Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Detection of Ningnanmycin Using Fluorescence Spectroscopy Combined with BP Neural Network

Author(s): Xiaoyan Wang, Zhezhen Jiang, Rendong Ji*, Yue Han, Haiyi Bian, Yudong Yang, Xiaotao Feng, Jiangyu Xu and Mengyuan Wang

Volume 26, Issue 7, 2023

Published on: 17 October, 2022

Page: [1414 - 1423] Pages: 10

DOI: 10.2174/1386207325666220823124530

Price: $65

Abstract

Background: Ningnanmycin is a new antibiotic pesticide with good bactericidal and antiviral efficacy, which is widely used in the control of fruit and vegetable diseases, and the excessive pesticide residues pose a serious threat to the environment and human health.

Methods: In this study, we used fluorescence spectrometer to scan the three-dimensional spectrum of ningnanmycin samples. We used a BP neural network to complete the regression analysis of content prediction based on the fluorescence spectra. After that, the prediction performance of the BP neural network was compared with the exponential fitting method.

Results: The results of the BP neural network modeling based on the obtained samples showed that the mean square error of the prediction results of the test set is less than 10-4, the R-square is greater than 0.99, the average recovery is 99.11%, and the model performance of the BP neural network is better than exponential fitting.

Conclusion: Studies have shown that fluorescence spectroscopy combined with BP neural network can effectively predict the concentration of ningnanmycin.

Keywords: Ningnanmycin, fluorescence spectrum, quantitative analysis, BP neural network.

Graphical Abstract

[1]
Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur., 2017, 6(2), 48-60.
[http://dx.doi.org/10.1002/fes3.108]
[2]
Shokoohi, R.; Samadi, M.T.; Karami, M.; Khamutian, R. The necessity of monitoring pesticide residues in vegetables and fruits using hazard index among consumers. Iran. J. Public Health, 2019, 48(6), 1189-1190.
[PMID: 31341869]
[3]
Song, Y.T.; Lu, Y.; You, Q.H.; Hou, X.G.; Zhu, Z.L.; Sun, X.W.; Fang, N.; Hou, Z.G.; Liang, S.; Lu, Z.B. Residue and dissipation dynamics of ningnanmycin in ginseng by high performance liquid chromatography-tandem mass spectrometry. Chin. J. Pestic. Sci., 2021, 23(4), 747-753.
[http://dx.doi.org/10.16801/j.issn.1008-7303.2021.0081]
[4]
Zhou, J.; An, J.; Dong, C.; Zhao, J.; Zhang, Y.H.; Jiao, B.N. Progress of analytical methods for antibiotic residues in plant-derived food. Food Machinery, 2019, 35(04), 223-229.
[http://dx.doi.org/10.13652/j.issn.1003-5788.2019.04.041]
[5]
Birich, B.; El Hajjaji, S.; Ghandi, M.; Ait Daoud, N.; Badrane, N.; Soulaymani, R.B. A simple method of detection of 15 organochlorine pesticides in human plasma using gas chromatography. Chem. Data Collect., 2020, 30, 100562.
[http://dx.doi.org/10.1016/j.cdc.2020.100562]
[6]
Chen, G.Z.; Su, H.; Zhang, H.J.; Dang, L.; Zheng, J.B. Simultaneous determination of 7% kasugamycin and benziothiazolinone wettable powders by high performance liquid chromatography. Yingyong Huagong, 2021, 50(08), 2329-2331.
[http://dx.doi.org/10.16581/j.cnki.issn1671-3206.2021.08.010]
[7]
Chao, G.M.; Zhao, S.J.; Chen, K.; Ma, L.; Jin, B.Y. Determination of 11 kinds of pesticide residues in apple and tomato by gas chromatography-mass spectrometry. Sci. Technol. Food Ind., 2020, 41(16), 227-231.
[http://dx.doi.org/10.13386/j.issn1002-0306.2020.16.036]
[8]
Chen, S.Y.; Zhong, M.S.; Jiang, X.F.; Zhu, P.L.; Liang, J.; Ye, H.; Xiao, Y. Determination of 20 pesticide residues in edible fungi by liquid chromatographytandem mass spectrometry. Fujian J. Agric. Sci., 2016, 31(12), 1334-1339.
[http://dx.doi.org/10.19303/j.issn.1008-0384.2016.12.014]
[9]
Guo, Z.; Liu, C.; Yang, R.; Dong, G.; Yang, Y.; Liu, H.; Wu, N. Detection of pesticide in water using two-dimensional fluorescence correlation spectroscopy and N-way partial least squares. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 229, 117981.
[http://dx.doi.org/10.1016/j.saa.2019.117981] [PMID: 31923783]
[10]
Wang, T.; Yin, S.; Hu, J. Dissipation and residue determination of ningnanmycin in cucumber and soil by high performance liquid chromatography with ultraviolet detector. Bull. Environ. Contam. Toxicol., 2013, 90(2), 256-259.
[http://dx.doi.org/10.1007/s00128-012-0927-x] [PMID: 23242259]
[11]
Zhang, Y.; Chen, Z.L.; Li, H.D.; Wang, C.C.; Ding, R.Y.; Zhang, W.J.; Mao, J.S.; Guo, C.Y. Determination of Polyoxin B and ningnanmycin residues in pear by SPE-HPLC-MS/MS. Chin. J. Pestic., 2021, 60(06), 436-439.
[http://dx.doi.org/10.16820/j.cnki.1006-0413.2021.06.011]
[12]
Wang, S.; Wang, J.; Shang, F.; Wang, Y.; Cheng, Q.; Liu, N. A GA-BP method of detecting carbamate pesticide mixture based on three-dimensional fluorescence spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 224, 117396.
[http://dx.doi.org/10.1016/j.saa.2019.117396] [PMID: 31394391]
[13]
Chen, M.; Zhao, Z.; Lan, X.; Chen, Y.; Zhang, L.; Ji, R.; Wang, L. Determination of carbendazim and metiram pesticides residues in reapeseed and peanut oils by fluorescence spectrophotometry. Measurement, 2015, 73, 313-317.
[http://dx.doi.org/10.1016/j.measurement.2015.05.006]
[14]
Zhang, Y.L.; Yan, K.T.; Wang, L.L.; Chen, P.C.; Han, Y.F.; Lan, Y.B. Research progress of pesticide residue detection based on fluorescence spectrum analysis. Guangpuxue Yu Guangpu Fenxi, 2021, 41(08), 2364-2371.
[http://dx.doi.org/10.3964/j.issn.1000-0593(2021)08-2364-08]
[15]
Wang, Y.T.; Zhang, Y.; Shang, F.K.; Zhang, J.Z.; Zhang, H.; Sun, Y.Y.; Wang, X.R.; Wang, S.T. Measurement of polycyclic aromatic hydrocarbons in water by bp neural network combined with ATLD and three-dimensional fluorescence spectrometry. Spectrosc. Spectral Anal., 2019, 39(11), 3420-3425.
[16]
Köksal, O.K. Determination of the homogeneity of the Ag-Au bimetallic alloy thin films by means of a micro beam X-Ray fluorescence setup with using elemental composition. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2021, 11(3), 863-869.
[http://dx.doi.org/10.17714/gumusfenbil.877675]
[17]
Wrobel, P.; Czyzycki, M.; Furman, L.; Kolasinski, K.; Lankosz, M.; Mrenca, A.; Samek, L.; Wegrzynek, D. LabVIEW control software for scanning micro-beam X-ray fluorescence spectrometer. Talanta, 2012, 93, 186-192.
[http://dx.doi.org/10.1016/j.talanta.2012.02.010] [PMID: 22483897]
[18]
Czyzycki, M.; Wrobel, P.; Szczerbowska-Boruchowska, M.; Ostachowicz, B.; Wegrzynek, D.; Lankosz, M. The perspective of new multi-layer reference materials for confocal 3D micro X-ray fluorescence spectroscopy. XRay Spectrom., 2012, 41(4), 273-278.
[http://dx.doi.org/10.1002/xrs.2395]
[19]
Gao, B.; Zhao, P.F.; Lu, Y.X.; Fan, Y.; Zhou, L.H.; Qian, J.; Liu, L.N.; Zhao, S.Y.; Kong, Z.F. Study on recognition and classificationof blood fluorescence spectrum with bp neural network. Guangpuxue Yu Guangpu Fenxi, 2018, 38(10), 3136-3143.
[http://dx.doi.org/10.3964/j.issn.1000-0593(2018)10-3136-08]
[20]
Song, S.; Xiong, X.; Wu, X.; Xue, Z. Modeling the SOFC by BP neural network algorithm. Int. J. Hydrogen Energy, 2021, 46(38), 20065-20077.
[http://dx.doi.org/10.1016/j.ijhydene.2021.03.132]
[21]
Xiang, G.X.; Hu, H.Z.; Chen, J.R.; Chen, W.X.; Wu, L.S. A new agriculfural antibiotic—ningnanmycin. Acta Microbiol. Sin., 1995, (05), 368-374.
[http://dx.doi.org/10.13343/j.cnki.wsxb.1995.05.010]
[22]
Bahram, M.; Bro, R.; Stedmon, C.; Afkhami, A. Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. J. Chemometr., 2006, 20(3-4), 99-105.
[http://dx.doi.org/10.1002/cem.978]
[23]
Xu, J.G.; Wang, Z.B. Fluorescence Analysis, 3rd ed; Science Press: Beijing, 2006, pp. 64-70.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy