Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of Chemokines-Related miRNAs as Potential Biomarkers in Psoriasis Based on Integrated Bioinformatics Analysis

Author(s): Haojun Zhuang, Xiaoming Wang, Meiliang Guo, Qinqin Meng, Na Liu, Min Wei, Yuling Shi* and Hui Deng*

Volume 26, Issue 7, 2023

Published on: 16 September, 2022

Page: [1400 - 1413] Pages: 14

DOI: 10.2174/1386207325666220819194249

open access plus

conference banner
Abstract

Background: Psoriasis is an immune-mediated skin disorder caused by the proliferation of keratinocytes. Although psoriasis is generally diagnosed based on clinical manifestations, sensitive biomarkers are needed to help diagnose psoriasis early with atypical presentations. MicroRNAs play a functional role in the development of psoriasis, and they are stable and suitable as biomarkers in psoriasis.

Material and Methods: The GSE50790 and GSE53552 datasets from the Gene Expression Omnibus (GEO) database were used to identify Differentially Expressed Genes (DEGs) between the control group and the lesional group. DEGs were processed for enrichment analysis to explore the functions, and a Protein-Protein Interaction (PPI) network was constructed to obtain gene clusters. The signalling pathway associated with gene cluster 1 was processed to further identify related genes. Hub genes were obtained through the intersection of cluster 1 and the related genes. Hub genes were used to predict the miRNAs through a gene-miRNA interaction network. The relative expression of miRNAs was measured by qRT-PCR to identify the suitability of miRNAs as biomarkers.

Results: Bioinformatics analysis revealed that the chemokine signalling pathway is involved in the development of psoriasis. Five related miRNAs were mined from the datasets, and qRT-PCR showed that hsa-miR-612 (p=0.0015), hsa-miR-3194-5p (p=0.0078) and hsa-miR-4316 (p<0.0001) may be potential biomarkers in psoriasis.

Keywords: Chemokines, psoriasis, biomarkers, microRNAs, miR-612, miR-3194-5p, miR-4316

Graphical Abstract

[1]
Boehncke, W.H.; Schön, M.P. Psoriasis. Lancet, 2015, 386(9997), 983-994.
[http://dx.doi.org/10.1016/S0140-6736(14)61909-7] [PMID: 26025581]
[2]
Kaufman, B.P.; Alexis, A.F. Psoriasis in skin of color: Insights into the epidemiology, clinical presentation, genetics, quality-of-life impact, and treatment of psoriasis in non-white racial/ethnic groups. Am. J. Clin. Dermatol., 2018, 19(3), 405-423.
[http://dx.doi.org/10.1007/s40257-017-0332-7] [PMID: 29209945]
[3]
Armstrong, A.W.; Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis. JAMA, 2020, 323(19), 1945-1960.
[http://dx.doi.org/10.1001/jama.2020.4006] [PMID: 32427307]
[4]
Schleicher, S.M. Psoriasis. Clin. Podiatr. Med. Surg., 2016, 33(3), 355-366.
[http://dx.doi.org/10.1016/j.cpm.2016.02.004] [PMID: 27215156]
[5]
Rendon, A.; Schäkel, K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci., 2019, 20(6), 1475.
[http://dx.doi.org/10.3390/ijms20061475] [PMID: 30909615]
[6]
Brandon, A.; Mufti, A.; Gary Sibbald, R. Diagnosis and management of cutaneous psoriasis: A review. Adv. Skin Wound Care, 2019, 32(2), 58-69.
[http://dx.doi.org/10.1097/01.ASW.0000550592.08674.43] [PMID: 30653184]
[7]
Kim, W.B.; Jerome, D.; Yeung, J. Diagnosis and management of psoriasis. Can. Fam. Physician, 2017, 63(4), 278-285.
[PMID: 28404701]
[8]
Domingo, S.; Solé, C.; Moliné, T.; Ferrer, B.; Cortés-Hernández, J. MicroRNAs in several cutaneous autoimmune diseases: Psoriasis, cutaneous lupus erythematosus and atopic dermatitis. Cells, 2020, 9(12), 2656.
[http://dx.doi.org/10.3390/cells9122656] [PMID: 33321931]
[9]
Hawkes, J.E.; Nguyen, G.H.; Fujita, M.; Florell, S.R.; Callis Duffin, K.; Krueger, G.G.; O’Connell, R.M. microRNAs in psoriasis. J. Invest. Dermatol., 2016, 136(2), 365-371.
[http://dx.doi.org/10.1038/JID.2015.409] [PMID: 26802234]
[10]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[11]
Chen, H.; Boutros, P.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics, 2011, 12(1), 35.
[http://dx.doi.org/10.1186/1471-2105-12-35] [PMID: 21269502]
[12]
Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 2009, 37(1), 1-13.
[http://dx.doi.org/10.1093/nar/gkn923] [PMID: 19033363]
[13]
Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[14]
Fonseka, P.; Pathan, M.; Chitti, S.V.; Kang, T.; Mathivanan, S. FunRich enables enrichment analysis of OMICs datasets. J. Mol. Biol., 2021, 433(11), 166747.
[http://dx.doi.org/10.1016/j.jmb.2020.166747] [PMID: 33310018]
[15]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[16]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[17]
Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1), 2.
[http://dx.doi.org/10.1186/1471-2105-4-2] [PMID: 12525261]
[18]
Xia, J.; Gill, E.E.; Hancock, R.E.W. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat. Protoc., 2015, 10(6), 823-844.
[http://dx.doi.org/10.1038/nprot.2015.052] [PMID: 25950236]
[19]
Dweep, H.; Sticht, C.; Pandey, P.; Gretz, N. miRWalk – Database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform., 2011, 44(5), 839-847.
[http://dx.doi.org/10.1016/j.jbi.2011.05.002] [PMID: 21605702]
[20]
Liang, Y.; Sarkar, M.K.; Tsoi, L.C.; Gudjonsson, J.E. Psoriasis: A mixed autoimmune and autoinflammatory disease. Curr. Opin. Immunol., 2017, 49, 1-8.
[http://dx.doi.org/10.1016/j.coi.2017.07.007] [PMID: 28738209]
[21]
Kerdel, F.; Don, F. The importance of early treatment in psoriasis and management of disease progression. J. Drugs Dermatol., 2018, 17(7), 737-742.
[PMID: 30005095]
[22]
Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol., 2018, 141(4), 1202-1207.
[http://dx.doi.org/10.1016/j.jaci.2017.08.034] [PMID: 29074454]
[23]
Chen, L.; Heikkinen, L.; Wang, C.; Yang, Y.; Sun, H.; Wong, G. Trends in the development of miRNA bioinformatics tools. Brief. Bioinform., 2019, 20(5), 1836-1852.
[http://dx.doi.org/10.1093/bib/bby054] [PMID: 29982332]
[24]
Timis, T.L.; Orasan, R.I. Understanding psoriasis: Role of miRNAs. Biomed. Rep., 2018, 9(5), 367-374.
[PMID: 30402223]
[25]
El-Komy, M.; Amin, I.; El-Hawary, M.S.; Saadi, D.; Shaker, O. Upregulation of the miRNA-155, miRNA-210, and miRNA-20b in psoriasis patients and their relation to IL-17. Int. J. Immunopathol. Pharmacol., 2020, 34.
[http://dx.doi.org/10.1177/2058738420933742] [PMID: 32602388]
[26]
Charo, I.F.; Ransohoff, R.M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med., 2006, 354(6), 610-621.
[http://dx.doi.org/10.1056/NEJMra052723] [PMID: 16467548]
[27]
Deng, Y.; Chang, C.; Lu, Q. The inflammatory response in Psoriasis: A comprehensive review. Clin. Rev. Allergy Immunol., 2016, 50(3), 377-389.
[http://dx.doi.org/10.1007/s12016-016-8535-x] [PMID: 27025861]
[28]
Zhang, W.; Yi, X.; An, Y.; Guo, S.; Li, S.; Song, P.; Chang, Y.; Zhang, S.; Gao, T.; Wang, G.; Li, C. MicroRNA-17-92 cluster promotes the proliferation and the chemokine production of keratinocytes: Implication for the pathogenesis of psoriasis. Cell Death Dis., 2018, 9(5), 567.
[http://dx.doi.org/10.1038/s41419-018-0621-y] [PMID: 29752469]
[29]
Lima, X.T.; Oliveira, R.T.D.; Braga, F.G.; Magalhães, R.F.; Mamoni, R.L.; Blotta, M.H.S.L. Circulating levels of chemokines in psoriasis. Autoimmunity, 2015, 48(1), 57-60.
[http://dx.doi.org/10.3109/08916934.2014.947476] [PMID: 25117898]
[30]
Duarte, G.V.; Boeira, V.; Correia, T.; Porto-Silva, L.; Cardoso, T.; Macedo, M.N.; Oliveira, M.F.; Carvalho, E. Osteopontin, CCL5 and CXCL9 are independently associated with psoriasis, regardless of the presence of obesity. Cytokine, 2015, 74(2), 287-292.
[http://dx.doi.org/10.1016/j.cyto.2015.04.015] [PMID: 25972108]
[31]
Penkava, F.; Velasco-Herrera, M.D.C.; Young, M.D.; Yager, N.; Nwosu, L.N.; Pratt, A.G.; Lara, A.L.; Guzzo, C.; Maroof, A.; Mamanova, L.; Cole, S.; Efremova, M.; Simone, D.; Filer, A.; Brown, C.C.; Croxford, A.L.; Isaacs, J.D.; Teichmann, S.; Bowness, P.; Behjati, S.; Hussein Al-Mossawi, M. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat. Commun., 2020, 11(1), 4767.
[http://dx.doi.org/10.1038/s41467-020-18513-6] [PMID: 32958743]
[32]
Liu, R.; Lu, Z.; Gu, J.; Liu, J.; Huang, E.; Liu, X.; Wang, L.; Yang, J.; Deng, Y.; Qian, J.; Luo, F.; Wang, Z.; Zhang, H.; Jiang, X.; Zhang, D.; Qian, J.; Liu, G.; Zhu, H.; Qian, Y.; Liu, Z.; Chu, Y. MicroRNAs 15A and 16–1 activate signaling pathways that mediate chemotaxis of immune regulatory B cells to colorectal tumors. Gastroenterology, 2018, 154(3), 637-651.e7.
[http://dx.doi.org/10.1053/j.gastro.2017.09.045] [PMID: 29031499]
[33]
Bai, L.; Fang, H.; Xia, S.; Zhang, R.; Li, L.; Ochando, J.; Xu, J.; Ding, Y. STAT1 activation represses IL-22 gene expression and psoriasis pathogenesis. Biochem. Biophys. Res. Commun., 2018, 501(2), 563-569.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.042] [PMID: 29750958]
[34]
Huang, C.; Zhong, W.; Ren, X.; Huang, X.; Li, Z.; Chen, C.; Jiang, B.; Chen, Z.; Jian, X.; Yang, L.; Liu, X.; Huang, H.; Shen, C.; Chen, X.; Dou, X.; Yu, B. MiR-193b-3p–ERBB4 axis regulates psoriasis pathogenesis via modulating cellular proliferation and inflammatory-mediator production of keratinocytes. Cell Death Dis., 2021, 12(11), 963.
[http://dx.doi.org/10.1038/s41419-021-04230-5] [PMID: 34667159]
[35]
Zhu, Y.; Zhang, H.L.; Wang, Q.Y.; Chen, M.J.; Liu, L.B. Overexpression of microRNA-612 restrains the growth, invasion, and tumorigenesis of melanoma cells by targeting espin. Mol. Cells, 2018, 41(2), 119-126.
[PMID: 29385671]
[36]
Tao, Z.H.; Wan, J.L.; Zeng, L.Y.; Xie, L.; Sun, H.C.; Qin, L.X.; Wang, L.; Zhou, J.; Ren, Z.G.; Li, Y.X.; Fan, J.; Wu, W.Z. miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. J. Exp. Med., 2013, 210(4), 789-803.
[http://dx.doi.org/10.1084/jem.20120153] [PMID: 23478189]
[37]
Zolotarenko, A.; Chekalin, E.; Piruzian, E.; Bruskin, S. FRA1 mediates the activation of keratinocytes: Implications for the development of psoriatic plaques. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(12), 3726-3734.
[http://dx.doi.org/10.1016/j.bbadis.2018.09.016] [PMID: 30318470]
[38]
Hufbauer, M.; Maltseva, M.; Meinrath, J.; Lechner, A.; Beutner, D.; Huebbers, C.U.; Akgül, B. HPV16 increases the number of migratory cancer stem cells and modulates their miRNA expression profile in oropharyngeal cancer. Int. J. Cancer, 2018, 143(6), 1426-1439.
[http://dx.doi.org/10.1002/ijc.31538] [PMID: 29663357]
[39]
Palmieri, O.; Creanza, T.M.; Bossa, F.; Latiano, T.; Corritore, G.; Palumbo, O.; Martino, G.; Biscaglia, G.; Scimeca, D.; Carella, M.; Ancona, N.; Andriulli, A.; Latiano, A. Functional implications of MicroRNAs in Crohn’s disease revealed by integrating MicroRNA and messenger RNA expression profiling. Int. J. Mol. Sci., 2017, 18(7), 1580.
[http://dx.doi.org/10.3390/ijms18071580] [PMID: 28726756]
[40]
Powrózek, T.; Krawczyk, P.; Kowalski, D.M.; Kuźnar-Kamińska, B.; Winiarczyk, K.; Olszyna-Serementa, M.; Batura-Gabryel, H.; Milanowski, J. Application of plasma circulating microRNA-448, 506, 4316, and 4478 analysis for non-invasive diagnosis of lung cancer. Tumour Biol., 2016, 37(2), 2049-2055.
[http://dx.doi.org/10.1007/s13277-015-3971-4] [PMID: 26341493]
[41]
Furue, M.; Furue, K.; Tsuji, G.; Nakahara, T. Interleukin-17A and keratinocytes in psoriasis. Int. J. Mol. Sci., 2020, 21(4), 1275.
[http://dx.doi.org/10.3390/ijms21041275] [PMID: 32070069]
[42]
Xia, P.; Fang, X.; Zhang, Z.; Huang, Q.; Yan, K.; Kang, K.; Han, L.; Zheng, Z. Dysregulation of miRNA146a versus IRAK1 induces IL-17 persistence in the psoriatic skin lesions. Immunol. Lett., 2012, 148(2), 151-162.
[http://dx.doi.org/10.1016/j.imlet.2012.09.004] [PMID: 23018031]
[43]
Fabbri, M.; Ivan, M.; Cimmino, A.; Negrini, M.; Calin, G.A. Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin. Biol. Ther., 2007, 7(7), 1009-1019.
[http://dx.doi.org/10.1517/14712598.7.7.1009] [PMID: 17665990]
[44]
Igaz, I.; Igaz, P. Why is microRNA action tissue specific? A putative defense mechanism against growth disorders, tumor development or progression mediated by circulating microRNA? Med. Hypotheses, 2015, 85(5), 530-533.
[http://dx.doi.org/10.1016/j.mehy.2015.07.013] [PMID: 26198739]

© 2024 Bentham Science Publishers | Privacy Policy