Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

A Methodical and Performance-based Investigation of Alzheimer Disease Detection on Magnetic Resonance and Multimodal Images

Author(s): Keerthika C. and Anisha M. Lal*

Volume 19, Issue 6, 2023

Published on: 06 October, 2022

Article ID: e230822207914 Pages: 18

DOI: 10.2174/1573405618666220823115848

Price: $65

Abstract

Background: In recent years, Alzheimer's Disease (AD) has received more attention in the field of medical imaging, which leads to cognitive disorders. Physicians mainly rely on MRI imaging to examine memory impairment, thinking skills, judge functional abilities, and detect behavioral abnormalities for diagnosing Alzheimer's disease.

Objective: Early diagnosis of AD has become a challenging and strenuous task with conventional methods. The diagnostic procedure becomes complicated due to the structure and heterogeneous dimensions of the brain. This paper visualizes and analyzes the publications on AD and furnishes a detailed review based on the stages involved in the early detection of the disease.

Methods: This paper also focuses on assorted stages of disease detection such as image preprocessing, segmentation, feature extraction, classification, and optimization techniques that have been used in the diagnosis of AD during the past five years. It also spotlights the deep learning models used in assorted stages of detection. This paper also highlights the benefits of each method for assorted modalities of images.

Results: AD has been analyzed with various computational methods on a few datasets, which leads to high computation time and loss of important features. Hybrid methods can perform better in every diagnosis stage of AD than others. Finally, the assorted datasets used for the diagnosis and investigation of Alzheimer's disease were analyzed and explored using a computerized system for future scope.

Conclusion: From the review papers, we can conclude that DNN has greater accuracy in MR images and CNN +AEC has the best accuracy in the multimodal images.

Keywords: Alzheimer's Disease, Classification, Deep Learning, Feature Extraction, Optimization, Pre-processing, Segmentation

[1]
Francis A, Pandian IA. Early detection of Alzheimer’s disease using local binary pattern and convolutional neural network. Multimedia Tools Appl 2021; 80(19): 29585-600.
[http://dx.doi.org/10.1007/s11042-021-11161-y]
[2]
Ahmad HM, Khan MJ, Yousaf A, Ghuffar S, Khurshid K. Deep learning: A breakthrough in medical imaging. Current Medical Imaging Formerly Current Medical Imaging Reviews 2019; p. 15.
[http://dx.doi.org/10.2174/1573405615666191219100824] [PMID: 33081657]
[3]
Al-Shoukry S, Rassem TH, Makbol NM. Alzheimer’s diseases detection by using deep learning algorithms: A mini-review IEEE Access 2020; 8: 77131-41.
[http://dx.doi.org/10.1109/ACCESS.2020.2989396]
[4]
Liu J, Li M, Luo Y, Yang S, Li W, Bi Y. Alzheimer’s disease detection using depthwise separable convolutional neural networks. Comput Methods Programs Biomed 2021; 203: 106032.
[http://dx.doi.org/10.1016/j.cmpb.2021.106032] [PMID: 33713959]
[5]
Puente-Castro A, Fernandez-Blanco E, Pazos A, Munteanu CR. Automatic assessment of Alzheimer’s disease diagnosis based on deep learning techniques. Comput Biol Med 2020; 120: 103764.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103764] [PMID: 32421658]
[6]
Zhu W, Sun L, Huang J, Han L, Zhang D. Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI. IEEE Trans Med Imaging 2021; 40(9): 2354-66.
[http://dx.doi.org/10.1109/TMI.2021.3077079] [PMID: 33939609]
[7]
Leandrou S, Petroudi S, Kyriacou PA, Reyes-Aldasoro CC, Pattichis CS. Quantitative MRI brain studies in mild cognitive impairment and Alzheimer’s disease: A methodological review. IEEE Rev Biomed Eng 2018; 11: 97-111.
[http://dx.doi.org/10.1109/RBME.2018.2796598] [PMID: 29994606]
[8]
Islam J, Zhang Y. An ensemble of deep convolutional neural networks for Alzheimer’s disease detection, and classification. arXiv preprint arXiv:17120167
[9]
Guo H, Zhang Y. Resting state FMRI and improved deep learning algorithm for earlier detection of Alzheimer’s disease IEEE Access 2020; 8: 115383-92.
[http://dx.doi.org/10.1109/ACCESS.2020.3003424]
[10]
El-Sappagh S, Abuhmed T, Riazul Islam SM, Kwak KS. Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data. Neurocomputing 2020; 412: 197-215.
[http://dx.doi.org/10.1016/j.neucom.2020.05.087]
[11]
Chen CZ, Wu Q, Li ZY, Xiao L, Hu ZY. Diagnosis of Alzheimer’s disease based on deeply-fused nets. Comb Chem High Throughput Screen 2021; 24(6): 781-9.
[http://dx.doi.org/10.2174/1386207323666200825092649] [PMID: 32842937]
[12]
Suresha HS, Parthasarathy SS. Detection of Alzheimer’s disease using grey wolf optimization based clustering algorithm and deep neural network from magnetic resonance images. Distrib Parallel Databases 2021.
[http://dx.doi.org/10.1007/s10619-021-07345-y]
[13]
Chen Y, Xia Y. Iterative sparse and deep learning for accurate diagnosis of Alzheimer’s disease. Pattern Recognit 2021; 116: 107944.
[http://dx.doi.org/10.1016/j.patcog.2021.107944]
[14]
Aderghal K, Afdel K, Benois-Pineau J, Catheline G. Improving Alzheimer’s stage categorization with convolutional neural network using transfer learning and different magnetic resonance imaging modalities. Heliyon 2020; 6(12): e05652.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05652] [PMID: 33336093]
[15]
Zeng N, Li H, Peng Y. A new deep belief network-based multi-task learning for diagnosis of Alzheimer’s disease. Neural Comput Appl 2021; 1-12.
[http://dx.doi.org/10.1007/s00521-021-06149-6]
[16]
Feng J, Zhang S-W, Chen L, Xia J. Alzheimer’s disease classification using features extracted from nonsubsampled contourlet subband-based individual networks. Neurocomputing 2021; 421: 260-72.
[http://dx.doi.org/10.1016/j.neucom.2020.09.012]
[17]
Pei S, Guan J. Classifying cognitive normal and early mild cognitive impairment of Alzheimer’s disease by applying restricted boltzmann machine to FMRI data. Curr Bioinform 2020; 15.
[http://dx.doi.org/10.2174/1574893615999200618152109]
[18]
Yue L, Gong X, Li J, Ji H, Li M, Nandi AK. Hierarchical feature extraction for early Alzheimer’s disease diagnosis IEEE Access 2019; 7: 93752-60.
[http://dx.doi.org/10.1109/ACCESS.2019.2926288]
[19]
Poloni KM, Duarte de Oliveira IA, Tam R, Ferrari RJ, Brain MR. Image classification for Alzheimer’s disease diagnosis using structural hippocampal asymmetrical attributes from directional 3-D log-gabor filter responses. Neurocomputing 2021; 419: 126-35.
[http://dx.doi.org/10.1016/j.neucom.2020.07.102]
[20]
Rabeh AB, Benzarti F, Amiri H. Segmentation of brain MRI for detecting Alzheimer’s disease. Curr Med Imaging Rev 2018; 14(2): 263-70.
[http://dx.doi.org/10.2174/1573405613666170116163251]
[21]
Dadar M, Pascoal TA, Manitsirikul S, et al. Validation of a regression technique for segmentation of white matter hyperintensities in Alzheimer’s disease. IEEE Trans Med Imaging 2017; 36(8): 1758-68.
[http://dx.doi.org/10.1109/TMI.2017.2693978] [PMID: 28422655]
[22]
Goceri E. CapsNet topology to classify tumours from brain images and comparative evaluation. IET Image Process 2020; 14(5): 882-9.
[http://dx.doi.org/10.1049/iet-ipr.2019.0312]
[23]
Goceri E. Diagnosis of Alzheimer’s disease with Sobolev gradient-based optimization and 3D convolutional neural network. Int J Numer Methods Biomed Eng 2019; 35(7): e3225.
[http://dx.doi.org/10.1002/cnm.3225] [PMID: 31166647]
[24]
Goceri E. Automated measurement of changes in cortical thickness from MR images Int Conf Applied Analysis and Mathematical Modeling (ICAAMM) 2018, Istanbul, Turkey 2018; 78.
[25]
Toğaçar M, Cömert Z, Ergen B. Enhancing of dataset using deepdream, fuzzy color image enhancement and hypercolumn techniques to detection of the Alzheimer’s disease stages by deep learning model. Neural Comput Appl 2021; 33(16): 9877-89.
[http://dx.doi.org/10.1007/s00521-021-05758-5]
[26]
Shoaip N, Rezk A, El-Sappagh S, Alarabi L, Barakat S, Elmogy MM. A comprehensive fuzzy ontology-based decision support system for Alzheimer’s disease diagnosis IEEE Access 2021; 9: 31350-72.
[http://dx.doi.org/10.1109/ACCESS.2020.3048435]
[27]
Basheera S, Sai Ram MS. Convolution neural network-based Alzheimer’s disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation. Alzheimers Dement (N Y) 2019; 5(1): 974-86.
[http://dx.doi.org/10.1016/j.trci.2019.10.001] [PMID: 31921971]
[28]
Li F, Liu M. Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks. Comput Med Imaging Graph 2018; 70: 101-10.
[http://dx.doi.org/10.1016/j.compmedimag.2018.09.009] [PMID: 30340094]
[29]
Karami V, Nittari G, Amenta F. Neuroimaging computer-aided diagnosis systems for Alzheimer’s disease. Int J Imaging Syst Technol 2018; 29(1): 83-94.
[http://dx.doi.org/10.1002/ima.22300]
[30]
So J-H, Madusanka N, Choi H-K, Choi B-K, Park H-G. Deep learning for Alzheimer’s disease classification using texture features. Curr Med Imaging Rev 2019; 15(7): 689-98.
[http://dx.doi.org/10.2174/1573405615666190404163233] [PMID: 32008517]
[31]
Altaf T, Anwar SM, Gul N, Majeed MN, Majid M. Multi-class Alzheimer’s disease classification using image and clinical features. Biomed Signal Process Control 2018; 43: 64-74.
[http://dx.doi.org/10.1016/j.bspc.2018.02.019]
[32]
Hong X, Lin R, Yang C, et al. Predicting Alzheimer’s disease using LSTM IEEE Access 2019; 7: 80893-901.
[http://dx.doi.org/10.1109/ACCESS.2019.2919385]
[33]
Feng C, Elazab A, Yang P, et al. Deep learning framework for Alzheimer’s disease diagnosis via 3D-CNN and FSBi-LSTM. IEEE Access 2019; 7: 63605-18.
[http://dx.doi.org/10.1109/ACCESS.2019.2913847]
[34]
Li W, Lin X, Chen X. Detecting Alzheimer’s disease based on 4D FMRI: An exploration under deep learning framework. Neurocomputing 2020; 388: 280-7.
[http://dx.doi.org/10.1016/j.neucom.2020.01.053]
[35]
Jung W, Jun E, Suk H-I. Deep recurrent model for individualized prediction of Alzheimer’s disease progression. Neuroimage 2021; 237: 118143.
[http://dx.doi.org/10.1016/j.neuroimage.2021.118143] [PMID: 33991694]
[36]
Lu D, Popuri K, Ding GW, Balachandar R, Beg MF. Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci Rep 2018; 8(1): 5697.
[http://dx.doi.org/10.1038/s41598-018-22871-z] [PMID: 29632364]
[37]
Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep learning for brain MRI segmentation: State of the art and future directions. J Digit Imaging 2017; 30(4): 449-59.
[http://dx.doi.org/10.1007/s10278-017-9983-4] [PMID: 28577131]
[38]
Khan P, Kader MF, Islam SMR, et al. Machine learning and deep learning approaches for brain disease diagnosis: Principles and recent advances. IEEE Access 2021; 9: 37622-55.
[http://dx.doi.org/10.1109/ACCESS.2021.3062484]
[39]
Ramzan F, Khan MUG, Rehmat A, et al. A deep learning approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting-state fMRI and residual neural networks. J Med Syst 2019; 44(2): 37.
[http://dx.doi.org/10.1007/s10916-019-1475-2] [PMID: 31853655]
[40]
Zhang F, Li Z, Zhang B, Du H, Wang B, Zhang X. Multi-modal deep learning model for auxiliary diagnosis of Alzheimer’s disease. Neurocomputing 2019; 361: 185-95.
[http://dx.doi.org/10.1016/j.neucom.2019.04.093]
[41]
Hedayati R, Khedmati M, Taghipour-Gorjikolaie M. Deep feature extraction method based on ensemble of convolutional auto encoders: Application to Alzheimer’s disease diagnosis. Biomed Signal Process Control 2021; 66: 102397.
[http://dx.doi.org/10.1016/j.bspc.2020.102397]
[42]
Buvaneswari PR, Gayathri R. Deep learning-based segmentation in classification of Alzheimer’s disease. Arab J Sci Eng 2021; 46(6): 5373-83.
[http://dx.doi.org/10.1007/s13369-020-05193-z]
[43]
Raju M, Gopi VP, Anitha VS, Wahid KA. Multi-class diagnosis of Alzheimer’s disease using cascaded three dimensional-convolutional neural network. Physical and Engineering Sciences in Medicine 2020.
[http://dx.doi.org/10.1007/s13246-020-00924-w]
[44]
Liu C-F, Padhy S, Ramachandran S, et al. Using deep Siamese neural networks for detection of brain asymmetries associated with Alzheimer’s disease and mild cognitive impairment. Magn Reson Imaging 2019; 64: 190-9.
[http://dx.doi.org/10.1016/j.mri.2019.07.003] [PMID: 31319126]
[45]
Acharya UR, Fernandes SL. Automated detection of Alzheimer’s disease using brain MRI Images– a study with various feature extraction techniques. J Med Syst 2019; 43(9)
[http://dx.doi.org/10.1007/s10916-019-1428-9] [PMID: 31396722]
[46]
Cui R, Liu M. Hippocampus analysis by combination of 3-D DenseNet and shapes for Alzheimer’s disease diagnosis. IEEE J Biomed Health Inform 2019; 23(5): 2099-107.
[http://dx.doi.org/10.1109/JBHI.2018.2882392] [PMID: 30475734]
[47]
Lian C, Liu M, Zhang J, Shen D. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans Pattern Anal Mach Intell 2020; 42(4): 880-93.
[http://dx.doi.org/10.1109/TPAMI.2018.2889096] [PMID: 30582529]
[48]
Ge C, Qu Q, Gu IYH, Jakola AS. Multiscale deep convolutional networks for characterization, and detection of Alzheimer’s disease using MR images. 2019; IEEE International Conference on Image Processing (ICIP) 789-93.
[http://dx.doi.org/10.1109/ICIP.2019.8803731]
[49]
Raghavaiah P, Varadarajan S. Novel deep learning convolution technique for recognition of Alzheimer’s disease. Mater Today Proc 2021; 46: 4095-8.
[http://dx.doi.org/10.1016/j.matpr.2021.02.626]
[50]
Armananzas R, Iglesias M, Morales DA, Alonso-Nanclares L. Voxel-based diagnosis of Alzheimer’s disease using classifier ensembles. IEEE J Biomed Health Inform 2017; 21(3): 778-84.
[http://dx.doi.org/10.1109/JBHI.2016.2538559] [PMID: 28113481]
[51]
Suresha HS, Parthasarathy SS. Probabilistic principal component analysis and long short-term memory classifier for automatic detection of Alzheimer’s disease using MRI brain images Journal of The Institution of Engineers 2021.
[http://dx.doi.org/10.1007/s40031-021-00571-z]
[52]
Zhou X, Qiu S, Joshi PS, et al. Enhancing magnetic resonance imaging-driven Alzheimer’s disease classification performance using generative adversarial learning. Alzheimers Res Ther 2021; 13(1): 60.
[http://dx.doi.org/10.1186/s13195-021-00797-5] [PMID: 33715635]
[53]
Afzal S, Maqsood M, Nazir F, et al. A data augmentation-based framework to handle class imbalance problem for Alzheimer’s stage detection IEEE Access 2019; 7: 115528-39.
[http://dx.doi.org/10.1109/ACCESS.2019.2932786]
[54]
Ashraf A, Naz S, Shirazi SH, Razzak I, Parsad M. Deep transfer learning for alzheimer neurological disorder detection. Multimedia Tools Appl 2021; 80(20): 30117-42.
[http://dx.doi.org/10.1007/s11042-020-10331-8]
[55]
Pei Z, Gou Y, Ma M, et al. Alzheimer’s disease diagnosis based on long-range dependency mechanism using convolutional neural network. Multimedia Tools Appl 2021.
[http://dx.doi.org/10.1007/s11042-021-11279-z]
[56]
Hazarika RA, Kandar D, Maji AK. An experimental analysis of different deep learning based models for Alzheimer’s disease classification using brain magnetic resonance images Journal of King Saud University - Computer and Information Sciences 2021.
[http://dx.doi.org/10.1016/j.jksuci.2021.09.003]
[57]
Liu M, Li F, Yan H, et al. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage 2020; 208: 116459.
[http://dx.doi.org/10.1016/j.neuroimage.2019.116459] [PMID: 31837471]
[58]
Murugan S, Venkatesan C, Sumithra MG, et al. DEMNET: A deep learning model for early diagnosis of alzheimer diseases and dementia from MR images IEEE Access 2021; 9: 90319-29.
[http://dx.doi.org/10.1109/ACCESS.2021.3090474]
[59]
Choi B-K, Madusanka N, Choi H-K, et al. Convolutional neural network-based MR image analysis for Alzheimer’s disease classification. Curr Med Imaging Rev 2020; 16(1): 27-35.
[http://dx.doi.org/10.2174/1573405615666191021123854] [PMID: 31989891]
[60]
Tufail AB, Ma Y-K, Zhang Q-N. Binary classification of Alzheimer’s disease using sMRI imaging modality and deep learning. J Digit Imaging 2020; 33(5): 1073-90.
[http://dx.doi.org/10.1007/s10278-019-00265-5] [PMID: 32728983]
[61]
Jain R, Jain N, Aggarwal A, Hemanth DJ. Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images. Cogn Syst Res 2019; 57: 147-59.
[http://dx.doi.org/10.1016/j.cogsys.2018.12.015]
[62]
Wang B, Lu K, Zheng X, et al. Early stage identification of Alzheimer’s disease using a two-stage ensemble classifier. Curr Bioinform 2018; 13(5): 529-35.
[http://dx.doi.org/10.2174/1574893613666180328093114]
[63]
Silva IR, Silva GS, de Souza RG, dos Santos WP, Roberta ADA. Model based on deep feature extraction for diagnosis of Alzheimer’s disease. 2019; International Joint Conference on Neural Networks (IJCNN) 1-7.
[http://dx.doi.org/10.1109/IJCNN.2019.8852138]
[64]
Venugopalan J, Tong L, Hassanzadeh HR, Wang MD. Multimodal deep learning models for early detection of Alzheimer’s disease stage. Sci Rep 2021; 11(1): 3254.
[http://dx.doi.org/10.1038/s41598-020-74399-w] [PMID: 33547343]
[65]
Razavi F, Tarokh MJ, Alborzi M. An intelligent Alzheimer’s disease diagnosis method using unsupervised feature learning. J Big Data 2019; 6(1): 32.
[http://dx.doi.org/10.1186/s40537-019-0190-7]
[66]
Khagi B, Kwon G-R. 3D CNN design for the classification of Alzheimer’s disease using brain MRI and PET. IEEE Access 2020; 8: 217830-47
[http://dx.doi.org/10.1109/ACCESS.2020.3040486]
[67]
Kruthika KR. Rajeswari, Maheshappa HD. CBIR system using capsule networks and 3D CNN for Alzheimer’s disease diagnosis. Informatics in Medicine Unlocked 2019; 14: 59-68.
[http://dx.doi.org/10.1016/j.imu.2018.12.001]
[68]
Janghel RR, Rathore YK. Deep convolution neural network based system for early diagnosis of Alzheimer’s disease. IRBM 2020.
[http://dx.doi.org/10.1016/j.irbm.2020.06.006]
[69]
Nguyen M, He T, An L, Alexander DC, Feng J, Yeo BTT. Predicting Alzheimer’s disease progression using deep recurrent neural networks. Neuroimage 2020; 222: 117203.
[http://dx.doi.org/10.1016/j.neuroimage.2020.117203] [PMID: 32763427]
[70]
Naganandhini S, Shanmugavadivu P. Effective diagnosis of Alzheimer’s disease using modified decision tree classifier. Procedia Comput Sci 2019; 165: 548-55.
[http://dx.doi.org/10.1016/j.procs.2020.01.049]
[71]
Vu T-D, Ho N-H, Yang H-J, Kim J, Song H-C. Non-white matter tissue extraction and deep convolutional neural network for Alzheimer’s disease detection. Soft Comput 2018; 22(20): 6825-33.
[http://dx.doi.org/10.1007/s00500-018-3421-5]
[72]
Zhang J, Liu M. Le An, Gao Y, Shen D. Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images. IEEE J Biomed Health Inform 2017; 21(6): 1607-16.
[http://dx.doi.org/10.1109/JBHI.2017.2704614] [PMID: 28534798]
[73]
Ghosh S, Das N, Das I, Maulik U. Understanding deep learning techniques for image segmentation. ACM Comput Surv 2019; 52(4): 1-35. [CSUR
[http://dx.doi.org/10.1145/3329784]
[74]
Leandrou S, Lamnisos D, Kyriacou PA, Constanti S, Pattichis CS. Comparison of 1.5 T and 3 T MRI hippocampus texture features in the assessment of Alzheimer’s disease. Biomed Signal Process Control 2020; 62: 102098.
[http://dx.doi.org/10.1016/j.bspc.2020.102098]
[75]
Carmo D, Silva B, Yasuda C, Rittner L, Lotufo R. Hippocampus segmentation on epilepsy and Alzheimer’s disease studies with multiple convolutional neural networks. Heliyon 2021; 7(2): e06226.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06226] [PMID: 33659748]
[76]
Allioui H, Sadgal M, Elfazziki A. Utilization of a convolutional method for alzheimer disease diagnosis. Mach Vis Appl 2020; 31(4): 25.
[http://dx.doi.org/10.1007/s00138-020-01074-5]
[77]
Xia Z, Zhou T, Mamoon S, Lu J. Recognition of dementia biomarkers with deep finer-DBN. IEEE Trans Neural Syst Rehabil Eng 2021; 29: 1926-35.
[http://dx.doi.org/10.1109/TNSRE.2021.3111989] [PMID: 34506288]
[78]
Basher A, Kim BC, Lee KH, Jung HY. Volumetric feature-based Alzheimer’s disease diagnosis from SMRI data using a convolutional neural network and a deep neural network IEEE Access 2021; 9: 29870-82
[http://dx.doi.org/10.1109/ACCESS.2021.3059658]
[79]
Martinez-Murcia FJ, Ortiz A, Gorriz JM, Ramirez J, Castillo-Barnes D. Studying the manifold structure of Alzheimer’s disease: A deep learning approach using convolutional autoencoders. IEEE J Biomed Health Inform 2020; 24(1): 17-26.
[http://dx.doi.org/10.1109/JBHI.2019.2914970] [PMID: 31217131]
[80]
Ullah Z, Farooq MU, Lee S-H, An D. A hybrid image enhancement based brain MRI images classification technique. Med Hypotheses 2020; 143: 109922.
[http://dx.doi.org/10.1016/j.mehy.2020.109922] [PMID: 32682214]
[81]
Suresha HS, Parthasarathy SS. Alzheimer disease detection based on deep neural network with rectified adam optimization technique using MRI analysis. Third International Conference on Advances in Electronics, Computers and Communications (ICAECC) 1-6.
[http://dx.doi.org/10.1109/ICAECC50550.2020.9339504]
[82]
Abuhmed T, El-Sappagh S, Alonso JM. Robust hybrid deep learning models for Alzheimer’s progression detection. Knowl Base Syst 2021; 213: 106688.
[http://dx.doi.org/10.1016/j.knosys.2020.106688]
[83]
Prajapati R, Khatri U, Kwon GR. An efficient deep neural network binary classifier for Alzheimer’s disease classification. 2021; International Conference on Artificial Intelligence in Information, and Communication (ICAIIC) 231-4.
[http://dx.doi.org/10.1109/ICAIIC51459.2021.9415212]
[84]
Kang J, Gwak J. Ensemble of multi-task deep convolutional neural networks using transfer learning for fruit freshness classification. Multimedia Tools Appl 2022; 81: 22355-77.
[http://dx.doi.org/10.1007/s11042-021-11282-4]
[85]
Feature selection using efficient fusion of fisher score and greedy searching for Alzheimer’s classification. Journal of King Saud University - Computer and Information Sciences 2022; 34(8): 4999-5006.
[http://dx.doi.org/10.1016/j.jksuci.2020.12.009]
[86]
Pandey SK, Janghel RR. Recent deep learning techniques, challenges and its applications for medical healthcare system: A review. Neural Process Lett 2019; 50(2): 1907-35.
[http://dx.doi.org/10.1007/s11063-018-09976-2]
[87]
Basaia S, Agosta F, Wagner L, et al. Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. Neuroimage Clin 2019; 21: 101645.
[http://dx.doi.org/10.1016/j.nicl.2018.101645] [PMID: 30584016]
[88]
Wang S-H, Phillips P, Sui Y, Liu B, Yang M, Cheng H. Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J Med Syst 2018; 42(5): 85.
[http://dx.doi.org/10.1007/s10916-018-0932-7] [PMID: 29577169]
[89]
Islam J, Zhang Y. Early diagnosis of Alzheimer’s disease: A neuroimaging study with deep learning architectures. Proceedings of the IEEE conference on computer vision, and pattern recognition workshops. 1881-3.
[http://dx.doi.org/10.1109/CVPRW.2018.00247]
[90]
Bringas S, Salomón S, Duque R, Lage C, Montaña JL. Alzheimer’s Disease stage identification using deep learning models. J Biomed Inform 2020; 109: 103514.
[http://dx.doi.org/10.1016/j.jbi.2020.103514] [PMID: 32711124]
[91]
An N, Ding H, Yang J, Au R, Ang TFA. Deep ensemble learning for Alzheimer’s disease classification. J Biomed Inform 2020; 105: 103411.
[http://dx.doi.org/10.1016/j.jbi.2020.103411] [PMID: 32234546]
[92]
Chen X, Li L, Sharma A, Dhiman G, Vimal S. The application of convolutional neural network model in diagnosis and nursing of MR imaging in Alzheimer’s disease. Interdiscip Sci 2022; 14(1): 34-44.
[http://dx.doi.org/10.1007/s12539-021-00450-7] [PMID: 34224083]
[93]
Sun J, Yan S, Song C, Han B. Dual-functional neural network for bilateral hippocampi segmentation and diagnosis of Alzheimer’s disease. Int J CARS 2020; 15(3): 445-55.
[http://dx.doi.org/10.1007/s11548-019-02106-w] [PMID: 31883064]
[94]
Zhao Y, Ma B, Jiang P, Zeng D, Wang X, Li S. Prediction of Alzheimer’s disease progression with multi-information generative adversarial network. IEEE J Biomed Health Inform 2021; 25(3): 711-9.
[http://dx.doi.org/10.1109/JBHI.2020.3006925] [PMID: 32750952]
[95]
Alzubaidi L, Zhang J, Humaidi AJ, et al. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J Big Data 2021; 8(1): 53.
[http://dx.doi.org/10.1186/s40537-021-00444-8] [PMID: 33816053]
[96]
Wen J, Thibeau-Sutre E, Diaz-Melo M, et al. Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Med Image Anal 2020; 63: 101694.
[http://dx.doi.org/10.1016/j.media.2020.101694] [PMID: 32417716]
[97]
Choi JY, Lee B. Combining of multiple deep networks via ensemble generalization loss, based on MRI Images, for Alzheimer’s disease classification. IEEE Signal Process Lett 2020; 27: 206-10.
[http://dx.doi.org/10.1109/LSP.2020.2964161]
[98]
Shakarami A, Tarrah H, Mahdavi-Hormat A. A CAD system for diagnosing Alzheimer’s disease using 2D slices and an improved alexnet-SVM method. Optik (Stuttg) 2020; 212: 164237.
[http://dx.doi.org/10.1016/j.ijleo.2020.164237]
[99]
Lu D, Popuri K, Ding GW, Balachandar R, Beg MF. Multiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer’s disease. Med Image Anal 2018; 46: 26-34.
[http://dx.doi.org/10.1016/j.media.2018.02.002] [PMID: 29502031]
[100]
Pietrzak K, Czarnecka K, Mikiciuk-Olasik E, Szymanski P. New perspectives of Alzheimer disease diagnosis - the most popular and future methods. Med Chem 2018; 14(1): 34-43.
[http://dx.doi.org/10.2174/1573406413666171002120847] [PMID: 28969570]
[101]
Göçeri E. Impact of deep learning and smartphone technologies in dermatology: Automated diagnosis. Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA). 1-6.
[http://dx.doi.org/10.1109/IPTA50016.2020.9286706]
[102]
Goceri E, Songul C. Biomedical information technology: Image based computer aided diagnosis systems. International Conference on Advanced Technologies. Antalaya, Turkey. 2018.
[103]
Göçeri E. Convolutional neural network based desktop applications to classify dermatological diseases. IEEE 4th International Conference on Image Processing, Applications and Systems (IPAS). 138-43.
[http://dx.doi.org/10.1109/IPAS50080.2020.9334956]
[104]
Goceri E. Automated skin cancer detection: Where we are and the way to the future. 44th International Conference on Telecommunications and Signal Processing (TSP). 48-51.
[http://dx.doi.org/10.1109/TSP52935.2021.9522605]
[105]
Goceri E. Intensity normalization in brain MR images using spatially varying distribution matching. 11th Int Conf on computer graphics, visualization, computer vision and image processing CGVCVIP. 300-4.
[106]
Goceri E. Fully automated and adaptive intensity normalization using statistical features for brain MR images. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 2018; pp. 125-34.
[http://dx.doi.org/10.18466/cbayarfbe.384729]
[107]
Goceri E. Analysis of capsule networks for image classification. International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing.
[108]
Zhang Z, Ye S, Liao P, Liu Y, Su G, Sun Y. Enhanced capsule network for medical image classification. 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 1544-7.
[http://dx.doi.org/10.1109/EMBC44109.2020.9175815]
[109]
Odusami M, Maskeliūnas R, Damaševičius R, Krilavičius T. Analysis of features of Alzheimer’s disease: Detection of early stage from functional brain changes in magnetic resonance images using a finetuned resnet18 network. Diagnostics (Basel) 2021; 11(6): 1071.
[http://dx.doi.org/10.3390/diagnostics11061071] [PMID: 34200832]
[110]
Pan D, Zeng A, Jia L, Huang Y, Frizzell T, Song X. Early detection of Alzheimer’s disease using magnetic resonance imaging: A novel approach combining convolutional neural networks and ensemble learning. Front Neurosci 2020; 14: 259.
[http://dx.doi.org/10.3389/fnins.2020.00259] [PMID: 32477040]
[111]
Jo T, Nho K, Saykin AJ. Deep learning in Alzheimer’s disease: Diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci 2019; 11: 220.
[http://dx.doi.org/10.3389/fnagi.2019.00220] [PMID: 31481890]
[112]
Noor MBT, Zenia NZ, Kaiser MS, Mamun SA, Mahmud M. Application of deep learning in detecting neurological disorders from magnetic resonance images: A survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain Inform 2020; 7(1): 11.
[http://dx.doi.org/10.1186/s40708-020-00112-2] [PMID: 33034769]
[113]
Bae JB, Lee S, Jung W, et al. Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging. Sci Rep 2020; 10(1): 22252.
[http://dx.doi.org/10.1038/s41598-020-79243-9] [PMID: 33335244]
[114]
Li H, Habes M, Wolk DA, Fan Y. A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data. Alzheimers Dement 2019; 15(8): 1059-70.
[http://dx.doi.org/10.1016/j.jalz.2019.02.007] [PMID: 31201098]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy