Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Emerging Role of Long Non‑coding RNAs in Asthma

Author(s): Xue-Fen Chen and Jing‐Min Deng*

Volume 26, Issue 2, 2023

Published on: 13 October, 2022

Page: [247 - 255] Pages: 9

DOI: 10.2174/1386207325666220825152237

Price: $65

conference banner
Abstract

Asthma is a common complex disorder characterized by hyper-responsiveness and chronic inflammatory airway disease in children and adults worldwide. The prevalence of asthma is increasing with each passing year. Long non-coding RNAs (lncRNAs), regarded as a potentially promising path, have received increasing attention in exploring the biological regulation of chronic airway diseases, although they have no or limited protein-coding capacity. This review highlights the functional roles and clinical significance of lncRNAs in the pathogenesis of asthma and provides directions for diagnosing and treating asthma in the future.

Keywords: asthma, long non‑coding RNA, molecular mechanism, biomarker, therapeutic target

Next »
Graphical Abstract

[1]
Boulet, L.P.; Reddel, H.K.; Bateman, E.; Pedersen, S.; Fitz-Gerald, J.M.; O’Byrne, P.M. The Global Initiative for Asthma (GINA): 25 years later. Eur. Respir. J., 2019, 54(2), 1900598.
[http://dx.doi.org/10.1183/13993003.00598-2019] [PMID: 31273040]
[2]
Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; AlMazroa, M.A.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Barker-Collo, S.; Bartels, D.H.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bhalla, K.; Bikbov, B.; Abdulhak, A.B.; Birbeck, G.; Blyth, F.; Bolliger, I.; Boufous, S.; Bucello, C.; Burch, M.; Burney, P.; Carapetis, J.; Chen, H.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahodwala, N.; De Leo, D.; Degenhardt, L.; Delossantos, A.; Denenberg, J.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Erwin, P.J.; Espindola, P.; Ezzati, M.; Feigin, V.; Flaxman, A.D.; Forouzanfar, M.H.; Fowkes, F.G.R.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabriel, S.E.; Gakidou, E.; Gaspari, F.; Gillum, R.F.; Gonzalez-Medina, D.; Halasa, Y.A.; Haring, D.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Hoen, B.; Hotez, P.J.; Hoy, D.; Ja-cobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Karthikeyan, G.; Kassebaum, N.; Keren, A.; Khoo, J-P.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krish-namurthi, R.; Lipnick, M.; Lipshultz, S.E.; Ohno, S.L.; Mabweijano, J.; MacIntyre, M.F.; Mallinger, L.; March, L.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGrath, J.; Memish, Z.A.; Mensah, G.A.; Merriman, T.R.; Michaud, C.; Miller, M.; Miller, T.R.; Mock, C.; Mocumbi, A.O.; Mokdad, A.A.; Moran, A.; Mulholland, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.V.; Nasseri, K.; Norman, P.; O’Donnell, M.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Phillips, D.; Pierce, K.; Pope, C.A., III; Porrini, E.; Pourmalek, F.; Raju, M.; Ranganathan, D.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Rivara, F.P.; Roberts, T.; De León, F.R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Salomon, J.A.; Sampson, U.; Sanman, E.; Schwebel, D.C.; Segui-Gomez, M.; Shepard, D.S.; Singh, D.; Singleton, J.; Sliwa, K.; Smith, E.; Steer, A.; Taylor, J.A.; Thomas, B.; Tleyjeh, I.M.; Towbin, J.A.; Truelsen, T.; Undurraga, E.A.; Venketasubramanian, N.; Vijayakumar, L.; Vos, T.; Wagner, G.R.; Wang, M.; Wang, W.; Watt, K.; Weinstock, M.A.; Weintraub, R.; Wilkinson, J.D.; Woolf, A.D.; Wulf, S.; Yeh, P-H.; Yip, P.; Zabetian, A.; Zheng, Z-J.; Lopez, A.D.; Murray, C.J.L. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859), 2095-2128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[3]
Soriano, J.B.; Abajobir, A.A.; Abate, K.H.; Abera, S.F.; Agrawal, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Alam, K.; Alam, N.; Alkaabi, J.M.; Al-Maskari, F.; Alvis-Guzman, N.; Amberbir, A.; Amoako, Y.A.; Ansha, M.G.; Antó, J.M.; Asayesh, H.; Atey, T.M.; Avokpa-ho, E.F.G.A.; Barac, A.; Basu, S.; Bedi, N.; Bensenor, I.M.; Berhane, A.; Beyene, A.S.; Bhutta, Z.A.; Biryukov, S.; Bone-ya, D.J.; Brauer, M.; Carpenter, D.O.; Casey, D.; Christopher, D.J.; Dandona, L.; Dandona, R.; Dharmaratne, S.D.; Do, H.P.; Fischer, F.; Gebrehiwot, T.T.; Geleto, A.; Ghoshal, A.G.; Gil-lum, R.F.; Ginawi, I.A.M.; Gupta, V.; Hay, S.I.; Hedayati, M.T.; Horita, N.; Hosgood, H.D.; Jakovljevic, M.M.B.; James, S.L.; Jonas, J.B.; Kasaeian, A.; Khader, Y.S.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Khubchandani, J.; Knibbs, L.D.; Kosen, S.; Koul, P.A.; Kumar, G.A.; Leshargie, C.T.; Liang, X.; El Razek, H.M.A.; Majeed, A.; Malta, D.C.; Manhertz, T.; Marquez, N.; Mehari, A.; Mensah, G.A.; Miller, T.R.; Mo-hammad, K.A.; Mohammed, K.E.; Mohammed, S.; Mokdad, A.H.; Naghavi, M.; Nguyen, C.T.; Nguyen, G.; Le Nguyen, Q.; Nguyen, T.H.; Ningrum, D.N.A.; Nong, V.M.; Obi, J.I.; Odeyemi, Y.E.; Ogbo, F.A.; Oren, E.; Pa, M.; Park, E-K.; Pat-ton, G.C.; Paulson, K.; Qorbani, M.; Quansah, R.; Rafay, A.; Rahman, M.H.U.; Rai, R.K.; Rawaf, S.; Reinig, N.; Safiri, S.; Sarmiento-Suarez, R.; Sartorius, B.; Savic, M.; Sawhney, M.; Shigematsu, M.; Smith, M.; Tadese, F.; Thurston, G.D. To-por-Madry, R.; Tran, B.X.; Ukwaja, K.N.; van Boven, J.F.M.; Vlassov, V.V.; Vollset, S.E.; Wan, X.; Werdecker, A.; Han-son, S.W.; Yano, Y.; Yimam, H.H.; Yonemoto, N.; Yu, C.; Zaidi, Z.; El Sayed Zaki, M.; Lopez, A.D.; Murray, C.J.L.; Vos, T. Global, regional, and national deaths, prevalence, dis-ability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med., 2017, 5(9), 691-706.
[http://dx.doi.org/10.1016/S2213-2600(17)30293-X] [PMID: 28822787]
[4]
Huang, K.; Yang, T.; Xu, J.; Yang, L.; Zhao, J.; Zhang, X.; Bai, C.; Kang, J.; Ran, P.; Shen, H.; Wen, F.; Chen, Y.; Sun, T.; Shan, G.; Lin, Y.; Xu, G.; Wu, S.; Wang, C.; Wang, R.; Shi, Z.; Xu, Y.; Ye, X.; Song, Y.; Wang, Q.; Zhou, Y.; Li, W.; Ding, L.; Wan, C.; Yao, W.; Guo, Y.; Xiao, F.; Lu, Y.; Peng, X.; Zhang, B.; Xiao, D.; Wang, Z.; Chen, Z.; Bu, X.; Zhang, H.; Zhang, X.; An, L.; Zhang, S.; Zhu, J.; Cao, Z.; Zhan, Q.; Yang, Y.; Liang, L.; Tong, X.; Dai, H.; Cao, B.; Wu, T.; Chung, K.F.; He, J.; Wang, C. Prevalence, risk factors, and management of asthma in China: A national cross-sectional study. Lancet, 2019, 394(10196), 407-418.
[http://dx.doi.org/10.1016/S0140-6736(19)31147-X] [PMID: 31230828]
[5]
Xin, L.; Gao, J.; Ge, X.; Tian, C.; Ma, W.; Tian, Z.; Zheng, X.; Hou, J. Increased pro-inflammatory cytokine-secreting regu-latory T cells are correlated with the plasticity of T helper cell differentiation and reflect disease status in asthma. Respir. Med., 2018, 143, 129-138.
[http://dx.doi.org/10.1016/j.rmed.2018.09.007] [PMID: 30261984]
[6]
Keenan, C.R.; Schuliga, M.J.; Stewart, A.G. Pro-inflammatory mediators increase levels of the noncoding RNA GAS5 in airway smooth muscle and epithelial cells. Can. J. Physiol. Pharmacol., 2015, 93(3), 203-206.
[http://dx.doi.org/10.1139/cjpp-2014-0391] [PMID: 25615620]
[7]
Wapinski, O.; Chang, H.Y. Long noncoding RNAs and human disease. Trends Cell Biol., 2011, 21(6), 354-361.
[http://dx.doi.org/10.1016/j.tcb.2011.04.001] [PMID: 21550244]
[8]
George, J.; Lim, J.S.; Jang, S.J.; Cun, Y. Ozretić L.; Kong, G.; Leenders, F.; Lu, X.; Fernández-Cuesta, L.; Bosco, G.; Mül-ler, C.; Dahmen, I.; Jahchan, N.S.; Park, K.S.; Yang, D.; Kar-nezis, A.N.; Vaka, D.; Torres, A.; Wang, M.S.; Korbel, J.O.; Menon, R.; Chun, S.M.; Kim, D.; Wilkerson, M.; Hayes, N.; Engelmann, D.; Pützer, B.; Bos, M.; Michels, S.; Vlasic, I.; Seidel, D.; Pinther, B.; Schaub, P.; Becker, C.; Altmüller, J.; Yokota, J.; Kohno, T.; Iwakawa, R.; Tsuta, K.; Noguchi, M.; Muley, T.; Hoffmann, H.; Schnabel, P.A.; Petersen, I.; Chen, Y.; Soltermann, A.; Tischler, V.; Choi, C.; Kim, Y.H.; Mas-sion, P.P.; Zou, Y.; Jovanovic, D.; Kontic, M.; Wright, G.M.; Russell, P.A.; Solomon, B.; Koch, I.; Lindner, M.; Muscarel-la, L.A.; la Torre, A.; Field, J.K.; Jakopovic, M.; Knezevic, J.; Castaños-Vélez, E.; Roz, L.; Pastorino, U.; Brustugun, O.T.; Lund-Iversen, M.; Thunnissen, E.; Köhler, J.; Schuler, M.; Botling, J.; Sandelin, M.; Sanchez-Cespedes, M.; Salvesen, H.B.; Achter, V.; Lang, U.; Bogus, M.; Schneider, P.M.; Zan-der, T.; Ansén, S.; Hallek, M.; Wolf, J.; Vingron, M.; Yatabe, Y.; Travis, W.D.; Nürnberg, P.; Reinhardt, C.; Perner, S.; Heukamp, L.; Büttner, R.; Haas, S.A.; Brambilla, E.; Peifer, M.; Sage, J.; Thomas, R.K. Comprehensive genomic profiles of small cell lung cancer. Nature, 2015, 524(7563), 47-53.
[http://dx.doi.org/10.1038/nature14664] [PMID: 26168399]
[9]
Kung, J.T.Y.; Colognori, D.; Lee, J.T. Long noncoding RNAs: past, present, and future. Genetics, 2013, 193(3), 651-669.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[10]
Fan, M.; Xu, J.; Xiao, Q.; Chen, F.; Han, X. Long non-coding RNA TCF7 contributes to the growth and migration of airway smooth muscle cells in asthma through targeting TIMMDC1/Akt axis. Biochem. Biophys. Res. Commun., 2019, 508(3), 749-755.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.187] [PMID: 30528236]
[11]
Qiu, Y.; Wu, Y.; Lin, M.; Bian, T.; Xiao, Y.; Qin, C. LncRNA-MEG3 functions as a competing endogenous RNA to regulate Treg/Th17 balance in patients with asthma by targeting mi-croRNA-17/RORγt. Biomed. Pharmacother., 2019, 111, 386-394.
[http://dx.doi.org/10.1016/j.biopha.2018.12.080] [PMID: 30594051]
[12]
Lin, J.; Feng, X.; Zhang, J.; Tong, Z. Long noncoding RNA TUG1 promotes airway smooth muscle cells proliferation and migration via sponging miR-590-5p/FGF1 in asthma. Am. J. Transl. Res., 2019, 11(5), 3159-3166.
[PMID: 31217885]
[13]
Zhang, X.Y.; Zhang, L.X.; Tian, C.J.; Tang, X.Y.; Zhao, L.M.; Guo, Y.L.; Cheng, D.J.; Chen, X.L.; Ma, L.J.; Chen, Z.C. LncRNAs BCYRN1 promoted the proliferation and migration of rat airway smooth muscle cells in asthma via upregulating the expression of transient receptor potential 1. Am. J. Transl. Res., 2016, 8(8), 3409-3418.
[PMID: 27648131]
[14]
Zhu, Y.J.; Mao, D.; Gao, W.; Hu, H. Peripheral whole blood lncRNA expression analysis in patients with eosinophilic asthma. Medicine (Baltimore), 2018, 97(8), e9817.
[http://dx.doi.org/10.1097/MD.0000000000009817] [PMID: 29465565]
[15]
Gibb, E.A.; Brown, C.J.; Lam, W.L. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer, 2011, 10(1), 38.
[http://dx.doi.org/10.1186/1476-4598-10-38] [PMID: 21489289]
[16]
Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; Lagarde, J.; Veeravalli, L.; Ruan, X.; Ruan, Y.; Lass-mann, T.; Carninci, P.; Brown, J.B.; Lipovich, L.; Gonzalez, J.M.; Thomas, M.; Davis, C.A.; Shiekhattar, R.; Gingeras, T.R.; Hubbard, T.J.; Notredame, C.; Harrow, J.; Guigó, R. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res., 2012, 22(9), 1775-1789.
[http://dx.doi.org/10.1101/gr.132159.111] [PMID: 22955988]
[17]
Sang, H.; Liu, H.; Xiong, P.; Zhu, M. Long non-coding RNA functions in lung cancer. Tumour Biol., 2015, 36(6), 4027-4037.
[http://dx.doi.org/10.1007/s13277-015-3449-4] [PMID: 25895460]
[18]
Hon, C.C.; Ramilowski, J.A.; Harshbarger, J.; Bertin, N.; Rackham, O.J.L.; Gough, J.; Denisenko, E.; Schmeier, S.; Poulsen, T.M.; Severin, J.; Lizio, M.; Kawaji, H.; Kasukawa, T.; Itoh, M.; Burroughs, A.M.; Noma, S.; Djebali, S.; Alam, T.; Medvedeva, Y.A.; Testa, A.C.; Lipovich, L.; Yip, C.W.; Abugessaisa, I.; Mendez, M.; Hasegawa, A.; Tang, D.; Lass-mann, T.; Heutink, P.; Babina, M.; Wells, C.A.; Kojima, S.; Nakamura, Y.; Suzuki, H.; Daub, C.O.; de Hoon, M.J.L.; Arner, E.; Hayashizaki, Y.; Carninci, P.; Forrest, A.R.R. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature, 2017, 543(7644), 199-204.
[http://dx.doi.org/10.1038/nature21374] [PMID: 28241135]
[19]
Hombach, S.; Kretz, M. Non-coding RNAs: Classification, biology and functioning. Adv. Exp. Med. Biol., 2016, 937, 3-17.
[http://dx.doi.org/10.1007/978-3-319-42059-2_1] [PMID: 27573892]
[20]
Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet., 2016, 17(1), 47-62.
[http://dx.doi.org/10.1038/nrg.2015.10] [PMID: 26666209]
[21]
Ohno, S. So much “junk” DNA in our genome. Brookhaven Symp. Biol., 1972, 23, 366-370.
[PMID: 5065367]
[22]
Guttman, M.; Amit, I.; Garber, M.; French, C.; Lin, M.F.; Feldser, D.; Huarte, M.; Zuk, O.; Carey, B.W.; Cassady, J.P.; Cabili, M.N.; Jaenisch, R.; Mikkelsen, T.S.; Jacks, T.; Ha-cohen, N.; Bernstein, B.E.; Kellis, M.; Regev, A.; Rinn, J.L.; Lander, E.S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235), 223-227.
[http://dx.doi.org/10.1038/nature07672] [PMID: 19182780]
[23]
Clark, M.B.; Mercer, T.R.; Bussotti, G.; Leonardi, T.; Haynes, K.R.; Crawford, J.; Brunck, M.E.; Cao, K.A.L.; Thomas, G.P.; Chen, W.Y.; Taft, R.J.; Nielsen, L.K.; Enright, A.J.; Mattick, J.S.; Dinger, M.E. Quantitative gene profiling of long noncod-ing RNAs with targeted RNA sequencing. Nat. Methods, 2015, 12(4), 339-342.
[http://dx.doi.org/10.1038/nmeth.3321] [PMID: 25751143]
[24]
Poliseno, L.; Salmena, L.; Zhang, J.; Carver, B.; Haveman, W.J.; Pandolfi, P.P. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 2010, 465(7301), 1033-1038.
[http://dx.doi.org/10.1038/nature09144] [PMID: 20577206]
[25]
Chen, L.L.; Carmichael, G.G. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: Functional role of a nuclear noncoding RNA. Mol. Cell, 2009, 35(4), 467-478.
[http://dx.doi.org/10.1016/j.molcel.2009.06.027] [PMID: 19716791]
[26]
Kino, T.; Hurt, D.E.; Ichijo, T.; Nader, N.; Chrousos, G.P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal., 2010, 3(107), ra8.
[http://dx.doi.org/10.1126/scisignal.2000568] [PMID: 20124551]
[27]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA lan-guage? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[28]
Zhang, X.; Tang, X.; Li, N.; Zhao, L.; Guo, Y.; Li, X.; Tian, C.; Cheng, D.; Chen, Z.; Zhang, L. GAS5 promotes airway smooth muscle cell proliferation in asthma via controlling miR-10a/BDNF signaling pathway. Life Sci., 2018, 212, 93-101.
[http://dx.doi.org/10.1016/j.lfs.2018.09.002] [PMID: 30189218]
[29]
Wang, Y.; Xu, Z.; Jiang, J.; Xu, C.; Kang, J.; Xiao, L.; Wu, M.; Xiong, J.; Guo, X.; Liu, H. Endogenous miRNA sponge lin-cRNA-RoR regulates Oct4, Nanog, and Sox2 in human em-bryonic stem cell self-renewal. Dev. Cell, 2013, 25(1), 69-80.
[http://dx.doi.org/10.1016/j.devcel.2013.03.002] [PMID: 23541921]
[30]
Fu, Z.; Li, G.; Li, Z.; Wang, Y.; Zhao, Y.; Zheng, S.; Ye, H.; Luo, Y.; Zhao, X.; Wei, L.; Liu, Y.; Lin, Q.; Zhou, Q.; Chen, R. Endogenous miRNA Sponge LincRNA-ROR promotes pro-liferation, invasion and stem cell-like phenotype of pancreatic cancer cells. Cell Death Discov., 2017, 3(1), 17004.
[http://dx.doi.org/10.1038/cddiscovery.2017.4] [PMID: 28580169]
[31]
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[32]
Steck, E.; Boeuf, S.; Gabler, J.; Werth, N.; Schnatzer, P.; Diederichs, S.; Richter, W. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and cata-bolic in vitro conditions. J. Mol. Med. (Berl.), 2012, 90(10), 1185-1195.
[http://dx.doi.org/10.1007/s00109-012-0895-y] [PMID: 22527881]
[33]
Wang, X.; Arai, S.; Song, X.; Reichart, D.; Du, K.; Pascual, G.; Tempst, P.; Rosenfeld, M.G.; Glass, C.K.; Kurokawa, R. In-duced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature, 2008, 454(7200), 126-130.
[http://dx.doi.org/10.1038/nature06992] [PMID: 18509338]
[34]
Wu, Q.; Han, L.; Yan, W.; Ji, X.; Han, R.; Yang, J.; Yuan, J.; Ni, C. miR-489 inhibits silica-induced pulmonary fibrosis by targeting MyD88 and Smad3 and is negatively regulated by lncRNA CHRF. Sci. Rep., 2016, 6(1), 30921.
[http://dx.doi.org/10.1038/srep30921] [PMID: 27506999]
[35]
Zhou, K.; Ou, Q.; Wang, G.; Zhang, W.; Hao, Y.; Li, W. High long non-coding RNA NORAD expression predicts poor prognosis and promotes breast cancer progression by regulat-ing TGF-β pathway. Cancer Cell Int., 2019, 19(1), 63.
[http://dx.doi.org/10.1186/s12935-019-0781-6] [PMID: 30930692]
[36]
Vance, K.W.; Sansom, S.N.; Lee, S.; Chalei, V.; Kong, L.; Cooper, S.E.; Oliver, P.L.; Ponting, C.P. The long non-coding RNA Paupar regulates the expression of both local and distal genes. EMBO J., 2014, 33(4), 296-311.
[http://dx.doi.org/10.1002/embj.201386225] [PMID: 24488179]
[37]
Rinn, J.L.; Kertesz, M.; Wang, J.K.; Squazzo, S.L.; Xu, X.; Brugmann, S.A.; Goodnough, L.H.; Helms, J.A.; Farnham, P.J.; Segal, E.; Chang, H.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncod-ing RNAs. Cell, 2007, 129(7), 1311-1323.
[http://dx.doi.org/10.1016/j.cell.2007.05.022] [PMID: 17604720]
[38]
Spitale, R.C.; Tsai, M.C.; Chang, H.Y. RNA templating the epigenome. Epigenetics, 2011, 6(5), 539-543.
[http://dx.doi.org/10.4161/epi.6.5.15221] [PMID: 21393997]
[39]
Bernstein, E.; Duncan, E.M.; Masui, O.; Gil, J.; Heard, E.; Allis, C.D. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in faculta-tive heterochromatin. Mol. Cell. Biol., 2006, 26(7), 2560-2569.
[http://dx.doi.org/10.1128/MCB.26.7.2560-2569.2006] [PMID: 16537902]
[40]
Bonasio, R.; Lecona, E.; Narendra, V.; Voigt, P.; Parisi, F.; Kluger, Y.; Reinberg, D. Interactions with RNA direct the Pol-ycomb group protein SCML2 to chromatin where it represses target genes. eLife, 2014, 3, e02637.
[http://dx.doi.org/10.7554/eLife.02637] [PMID: 24986859]
[41]
Briggs, J.A.; Wolvetang, E.J.; Mattick, J.S.; Rinn, J.L.; Barry, G. Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolu-tion. Neuron, 2015, 88(5), 861-877.
[http://dx.doi.org/10.1016/j.neuron.2015.09.045] [PMID: 26637795]
[42]
Zhao, J.; Sun, B.K.; Erwin, J.A.; Song, J.J.; Lee, J.T. Poly-comb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 2008, 322(5902), 750-756.
[http://dx.doi.org/10.1126/science.1163045] [PMID: 18974356]
[43]
Cesana, M.; Cacchiarelli, D.; Legnini, I.; Santini, T.; Sthandi-er, O.; Chinappi, M.; Tramontano, A.; Bozzoni, I. A long noncoding RNA controls muscle differentiation by function-ing as a competing endogenous RNA. Cell, 2011, 147(2), 358-369.
[http://dx.doi.org/10.1016/j.cell.2011.09.028] [PMID: 22000014]
[44]
Hu, X.; Feng, Y.; Zhang, D.; Zhao, S.D.; Hu, Z.; Greshock, J.; Zhang, Y.; Yang, L.; Zhong, X.; Wang, L.P.; Jean, S.; Li, C.; Huang, Q.; Katsaros, D.; Montone, K.T.; Tanyi, J.L.; Lu, Y.; Boyd, J.; Nathanson, K.L.; Li, H.; Mills, G.B.; Zhang, L. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell, 2014, 26(3), 344-357.
[http://dx.doi.org/10.1016/j.ccr.2014.07.009] [PMID: 25203321]
[45]
Yin, Y.; Yan, P.; Lu, J.; Song, G.; Zhu, Y.; Li, Z.; Zhao, Y.; Shen, B.; Huang, X.; Zhu, H.; Orkin, S.H.; Shen, X. Opposing roles for the lncRNA haunt and its genomic locus in regulat-ing HOXA gene activation during embryonic stem cell differ-entiation. Cell Stem Cell, 2015, 16(5), 504-516.
[http://dx.doi.org/10.1016/j.stem.2015.03.007] [PMID: 25891907]
[46]
Wang, K.C.; Helms, J.A.; Chang, H.Y. Regeneration, repair and remembering identity: The three Rs of Hox gene expres-sion. Trends Cell Biol., 2009, 19(6), 268-275.
[http://dx.doi.org/10.1016/j.tcb.2009.03.007] [PMID: 19428253]
[47]
Zhang, Y.; Yang, L.; Chen, L.L. Life without A tail: New formats of long noncoding RNAs. Int. J. Biochem. Cell Biol., 2014, 54, 338-349.
[http://dx.doi.org/10.1016/j.biocel.2013.10.009] [PMID: 24513732]
[48]
Wilusz, J.E. Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochim. Biophys. Acta. Gene Regul. Mech., 2016, 1859(1), 128-138.
[http://dx.doi.org/10.1016/j.bbagrm.2015.06.003] [PMID: 26073320]
[49]
Clark, M.B.; Johnston, R.L.; Inostroza-Ponta, M.; Fox, A.H.; Fortini, E.; Moscato, P.; Dinger, M.E.; Mattick, J.S. Genome-wide analysis of long noncoding RNA stability. Genome Res., 2012, 22(5), 885-898.
[http://dx.doi.org/10.1101/gr.131037.111] [PMID: 22406755]
[50]
Yuan, J.; Yang, F.; Wang, F.; Ma, J.; Guo, Y.; Tao, Q.; Liu, F.; Pan, W.; Wang, T.; Zhou, C.; Wang, S.; Wang, Y.; Yang, Y.; Yang, N.; Zhou, W.; Yang, G.; Sun, S. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell, 2014, 25(5), 666-681.
[http://dx.doi.org/10.1016/j.ccr.2014.03.010] [PMID: 24768205]
[51]
Houseley, J.; Rubbi, L.; Grunstein, M.; Tollervey, D.; Vo-gelauer, M. A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol. Cell, 2008, 32(5), 685-695.
[http://dx.doi.org/10.1016/j.molcel.2008.09.027] [PMID: 19061643]
[52]
Margueron, R.; Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature, 2011, 469(7330), 343-349.
[http://dx.doi.org/10.1038/nature09784] [PMID: 21248841]
[53]
Hainer, S.J.; Gu, W.; Carone, B.R.; Landry, B.D.; Rando, O.J.; Mello, C.C.; Fazzio, T.G. Suppression of pervasive noncod-ing transcription in embryonic stem cells by esBAF. Genes Dev., 2015, 29(4), 362-378.
[http://dx.doi.org/10.1101/gad.253534.114] [PMID: 25691467]
[54]
Kotake, Y.; Nakagawa, T.; Kitagawa, K.; Suzuki, S.; Liu, N.; Kitagawa, M.; Xiong, Y. Long non-coding RNA ANRIL is re-quired for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene, 2011, 30(16), 1956-1962.
[http://dx.doi.org/10.1038/onc.2010.568] [PMID: 21151178]
[55]
Terranova, R.; Yokobayashi, S.; Stadler, M.B.; Otte, A.P.; van Lohuizen, M.; Orkin, S.H.; Peters, A.H.F.M. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and im-printed repression in early mouse embryos. Dev. Cell, 2008, 15(5), 668-679.
[http://dx.doi.org/10.1016/j.devcel.2008.08.015] [PMID: 18848501]
[56]
Webb, E.; Adams, J.M.; Cory, S. Variant (6; 15) translocation in a murine plasmacytoma occurs near an immunoglobulin κ gene but far from the myc oncogene. Nature, 1984, 312(5996), 777-779.
[http://dx.doi.org/10.1038/312777a0] [PMID: 6440031]
[57]
Xiong, X.; Yuan, J.; Zhang, N. Silencing of lncRNA PVT1 by miR-214 inhibits the oncogenic GDF15 signaling and sup-presses hepatocarcinogenesis. Biochem. Biophys. Res. Commun., 2022, 521(2), 478-484.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.137] [PMID: 31677796]
[58]
Lv, Z.H.; Wang, Z.Y.; Li, Z.Y. LncRNA PVT1 aggravates the progression of glioma via downregulating UPF1. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(20), 8956-8963.
[http://dx.doi.org/10.26355/eurrev_201910_19294] [PMID: 31696483]
[59]
Xu, Y.; Li, Y.; Jin, J.; Han, G.; Sun, C.; Pizzi, M.P.; Huo, L.; Scott, A.; Wang, Y.; Ma, L.; Lee, J.H.; Bhutani, M.S.; Weston, B.; Vellano, C.; Yang, L.; Lin, C.; Kim, Y.; MacLeod, A.R.; Wang, L.; Wang, Z.; Song, S.; Ajani, J.A. LncRNA PVT1 up-regulation is a poor prognosticator and serves as a therapeutic target in esophageal adenocarcinoma. Mol. Cancer, 2019, 18(1), 141.
[http://dx.doi.org/10.1186/s12943-019-1064-5] [PMID: 31601234]
[60]
Ren, Y.; Huang, W.; Weng, G.; Cui, P.; Liang, H.; Li, Y. LncRNA PVT1 promotes proliferation, invasion and epitheli-al–mesenchymal transition of renal cell carcinoma cells through downregulation of miR-16-5p. [Corrigendum]. OncoTargets Ther., 2019, 12, 5649-5650.
[http://dx.doi.org/10.2147/OTT.S221772] [PMID: 31372001]
[61]
Zhang, L.; Mao, J. Long-chain noncoding RNA PVT1 gene polymorphisms are associated with the risk and prognosis of colorectal cancer in the Han Chinese population. Genet. Test. Mol. Biomarkers, 2019, 23(10), 728-736.
[http://dx.doi.org/10.1089/gtmb.2019.0078] [PMID: 31509024]
[62]
Yazdi, N.; Houshmand, M.; Atashi, A.; Kazemi, A.; Najme-dini, A.A.; Zarif, M.N. Long noncoding RNA PVT1: Potential oncogene in the development of acute lymphoblastic leuke-mia. Turk. J. Biol., 2018, 42(5), 405-413.
[http://dx.doi.org/10.3906/biy-1801-46] [PMID: 30930624]
[63]
Lin, H.Y.; Callan, C.Y.; Fang, Z.; Tung, H.Y.; Park, J.Y. Inter-actions of PVT1 and CASC11 on prostate cancer risk in Afri-can Americans. Cancer Epidemiol. Biomarkers Prev., 2019, 28(6), 1067-1075.
[http://dx.doi.org/10.1158/1055-9965.EPI-18-1092] [PMID: 30914434]
[64]
Zhang, Y.; Yang, G.; Luo, Y. Long non coding RNA PVT1 promotes glioma cell proliferation and invasion by targeting miR 200a. Exp. Ther. Med., 2018, 17(2), 1337-1345.
[http://dx.doi.org/10.3892/etm.2018.7083] [PMID: 30680011]
[65]
Liu, D.W.; Zhang, J.H.; Liu, F.X.; Wang, X.T.; Pan, S.K.; Jiang, D.K.; Zhao, Z.H.; Liu, Z.S. Silencing of long noncoding RNA PVT1 inhibits podocyte damage and apoptosis in dia-betic nephropathy by upregulating FOXA1. Exp. Mol. Med., 2019, 51(8), 1-15.
[http://dx.doi.org/10.1038/s12276-019-0259-6] [PMID: 31371698]
[66]
Perry, M.M.; Tsitsiou, E.; Austin, P.J.; Lindsay, M.A.; Gibe-on, D.S.; Adcock, I.M.; Chung, K. Role of non-coding RNAs in maintaining primary airway smooth muscle cells. Respir. Res., 2014, 15(1), 58.
[http://dx.doi.org/10.1186/1465-9921-15-58] [PMID: 24886442]
[67]
Austin, P.J.; Tsitsiou, E.; Boardman, C.; Jones, S.W.; Lind-say, M.A.; Adcock, I.M.; Chung, K.F.; Perry, M.M. Tran-scriptional profiling identifies the long noncoding RNA plasmacytoma variant translocation (PVT1) as a novel regu-lator of the asthmatic phenotype in human airway smooth muscle. J. Allergy Clin. Immunol., 2017, 139(3), 780-789.
[http://dx.doi.org/10.1016/j.jaci.2016.06.014] [PMID: 27484035]
[68]
Coccia, E.M.; Cicala, C.; Charlesworth, A.; Ciccarelli, C.; Rossi, G.B.; Philipson, L.; Sorrentino, V. Regulation and ex-pression of a growth arrest-specific gene (gas5) during growth, differentiation, and development. Mol. Cell. Biol., 1992, 12(8), 3514-3521.
[http://dx.doi.org/10.1128/MCB.12.8.3514] [PMID: 1630459]
[69]
Yu, X.; Li, Z. Long non-coding RNA growth arrest-specific transcript 5 in tumor biology. Oncol. Lett., 2015, 10(4), 1953-1958.
[http://dx.doi.org/10.3892/ol.2015.3553] [PMID: 26622780]
[70]
Zhang, X.; Tang, X.; Ma, L.; Guo, Y.; Li, X.; Zhao, L.; Tian, C.; Cheng, D.J.; Chen, Z.; Zhang, L. Schisandrin B down-regulated lncRNA BCYRN1 expression of airway smooth muscle cells by improving miR-150 expression to inhibit the proliferation and migration of ASMC in asthmatic rats. Cell Prolif., 2017, 50(6), e12382.
[http://dx.doi.org/10.1111/cpr.12382] [PMID: 28960519]
[71]
Li, L.; Gan, Z.H.; Qin, L.; Jiao, S.H.; Shi, Y. AIB1 regulates the ovarian cancer cell cycle through TUG1. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(24), 5610-5617.
[http://dx.doi.org/10.26355/eurrev_201712_14002] [PMID: 29271993]
[72]
Young, T.L.; Matsuda, T.; Cepko, C.L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr. Biol., 2005, 15(6), 501-512.
[http://dx.doi.org/10.1016/j.cub.2005.02.027] [PMID: 15797018]
[73]
Tang, W.; Shen, Z.; Guo, J.; Sun, S. Screening of long non-coding RNA and TUG1 inhibits proliferation with TGF-β in-duction in patients with COPD. Int. J. Chron. Obstruct. Pulmon. Dis., 2016, 11, 2951-2964.
[http://dx.doi.org/10.2147/COPD.S109570] [PMID: 27932875]
[74]
Liu, S.; Yang, Y.; Wang, W.; Pan, X. Long noncoding RNA TUG1 promotes cell proliferation and migration of renal cell carcinoma via regulation of YAP. J. Cell. Biochem., 2018, 119(12), 9694-9706.
[http://dx.doi.org/10.1002/jcb.27284] [PMID: 30132963]
[75]
Yang, B.; Tang, X.; Wang, Z.; Sun, D.; Wei, X.; Ding, Y. TUG1 promotes prostate cancer progression by acting as a ceRNA of miR-26a. Biosci. Rep., 2018, 38(5), BSR20180677.
[http://dx.doi.org/10.1042/BSR20180677] [PMID: 29967294]
[76]
Willems-Widyastuti, A.; Vanaudenaerde, B.M.; Vos, R.; Dilisen, E.; Verleden, S.E.; Vleeschauwer, S.I.; Vaneylen, A.; Mooi, W.J.; Boer, W.I.; Sharma, H.S.; Verleden, G.M. Azithromycin attenuates fibroblast growth factors induced vascular endothelial growth factor via p38(MAPK) signaling in human airway smooth muscle cells. Cell Biochem. Biophys., 2013, 67(2), 331-339.
[http://dx.doi.org/10.1007/s12013-011-9331-0] [PMID: 22205500]
[77]
MacKenzie, B.; Korfei, M.; Henneke, I.; Sibinska, Z.; Tian, X.; Hezel, S.; Dilai, S.; Wasnick, R.; Schneider, B.; Wilhelm, J.; El Agha, E.; Klepetko, W.; Seeger, W.; Schermuly, R.; Günther, A.; Bellusci, S. Increased FGF1-FGFRc expression in idiopathic pulmonary fibrosis. Respir. Res., 2015, 16(1), 83.
[http://dx.doi.org/10.1186/s12931-015-0242-2] [PMID: 26138239]
[78]
Zhang, J.; Gong, W.H.; Li, Y.; Zhang, H.Y.; Zhang, C.X. Hsa-miR-337 inhibits non-small cell lung cancer cell invasion and migration by targeting TCF7. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(15), 6548-6553.
[http://dx.doi.org/10.26355/eurrev_201908_18540] [PMID: 31378895]
[79]
Cui, B.H.; Hong, X. miR 6852 serves as a prognostic bi-omarker in colorectal cancer and inhibits tumor growth and metastasis by targeting TCF7. Exp. Ther. Med., 2018, 16(2), 879-885.
[http://dx.doi.org/10.3892/etm.2018.6259] [PMID: 30116340]
[80]
Siu, M.K.; Chen, W-Y.; Tsai, H-Y.; Chen, H-Y.; Yin, J.J.; Chen, C-L.; Tsai, Y-C.; Liu, Y-N. TCF7 is suppressed by the androgen receptor via microRNA-1-mediated downregulation and is involved in the development of resistance to androgen deprivation in prostate cancer. Prostate Cancer Prostatic Dis., 2017, 20(2), 172-178.
[http://dx.doi.org/10.1038/pcan.2017.2] [PMID: 28220803]
[81]
Wang, Y.; Zhang, S.; Xu, Y.; Zhang, Y.; Guan, H.; Li, X.; Li, Y.; Wang, Y. Upregulation of miR-192 inhibits cell growth and invasion and induces cell apoptosis by targeting TCF7 in human osteosarcoma. Tumour Biol., 2016, 37(11), 15211-15220.
[http://dx.doi.org/10.1007/s13277-016-5417-z] [PMID: 27683056]
[82]
Zhou, Y.; Zhang, X.; Klibanski, A. MEG3 noncoding RNA: A tumor suppressor. J. Mol. Endocrinol., 2012, 48(3), R45-R53.
[http://dx.doi.org/10.1530/JME-12-0008] [PMID: 22393162]
[83]
Benetatos, L.; Vartholomatos, G.; Hatzimichael, E. MEG3 imprinted gene contribution in tumorigenesis. Int. J. Cancer, 2011, 129(4), 773-779.
[http://dx.doi.org/10.1002/ijc.26052] [PMID: 21400503]
[84]
Booton, R.; Lindsay, M.A. Emerging role of MicroRNAs and long noncoding RNAs in respiratory disease. Chest, 2014, 146(1), 193-204.
[http://dx.doi.org/10.1378/chest.13-2736] [PMID: 25010962]
[85]
Hou, X.; Wan, H.; Ai, X.; Shi, Y.; Ni, Y.; Tang, W.; Shi, G. Histone deacetylase inhibitor regulates the balance of Th17/Treg in allergic asthma. Clin. Respir. J., 2016, 10(3), 371-379.
[http://dx.doi.org/10.1111/crj.12227] [PMID: 25307458]
[86]
Wang, S.Y.; Fan, X.L.; Yu, Q.N.; Deng, M.X.; Sun, Y.Q.; Gao, W.X.; Li, C.L.; Shi, J.B.; Fu, Q.L. The lncRNAs in-volved in mouse airway allergic inflammation following in-duced pluripotent stem cell-mesenchymal stem cell treatment. Stem Cell Res. Ther., 2017, 8(1), 2.
[http://dx.doi.org/10.1186/s13287-016-0456-3] [PMID: 28057064]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy