Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Comparison of R1ρ Imaging Between Rapid Acquisition with Relaxation Enhancement (RARE) and Ultrashort TE (UTE) Sequence in the Assessment of Rat Liver Iron Overload at 11.7T

Author(s): Ying Liu, Hong Xiao, Qianfeng Wang*, Fuhua Yan and He Wang

Volume 19, Issue 7, 2023

Published on: 26 September, 2022

Article ID: e220822207877 Pages: 7

DOI: 10.2174/1573405618666220822155132

Price: $65

Abstract

Introduction: Since the most prominent effect of iron is increasing R2* and R2 relaxation rates, the iron-overload liver shows little signal with conventional T1ρ sequences like RARE. Whereas UTE MR imaging sequences can detect the signal from short T2/T2* relaxation components in tissues. This study aims to evaluate the difference in R1ρ profiles and compare the correlations between RARE-based and UTE-based sequences with LIC in assessing rat liver iron overload.

Methods: Iron dextran (Sigma, 100 mg Fe/ml) was injected into thirty-five rats (25-100 mg/kg body weight), while the rats in the control group were injected with saline (n=5). The liver specimen was taken after one week. A portion of the largest hepatic lobe was extracted to quantify the LIC by inductively coupled plasma, and the remaining liver tissue was stored in 4% buffered paraformaldehyde for 24 h before MRI. Spin-lock preparation with RARE readout and 2D UTE readout pulses were developed to quantify R1ρ on a Bruker 11.7T MR system.

Results: The mean R1ρ value of the rat liver with UTE-based R1ρ sequence was significantly higher compared to the RARE-based R1ρ sequence (p<0.001). Spearman’s correlation analysis (two-tailed) indicated that the R1ρ values were significantly correlated with LIC for both UTE-R1ρ and RARER1ρ sequences (r = 0.727, P < 0.001, and r = 0.712, P < 0.001, respectively).

Conclusion: The current study adds to evidence that there is a correlation between iron concentration and R1ρ. Moreover, the UTE-based R1ρ sequence is more sensitive to the liver iron than the RAREbased R1ρ sequence. R1ρ might serve as a complementary imaging biomarker for liver iron overload quantification.

Keywords: MRI, Liver iron concentration, R1ρ, Spin-lock, RARE, UTE.

Graphical Abstract

[1]
Bloomer SA, Brown KE. Iron-induced liver injury: A critical reappraisal. Int J Mol Sci 2019; 20(9): 2132.
[http://dx.doi.org/10.3390/ijms20092132] [PMID: 31052166]
[2]
Lane DJR, Ayton S, Bush AI. Iron and Alzheimer’s disease: An update on emerging mechanisms. J Alzheimers Dis 2018; 64(s1): S379-95.
[http://dx.doi.org/10.3233/JAD-179944] [PMID: 29865061]
[3]
Wang JY, Zhuang QQ, Zhu LB, et al. Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Sci Rep 2016; 6(1): 36669.
[http://dx.doi.org/10.1038/srep36669] [PMID: 27827408]
[4]
Angelucci E, Brittenham GM, McLaren CE, et al. Hepatic iron concentration and total body iron stores in thalassemia major. N Engl J Med 2000; 343(5): 327-31.
[http://dx.doi.org/10.1056/NEJM200008033430503] [PMID: 10922422]
[5]
Hernando D, Levin YS, Sirlin CB, Reeder SB. Quantification of liver iron with MRI: State of the art and remaining challenges. J Magn Reson Imaging 2014; 40(5): 1003-21.
[http://dx.doi.org/10.1002/jmri.24584] [PMID: 24585403]
[6]
Sirlin CB, Reeder SB. Magnetic resonance imaging quantification of liver iron. Magn Reson Imaging Clin N Am 2010; 18(3): 359-81. [ix].
[http://dx.doi.org/10.1016/j.mric.2010.08.014] [PMID: 21094445]
[7]
Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005; 106(4): 1460-5.
[http://dx.doi.org/10.1182/blood-2004-10-3982] [PMID: 15860670]
[8]
Redfield AG. Nuclear magnetic resonance saturation and rotary saturation in solids. Phys Rev 1955; 98: 1787.
[http://dx.doi.org/10.21236/AD0060147]
[9]
Sepponen RE, Pohjonen JA, Sipponen JT, Tanttu JI. A method for T1 rho imaging. J Comput Assist Tomogr 1985; 9(6): 1007-11.
[http://dx.doi.org/10.1097/00004728-198511000-00002] [PMID: 4056129]
[10]
Charagundla SR, Borthakur A, Leigh JS, Reddy R. Artifacts in T1ρ-weighted imaging: Correction with a self-compensating spin-locking pulse. J Magn Reson 2003; 162(1): 113-21.
[http://dx.doi.org/10.1016/S1090-7807(02)00197-0] [PMID: 12762988]
[11]
Wáng YXJ, Zhang Q, Li X, Chen W, Ahuja A, Yuan J. T1ρ magnetic resonance: Basic physics principles and applications in knee and intervertebral disc imaging. Quant Imaging Med Surg 2015; 5(6): 858-85.
[http://dx.doi.org/10.3978/j.issn.2223-4292.2015.12.06] [PMID: 26807369]
[12]
Moonen RPM, Van Der Tol P, Hectors SJCG, Starmans LWE, Nicolay K, Strijkers GJ. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles. Magn Reson Med 2015; 74(6): 1740-9.
[http://dx.doi.org/10.1002/mrm.25544] [PMID: 25470118]
[13]
Wang Q, Xiao H, Yu X, et al. R1ρ at high spin-lock frequency could be a complementary imaging biomarker for liver iron overload quantification. Magn Reson Imaging 2021; 75: 141-8.
[http://dx.doi.org/10.1016/j.mri.2020.10.014] [PMID: 33129937]
[14]
Du J, Carl M, Diaz E, et al. Ultrashort TE T1 rho (UTE T1 rho) imaging of the Achilles tendon and meniscus. Magn Reson Med 2010; 64(3): 834-42.
[http://dx.doi.org/10.1002/mrm.22474] [PMID: 20535810]
[15]
Mahar R, Batool S, Badar F, Xia Y. Quantitative measurement of T2, T1ρ and T1 relaxation times in articular cartilage and cartilage-bone interface by SE and UTE imaging at microscopic resolution. J Magn Reson 2018; 297: 76-85.
[http://dx.doi.org/10.1016/j.jmr.2018.10.008] [PMID: 30366222]
[16]
Menon RG, Sharafi A, Windschuh J, Regatte RR. Bi-exponential 3D-T1ρ mapping of whole brain at 3 T. Sci Rep 2018; 8(1): 1176.
[http://dx.doi.org/10.1038/s41598-018-19452-5] [PMID: 29352234]
[17]
Gudbjartsson H, Patz S. The rician distribution of noisy MRI data. Magn Reson Med 1995; 34(6): 910-4.
[http://dx.doi.org/10.1002/mrm.1910340618] [PMID: 8598820]
[18]
Olivieri NF, Brittenham GM. Iron-chelating therapy and the treatment of thalassemia. Blood 1997; 89(3): 739-61.
[http://dx.doi.org/10.1182/blood.V89.3.739] [PMID: 9028304]
[19]
Luo XF, Xie XQ, Cheng S, et al. Dual-energy CT for patients suspected of having liver iron overload: Can virtual iron content imaging accurately quantify liver iron content? Radiology 2015; 277(1): 95-103.
[http://dx.doi.org/10.1148/radiol.2015141856] [PMID: 25880263]
[20]
Li S, Sun X, Chen M, et al. Liver fibrosis conventional and molecular imaging diagnosis update. J Liver 2019; 8(1): 236.
[http://dx.doi.org/10.35248/2167-0889.19.8.236] [PMID: 31341723]
[21]
Petitclerc L, Sebastiani G, Gilbert G, Cloutier G, Tang A. Liver fibrosis: Review of current imaging and MRI quantification techniques. J Magn Reson Imaging 2017; 45(5): 1276-95.
[http://dx.doi.org/10.1002/jmri.25550] [PMID: 27981751]
[22]
Rautiainen J, Nissi MJ, Salo EN, et al. Multiparametric MRI assessment of human articular cartilage degeneration: Correlation with quantitative histology and mechanical properties. Magn Reson Med 2015; 74(1): 249-59.
[http://dx.doi.org/10.1002/mrm.25401] [PMID: 25104181]
[23]
Witschey WRT, Borthakur A, Fenty M, et al. T1ρ MRI quantification of arthroscopically confirmed cartilage degeneration. Magn Reson Med 2010; 63(5): 1376-82.
[http://dx.doi.org/10.1002/mrm.22272] [PMID: 20432308]
[24]
Villanueva-Meyer JE, Barajas RF Jr, Mabray MC, et al. Differentiation of brain tumor-related edema based on 3D T1rho imaging. Eur J Radiol 2017; 91: 88-92.
[http://dx.doi.org/10.1016/j.ejrad.2017.03.022] [PMID: 28629576]
[25]
Berisha S, Han J, Shahid M, Han Y, Witschey WRT. Measurement of myocardial T1ρ with a motion corrected, parametric mapping sequence in humans. PLoS One 2016; 11(3): e0151144.
[http://dx.doi.org/10.1371/journal.pone.0151144] [PMID: 27003184]
[26]
Zhang J, Nissi MJ, Idiyatullin D, Michaeli S, Garwood M, Ellermann J. Capturing fast relaxing spins with SWIFT adiabatic rotating frame spin-lattice relaxation (T1ρ) mapping. NMR Biomed 2016; 29(4): 420-30.
[http://dx.doi.org/10.1002/nbm.3474] [PMID: 26811973]
[27]
Ma YJ, Carl M, Searleman A. Three dimensional adiabatic T1ρ prepared ultrashort echo time cones (3D AdiabT1ρ UTE-Cones) sequence for whole knee imaging. Magn Reson Med 2018; 80: 1429-39.
[http://dx.doi.org/10.1002/mrm.27131] [PMID: 29493004]
[28]
Johnson CP, Thedens DR, Kruger SJ, Magnotta VA. Three‐Dimensional GRE T 1ρ mapping of the brain using tailored variable flip‐angle scheduling. Magn Reson Med 2020; 84(3): 1235-49.
[http://dx.doi.org/10.1002/mrm.28198] [PMID: 32052489]
[29]
Ma S, Wang N, Fan Z, et al. Three‐dimensional whole‐brain simultaneous T1, T2, and T1 ρ quantification using MR Multitasking: Method and initial clinical experience in tissue characterization of multiple sclerosis. Magn Reson Med 2021; 85(4): 1938-52.
[http://dx.doi.org/10.1002/mrm.28553] [PMID: 33107126]
[30]
Wyatt CR, Barbara TM, Guimaraes AR. T1ρ magnetic resonance fingerprinting. NMR Biomed 2020; 33(5): e4284.
[http://dx.doi.org/10.1002/nbm.4284] [PMID: 32125050]
[31]
Lu X, Jang H, Ma Y, Jerban S, Chang E, Du J. Ultrashort echo time quantitative susceptibility mapping (UTE-QSM) of highly concentrated magnetic nanoparticles: A comparison study about different sampling strategies. Molecules 2019; 24(6): 1143.
[http://dx.doi.org/10.3390/molecules24061143] [PMID: 30909448]
[32]
Pietrangelo A. Non-invasive assessment of hepatic iron overload: Are we finally there? J Hepatol 2005; 42(1): 153-4.
[http://dx.doi.org/10.1016/j.jhep.2004.10.009] [PMID: 15629526]
[33]
Labranche R, Gilbert G, Cerny M, et al. Liver iron quantification with MR Imaging: A primer for radiologists. Radiographics 2018; 38(2): 392-412.
[http://dx.doi.org/10.1148/rg.2018170079] [PMID: 29528818]
[34]
Juluri A, Modepalli N, Jo S, Repka MA, Shivakumar HN, Murthy SN. Minimally invasive transdermal delivery of iron-dextran. J Pharm Sci 2012; 101: 2271-80.
[http://dx.doi.org/10.1002/jps.23429] [PMID: 23280725]
[35]
Wu Q, Fu X, Zhuo Z, Zhao M, Ni H. The application value of ultra-short echo time MRI in the quantification of liver iron overload in a rat model. Quant Imaging Med Surg 2019; 9(2): 180-7.
[http://dx.doi.org/10.21037/qims.2018.10.11] [PMID: 30976542]
[36]
Jackson LH, Vlachodimitropoulou E, Shangaris P, et al. Non-invasive MRI biomarkers for the early assessment of iron overload in a humanized mouse model of β-thalassemia. Sci Rep 2017; 7(1): 43439.
[http://dx.doi.org/10.1038/srep43439] [PMID: 28240317]
[37]
Guimaraes AR, Siqueira L, Uppal R, et al. T2 relaxation time is related to liver fibrosis severity. Quant Imaging Med Surg 2016; 6(2): 103-14.
[http://dx.doi.org/10.21037/qims.2016.03.02] [PMID: 27190762]
[38]
Wood JC, Otto-Duessel M, Aguilar M, et al. Cardiac iron determines cardiac T2*, T2, and T1 in the gerbil model of iron cardiomyopathy. Circulation 2005; 112(4): 535-43.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.504415] [PMID: 16027257]
[39]
Quesson B, de Zwart JA, Moonen CTW. Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 2000; 12(4): 525-33.
[http://dx.doi.org/10.1002/1522-2586(200010)12:4<525:AID-JMRI3>3.0.CO;2-V] [PMID: 11042633]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy