepta[C]pyrazole derivatives useful as modulators of the CB1 and/or CB2 receptors. W.O. Patent 2,021,069,671 A1, 2021.
[235]
Jones, R.M.; Han, S.; Thoresen, L.; Jung, J-K.; Strah-Pleynet, S.; Zhu, X.; Xiong, Y.; Yue, D. Cannabinoid receptor modulators. U.S. Patent 8,778,950 B2, 2014.
[236]
Thatte, J.; Blackburn, A.C.; Han, S.; Jones, R.M.; Jung, J-K.; Antonio, G.M.; Pal, B.B.; Karyn, R.J.; Strah-Pleynet, S.; Thoresen, L.; Xiong, Y.; Yue, D.; Zhu, X. Cannabinoid receptor modulators. U.S. Patent 9,492,447 B2, 2016.
[237]
Tepper, M. Ultrapure Tetrahydrocannabinol-11-Oic Acids. U.S. Patent 9,801,849 B2, 2017.
[238]
Attala, M.N.; Diaz, P. Heterocyclic modulators of cannabinoid receptors. U.S. Patent 9,339,486 B2, 2015.
[239]
Riether, D.; Binder, F.P.C.; Doods, H.; Mueller, S.G.; Nicholson, J.R.; Sauer, A. (Cyano-Dimethyl-Methyl)-Isoxazoles and -[1,3,4]Thiadiazoles.. U.S. Patent 10,112,934 B2, 2018.
[240]
Riether, D.; Binder, F.P.C.; Doods, H.; Mueller, S.G.; Nicholson, J.R.; Sauer, A. (Cyano-dimethyl-methyl)-isoxazoles and -[1,3,4]thiadiazoles. U.S. Patent 8,865,744 B1, 2014.
[241]
Bab, I.; Mechoulam, R.; Breuer, A.; Mussai, N. Compositions comprising cb receptor agonists, uses thereof and methods for their preparation. U.S. Patent 9,428,431 B2, 2016.
[242]
Yacovan, A.; Alroy, I.; Aizikovich, A.; Mirilashvili, S.; Grynszpan, F. Sulfonamide derivatives with therapeutic indications. U.S. Patent 9,422,235 B2, 2016.
[243]
Mechoulam, R.; Magid, L.; Shohami, E.; Bab, I. Arylated camphenes, processes for their preparation and uses thereof. U.S. Patent 8,722,938 B2, 2014.
[244]
Amato, G.; Rangan, M.; Runyon, S.P. Indazole derivatives as cannabanoid receptor partial agonists. W.O. Patent 2,021,155,227 A1, 2021.
[245]
Millet, R.; Chavatte, P.; Desreumaux, P.; Body, M.; Jamal El, B. 3,5-Dihydro-2H-Pyrazolo [4,3-C] pyridin-3-one derivatives and their use. France Patent 3,022,245 B1, 2016.
[246]
El Bakali, J.; Muccioli, G.G.; Body-Malapel, M.; Djouina, M.; Klupsch, F.; Ghinet, A.; Barczyk, A.; Renault, N.; Chavatte, P.; Desreumaux, P.; Lambert, D.M.; Millet, R. Conformational restriction leading to a selective CB2 cannabinoid receptor agonist orally active against colitis. ACS Med. Chem. Lett., 2014, 6(2), 198-203.
[http://dx.doi.org/10.1021/ml500439x] [PMID: 25699149]
[247]
Jagerovic, N.; Morales L , P.; Goya L , M.D.P.; Blasco B , S.; Sánchez G , M.C.; Gómez C , M.; Fernández R , J.J. New cannabinoides CB2 receptor modulating chromenoquinones with anti-tumor activity. Espain Patent 2,548,789 B1, 2016.
[248]
Páez Prosper, J.A.; Campillo Martín, N.E.; Pérez Martín, C.; González Naranjo, P.J.; Pérez Macias, N.; López De Ceballos Lafarga, M.; Martín Requero, Á.; Alquézar Burillo, C.; Martín Fontelles, M.I.; Girón Moreno, M.D.R.; Sánchez Robles, E.M.; Romero Paredes, J. New family of carbony derivatives of 1-indazolil cannabinoid and / or colinergical and / or regulators of the beta-amyloid peptide. Espain Patent 2,625,037 B1, 2018.
[249]
Ji, B.; Liu, S.; He, X.; Man, V.H.; Xie, X-Q.; Wang, J. Prediction of the binding affinities and selectivity for CB1 and CB2 ligands using homology modeling, molecular docking, molecular dynamics simulations, and MM-PBSA binding free energy calculations. ACS Chem. Neurosci., 2020, 11(8), 1139-1158.
[http://dx.doi.org/10.1021/acschemneuro.9b00696] [PMID: 32196303]
[250]
Siraj, M.A.; Rahman, M.S.; Tan, G.T.; Seidel, V. Molecular docking and molecular dynamics simulation studies of triterpenes from Vernonia patula with the Cannabinoid Type 1 Receptor. Int. J. Mol. Sci., 2021, 22(7), 3595.
[http://dx.doi.org/10.3390/ijms22073595] [PMID: 33808384]
[251]
Aviz-Amador, A.; Contreras-Puentes, N.; Mercado-Camargo, J. Virtual screening using docking and molecular dynamics of cannabinoid analogs against CB1 and CB2 receptors. Comput. Biol. Chem., 2021, 95, 107590.
[http://dx.doi.org/10.1016/j.compbiolchem.2021.107590] [PMID: 34700256]
[252]
Nicolotti, O.; Miscioscia, T.F.; Leonetti, F.; Muncipinto, G.; Carotti, A. Screening of matrix metalloproteinases available from the protein data bank: Insights into biological functions, domain organization, and zinc binding groups. J. Chem. Inf. Model., 2007, 47(6), 2439-2448.
[http://dx.doi.org/10.1021/ci700119r] [PMID: 17958346]
[253]
Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; Whaley, R.; Glennon, R.A.; Hert, J.; Thomas, K.L.H.; Edwards, D.D.; Shoichet, B.K.; Roth, B.L. Predicting new molecular targets for known drugs. Nature, 2009, 462(7270), 175-181.
[http://dx.doi.org/10.1038/nature08506] [PMID: 19881490]
[254]
Alberga, D.; Trisciuzzi, D.; Montaruli, M.; Leonetti, F.; Mangiatordi, G.F.; Nicolotti, O. A New Approach for Drug Target and Bioactivity Prediction: The Multifingerprint Similarity Search Algorithm (MuSSeL). J. Chem. Inf. Model., 2019, 59(1), 586-596.
[http://dx.doi.org/10.1021/acs.jcim.8b00698] [PMID: 30485097]
[255]
Montaruli, M.; Alberga, D.; Ciriaco, F.; Trisciuzzi, D.; Tondo, A.R.; Mangiatordi, G.F.; Nicolotti, O. Accelerating drug discovery by early protein drug target prediction based on a multi-fingerprint similarity search. Molecules, 2019, 24(12), 2233.
[http://dx.doi.org/10.3390/molecules24122233] [PMID: 31207991]
[256]
Ciriaco, F.; Gambacorta, N.; Alberga, D.; Nicolotti, O. Quantitative polypharmacology profiling based on a multifingerprint similarity predictive approach. J. Chem. Inf. Model., 2021, 61(10), 4868-4876.
[http://dx.doi.org/10.1021/acs.jcim.1c00498] [PMID: 34570498]
[257]
Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M.; Gordillo-Marañón, M.; Hunter, F.; Junco, L.; Mugumbate, G.; Rodriguez-Lopez, M.; Atkinson, F.; Bosc, N.; Radoux, C.J.; Segura-Cabrera, A.; Hersey, A.; Leach, A.R. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res., 2019, 47(D1), D930-D940.
[http://dx.doi.org/10.1093/nar/gky1075] [PMID: 30398643]
[258]
Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; Dutta, S.; Feng, Z.; Ganesan, S.; Goodsell, D.S.; Ghosh, S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Lawson, C.L.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Persikova, I.; Randle, C.; Rose, A.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Tao, Y-P.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Zardecki, C.; Zhuravleva, M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res., 2021, 49(D1), D437-D451.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[259]
Hua, T.; Li, X.; Wu, L.; Iliopoulos-Tsoutsouvas, C.; Wang, Y.; Wu, M.; Shen, L.; Brust, C.A.; Nikas, S.P.; Song, F.; Song, X.; Yuan, S.; Sun, Q.; Wu, Y.; Jiang, S.; Grim, T.W.; Benchama, O.; Stahl, E.L.; Zvonok, N.; Zhao, S.; Bohn, L.M.; Makriyannis, A.; Liu, Z-J. Activation and signaling mechanism revealed by cannabinoid receptor-Gi Complex Structures. Cell, 2020, 180(4), 655-665.e18.
[http://dx.doi.org/10.1016/j.cell.2020.01.008] [PMID: 32004463]
[260]
Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[261]
Parambi, D.G.T.; Oh, J.M.; Baek, S.C.; Lee, J.P.; Tondo, A.R.; Nicolotti, O.; Kim, H.; Mathew, B. Design, synthesis and biological evaluation of oxygenated chalcones as potent and selective MAO-B inhibitors. Bioorg. Chem., 2019, 93, 103335.
[http://dx.doi.org/10.1016/j.bioorg.2019.103335] [PMID: 31606547]
[262]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[263]
Xing, C.; Zhuang, Y.; Xu, T-H.; Feng, Z.; Zhou, X.E.; Chen, M.; Wang, L.; Meng, X.; Xue, Y.; Wang, J.; Liu, H.; McGuire, T.F.; Zhao, G.; Melcher, K.; Zhang, C.; Xu, H.E.; Xie, X-Q. Cryo-EM structure of the human Cannabinoid Receptor CB2-Gi Signaling Complex. Cell, 2020, 180(4), 645-654.e13.
[http://dx.doi.org/10.1016/j.cell.2020.01.007] [PMID: 32004460]
[264]
Li, X.; Hua, T.; Vemuri, K.; Ho, J-H.; Wu, Y.; Wu, L.; Popov, P.; Benchama, O.; Zvonok, N.; Locke, K.; Qu, L.; Han, G.W.; Iyer, M.R.; Cinar, R.; Coffey, N.J.; Wang, J.; Wu, M.; Katritch, V.; Zhao, S.; Kunos, G.; Bohn, L.M.; Makriyannis, A.; Stevens, R.C.; Liu, Z-J. Crystal structure of the human Cannabinoid Receptor CB2. Cell, 2019, 176(3), 459-467.e13.
[http://dx.doi.org/10.1016/j.cell.2018.12.011] [PMID: 30639103]
[265]
Sarott, R.C.; Westphal, M.V.; Pfaff, P.; Korn, C.; Sykes, D.A.; Gazzi, T.; Brennecke, B.; Atz, K.; Weise, M.; Mostinski, Y.; Hompluem, P.; Koers, E.; Miljuš, T.; Roth, N.J.; Asmelash, H.; Vong, M.C.; Piovesan, J.; Guba, W.; Rufer, A.C.; Kusznir, E.A.; Huber, S.; Raposo, C.; Zirwes, E.A.; Osterwald, A.; Pavlovic, A.; Moes, S.; Beck, J.; Benito-Cuesta, I.; Grande, T.; Ruiz de Martí N Esteban, S.; Yeliseev, A.; Drawnel, F.; Widmer, G.; Holzer, D.; van der Wel, T.; Mandhair, H.; Yuan, C-Y.; Drobyski, W.R.; Saroz, Y.; Grimsey, N.; Honer, M.; Fingerle, J.; Gawrisch, K.; Romero, J.; Hillard, C.J.; Varga, Z.V.; van der Stelt, M.; Pacher, P.; Gertsch, J.; McCormick, P.J.; Ullmer, C.; Oddi, S.; Maccarrone, M.; Veprintsev, D.B.; Nazaré, M.; Grether, U.; Carreira, E.M. Development of high-specificity fluorescent probes to enable Cannabinoid Type 2 receptor studies in living cells. J. Am. Chem. Soc., 2020, 142(40), 16953-16964.
[http://dx.doi.org/10.1021/jacs.0c05587] [PMID: 32902974]
[266]
Gazzi, T.; Brennecke, B.; Atz, K.; Korn, C.; Sykes, D.; Forn-Cuni, G.; Pfaff, P.; Sarott, R.C.; Westphal, M.V.; Mostinski, Y.; Mach, L.; Wasinska-Kalwa, M.; Weise, M.; Hoare, B.L.; Miljuš, T.; Mexi, M.; Roth, N.; Koers, E.J.; Guba, W.; Alker, A.; Rufer, A.C.; Kusznir, E.A.; Huber, S.; Raposo, C.; Zirwes, E.A.; Osterwald, A.; Pavlovic, A.; Moes, S.; Beck, J.; Nettekoven, M.; Benito-Cuesta, I.; Grande, T.; Drawnel, F.; Widmer, G.; Holzer, D.; van der Wel, T.; Mandhair, H.; Saroz, Y.; Grimsey, N.; Honer, M.; Fingerle, J.; Scheffel, J.; Broichhagen, J.; Gawrisch, K.; Romero, J.; Hillard, C.J.; Varga, Z.V.; van der Stelt, M.; Pacher, P.; Gertsch, J.; Ullmer, C.; McCormick, P.J.; Oddi, S.; Spaink, H.P.; Maccarrone, M.; Veprintsev, D.B.; Carreira, E.M.; Uwe, G.; Nazaré, M. Detection of cannabinoid receptor type 2 in native cells and zebrafish with a highly potent, cell-permeable fluorescent probe. Chem Sci, 2022. [Epub ahead of print].
[267]
Domenico, A.; Nicola, G.; Daniela, T.; Fulvio, C.; Nicola, A.; Orazio, N. De Novo Drug design of targeted chemical libraries based on artificial intelligence and pair-based multiobjective optimization. J. Chem. Inf. Model., 2020, 60(10), 4582-4593.
[http://dx.doi.org/10.1021/acs.jcim.0c00517] [PMID: 32845150]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy