Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

Recent Methods and Challenges in Brain Tumor Detection Using Medical Image Processing

Author(s): Sai Yasheswini Kandimalla, Dhara Mohana Vamsi, Samudrala Bhavani and Manikandan V.M.*

Volume 17, Issue 5, 2023

Published on: 12 September, 2022

Article ID: e230822207894 Pages: 16

DOI: 10.2174/1872212117666220823100209

Price: $65

Abstract

A brain tumour is described by the presence of abnormal cells in the brain's tissues. Brain tumours can be benign (not cancerous) or malignant (cancerous). The malignant brain tumour is one of the leading and common cancers in the world. There are two types of tumours, primary tumours that develop in the brain and secondary tumours that start in another region of the body and then spread to the brain. The precise identification of the size and location of a brain tumour is crucial in the diagnosis of a brain tumour and is often diagnosed with magnetic resonance imaging (MRI). This book chapter discusses the major types of brain tumours and the advancements in computeraided approaches for detecting brain tumours. The manuscript gives an overview of various recent machine learning and medical image processing approaches developed recently for the identification and classification of brain tumours. Several medical image dataset available for the research works in this domain is also briefed in this article. The major research challenges which can be addressed by the researchers in the domain of brain tumour detection are also discussed in this article.

Keywords: Brain tumor, magnetic resonance imaging (MRI), machine learning, medical image processing, malignant, gliomas.

Graphical Abstract

[1]
S.N. Nerurkar, "Brain tumor detection using image segmentation", Brain, vol. 4, no. 4, 2017.
[2]
N.B. Bahadure, A.K. Ray, and H.P. Thethi, "Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM", Int. J. Biomed. Imaging, vol. 2017, p. 9749108, 2017.
[http://dx.doi.org/10.1155/2017/9749108] [PMID: 28367213]
[3]
K.J. Zülch, Brain tumors: Their biology and pathology., Springer-Verlag, 2013.
[4]
M. Cenek, M. Hu, G. York, and S. Dahl, "Survey of image processing techniques for brain pathology diagnosis: Challenges and opportunities", Front. Robot. AI, vol. 5, p. 120, 2018.
[http://dx.doi.org/10.3389/frobt.2018.00120] [PMID: 33500999]
[5]
H.M. WilliamThomas, and S.C.P. Kumar, "A review of segmentation and edge detection methods for real time image processing used to detect brain tumour", In 2015 IEEE InternationalConference on Computational Intelligence and Computing Research (ICCIC), 10-12 December 2015, Madurai, India, IEEEp. 1-4
[http://dx.doi.org/10.1109/ICCIC.2015.7435696]
[6]
G. Tomasila, and A.W.R. Emanuel, "MRI image processing method on brain tumors: A review", AIP Conf. Proc., vol. 2296, no. 1, p. 020023, 2020.
[http://dx.doi.org/10.1063/5.0030978]
[7]
S. Kumar, I. Abid, S. Garg, A. K. Singh, and V. Jain, "Brain tumor detection using image processing", Inter. J. Inform. Sci. Appl. (IJISA), vol. 11, no. 1, 2019.
[8]
M. Patil, M. Pawar, M. Patil, and A. Nichal, "A review paperon brain tumor segmentation and detection", IJIREEICE, vol. 5, no. 12-15, p. 6, 2017.
[9]
V.Y. Borole, S.S. Nimbhore, and D.S.S. Kawthekar, "Image processing techniques for brain tumor detection: A review", Int. J. Emerg. Technol. Learn., vol. 4, no. 5, p. 2, 2015.
[10]
V.K. Sheela, and S.S. Babu, "Pre-processing technique for brain tumor detection and segmentation", Int. Res. J. Eng. Technol., vol. 2, no. 3, pp. 1208-1212, 2005.
[11]
S. Suryawanshi, and S. Patil, "Preprocessing and skull stripping of brain tumor extraction from magnetic resonance imaging images using image processing", In: Recent Trends Intensive Comput., vol. 39. 2021, p. 299-307.
[http://dx.doi.org/10.3233/APC210208]
[12]
R.B. Vallabhaneni, and V. Rajesh, "Brain tumour detection using mean shift clustering and GLCM features with edge adaptive total variation denoising technique", Alex. Eng. J., vol. 57, no. 4, pp. 2387-2392, 2021.
[http://dx.doi.org/10.1016/j.aej.2017.09.011]
[13]
"A. Işın, C. Direkoğlu, and M. Şah, “Review of MRI-based brain tumor image segmentation using deep learning methods”", Procedia Comput. Sci., vol. 102, pp. 317-324, 2016.
[http://dx.doi.org/10.1016/j.procs.2016.09.407]
[14]
M.B. Bhansali, M.S. Tiwari, and M.S. Agrawal, "Hybrid method for image segmentation", Int. J. Comput. Sci. Inf. Technol., vol. 6, no. 1, pp. 514-518, 2015.
[15]
P.T. Gamage, and D.L. Ranathunga, Identification of brain tumor using image processing techniques., University of Moratuwa, 2017.
[16]
D. Kaur, and Y. Kaur, "Various image segmentationtechniques: A review", Inter. J. Comput. Sci. Mobile Comput., vol. 3, no. 5, pp. 809-814, 2014.
[17]
H.S. Abdulbaqi, M.Z. Mat, A.F. Omar, I.S.B. Mustafa, and L.K. Abood, Detecting brain tumor in magnetic resonance images using hidden markov random fields and threshold techniques. In. 2014 IEEE Student Conference on Research and Development , 16-17 December 2014, Penang, Malaysia, IEEE, 2014.
[http://dx.doi.org/10.1109/SCORED.2014.7072963]
[18]
K.K.D. Ramesh, G.K. Kumar, K. Swapna, D. Datta, and S.S. Rajest, "A review of medical image segmentation algorithms", EAI Endorsed Trans. Pervasive Health Technol., vol. 7, no. 27, p. e6, 2021.
[http://dx.doi.org/10.4108/eai.12-4-2021.169184]
[19]
J. Amin, M. Sharif, A. Haldorai, M. Yasmin, and R.S. Nayak, Brain tumor detection and classification using machine learning: A comprehensive survey., Complex Intell. Syst, 2021, pp. 1-23.
[20]
D.C. Febrianto, I. Soesanti, and H.A. Nugroho, "Convolutional neural network for brain tumor detection", IOP Conf. Series Mater. Sci. Eng., vol. 771, no. 1, p. 012031, 2020.
[http://dx.doi.org/10.1088/1757-899X/771/1/012031]
[21]
A. Ravi, and S. Sreejith, "A review on brain tumour detection using image segmentation", Int. J. Emerg. Technol. Adv. Eng., vol. 5, no. 6, pp. 60-64, 2015.
[22]
Y. Li, C. Li, X. Li, K. Wang, M.M. Rahaman, C. Sun, and Q. Wang, "A comprehensive review for mrf and crf approaches in pathology image analysis", Available from: https://arxiv.org/abs/2009.13721v2
[23]
M.K. Abd-Ellah, "Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks", EURASIP J. Image Video Process., vol. 2018, no. 1, pp. 1-10, 2018.
[http://dx.doi.org/10.1186/s13640-018-0332-4]
[24]
R.C. Hrosik, E. Tuba, E. Dolicanin, R. Jovanovic, and M. Tuba, "Brain image segmentation based on firefly algorithm combined with k-means clustering", Stud. Inform. Control, vol. 28, no. 2, pp. 167-176, 2019.
[25]
K.R. Laukamp, F. Thiele, G. Shakirin, D. Zopfs, A. Faymonville, M. Timmer, D. Maintz, M. Perkuhn, and J. Borggrefe, "Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI", Eur. Radiol., vol. 29, no. 1, pp. 124-132, 2019.
[http://dx.doi.org/10.1007/s00330-018-5595-8] [PMID: 29943184]
[26]
J. Amin, M. Sharif, M. Yasmin, and S.L. Fernandes, "Big data analysis for brain tumor detection: Deep convolutional neural networks", Future Gener. Comput. Syst., vol. 87, pp. 290-297, 2018.
[http://dx.doi.org/10.1016/j.future.2018.04.065]
[27]
J. Amin, M. Sharif, M. Yasmin, and S.L. Fernandes, "A distinctive approach in brain tumor detection and classification using MRI", Pattern Recognit. Lett., vol. 139, pp. 118-127, 2020.
[http://dx.doi.org/10.1016/j.patrec.2017.10.036]
[28]
L. Kapoor, and S. Thakur, A survey on brain tumor detection using image processing techniques2017 7th International Conference on Cloud Computing, Data Science & Engineering- Confluence, 12-13 January 2017, Noida, India, pp. 582-585.
IEEE. [http://dx.doi.org/10.1109/CONFLUENCE.2017.7943218]
[29]
P.M. Shakeel, T.E.E. Tobely, H. Al-Feel, G. Manogaran, and S. Baskar, "Neural network based brain tumor detection using wireless infrared imaging sensor", IEEE Access, vol. 7, pp. 5577-5588, 2019.
[http://dx.doi.org/10.1109/ACCESS.2018.2883957]
[30]
H. Mohsen, E.S.A. El-Dahshan, E.S.M. El-Horbaty, and A.B.M. Salem, "Classification using deep learning neural networks for brain tumors", Future Comput. Inform. J., vol. 3, no. 1, pp. 68-71, 2018.
[http://dx.doi.org/10.1016/j.fcij.2017.12.001]
[31]
H.H. Sultan, N.M. Salem, and W. Al-Atabany, "Multi-classification of brain tumor images using deep neural network", IEEE Access, vol. 7, pp. 69215-69225, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2919122]
[32]
N. Arunkumar, M.A. Mohammed, M.K. Abd Ghani, D.A. Ibrahim, E. Abdulhay, G. Ramirez-Gonzalez, and V.H.C. de Albuquerque, "K-means clustering and neural network for object detecting and identifying abnormality of brain tumor", Soft Comput., vol. 23, no. 19, pp. 9083-9096, 2019.
[http://dx.doi.org/10.1007/s00500-018-3618-7]
[33]
M. Hu, Y. Zhong, S. Xie, H. Lv, and Z. Lv, "Fuzzy system based medical image processing for brain disease prediction", Front. Neurosci., vol. 15, p. 714318, 2021.
[http://dx.doi.org/10.3389/fnins.2021.714318] [PMID: 34393718]
[34]
S. Maharjan, A. Alsadoon, P.W.C. Prasad, T. Al-Dalain, and O.H. Alsadoon, "A novel enhanced softmax loss function for brain tumour detection using deep learning", J. Neurosci. Methods, vol. 330, p. 108520, 2020.
[http://dx.doi.org/10.1016/j.jneumeth.2019.108520] [PMID: 31734325]
[35]
A. Ari, and D. Hanbay, "Deep learning based brain Tumour classification and detection system", Turk. J. Electr. Eng. Comput. Sci., vol. 26, no. 5, pp. 2275-2286, 2018.
[http://dx.doi.org/10.3906/elk-1801-8]
[36]
C.L. Choudhury, C. Mahanty, R. Kumar, and B.K. Mishra, Brain tumor detection and classification using convolutional neural network and deep neural network. In. International Conference on Computer Science, Engineering and Applications (ICCSEA), 13-14 March 2020, Gunupur, India, IEEE, 2020.
[http://dx.doi.org/10.1109/ICCSEA49143.2020.9132874]
[37]
T. Sadad, A. Rehman, A. Munir, T. Saba, U. Tariq, N. Ayesha, and R. Abbasi, "Brain tumor detection and multi-classification using advanced deep learning techniques", Microsc. Res. Tech., vol. 84, no. 6, pp. 1296-1308, 2021.
[http://dx.doi.org/10.1002/jemt.23688] [PMID: 33400339]
[38]
R. Ranjbarzadeh, A. Bagherian Kasgari, S. Jafarzadeh Ghoushchi, S. Anari, M. Naseri, and M. Bendechache, "Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images", Sci. Rep., vol. 11, no. 1, p. 10930, 2021.
[http://dx.doi.org/10.1038/s41598-021-90428-8] [PMID: 34035406]
[39]
D. Zhang, G. Huang, Q. Zhang, J. Han, J. Han, and Y. Yu, "Cross-modality deep feature learning for brain tumor segmentation", Pattern Recognit., vol. 110, p. 107562, 2021.
[http://dx.doi.org/10.1016/j.patcog.2020.107562]
[40]
M.O. Khairandish, M. Sharma, V. Jain, J.M. Chatterjee, and N.Z. Jhanjhi, "A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images", IRBM, 2021.
[http://dx.doi.org/10.1016/j.irbm.2021.06.003]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy