Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Self-Assembled KLD-12/SDF-1 Polypeptide Promotes Differentiation and Migration of BMSCs via the Wnt/β-catenin Signaling Pathways

Author(s): Mingyu Cao, Yabin Hu, Yukun Zhang, Jiang Xie and Zengru Xie*

Volume 29, Issue 10, 2022

Published on: 27 September, 2022

Page: [851 - 858] Pages: 8

DOI: 10.2174/0929866529666220822124627

Price: $65

conference banner
Abstract

Objective: This study aimed to evaluate the combination of SDF-1 and KLD-12 to form self-assembling polypeptide and its effect on osteogenic differentiation.

Methods: ELISA assay was performed to detect whether KLD-12 composite SDF-1 self-assembled polypeptide was successfully prepared. BMSCs were isolated and characterized by Flow cytometry. MTT assays, Calcein-AM/PI fluorescence staining, and Glycosaminoglycans (GAGs) measurement were carried out to detect cell viability after cells exposed to KLD-12 composite SDF-1 selfassembled polypeptide. The migration of cells induced by KLD-12 composite SDF-1 selfassembled polypeptide was also examined by transwell assay and Immunoblot. Osteogenic differentiation of cells stimulated with KLD-12 composite SDF-1 self-assembled polypeptide was analyzed by Immunoblot, Alizarin Red Staining, and Alkaline Phosphatase activity. Additionally, immunoblot and immunofluorescence assays were performed to investigate the effects of the polypeptide on the Wnt/β-catenin pathway.

Results: KLD-12 composite SDF-1 self-assembled polypeptide was successfully prepared and identified. In addition, we isolated and characterized mouse mesenchymal stem BMSCs. Our data further revealed that KLD-12 combined with SDF-1 self-assembled polypeptide improved the survival of BMSCs and promoted cell migration. Moreover, the self-assembled polypeptide induced osteogenic differentiation of BMSCs. Mechanically, we found that the self-assembled polypeptide activated the Wnt/β-catenin pathway, therefore promoting the differentiation and migration of BMSCs.

Conclusion: Our proposed treatment can potentially be effective for bone defects.

Keywords: Bone defects, bone marrow-derived mesenchymal stem cells (BMSCs), SDF-1, KLD-12, self-assembled polypeptide, Wnt/β-catenin pathway.

Graphical Abstract

[1]
Jeon, J.H.; Yun, B.G.; Lim, M.J.; Kim, S.J.; Lim, M.H.; Lim, J.Y.; Park, S.H.; Kim, S.W. Rapid cartilage regeneration of spheroids composed of human nasal septum-derived chondrocyte in rat osteochondral defect model. Tissue Eng. Regen. Med., 2020, 17(1), 81-90.
[http://dx.doi.org/10.1007/s13770-019-00231-w] [PMID: 31983036]
[2]
Liu, Y.; Xu, L.; Hu, L.; Chen, D.; Yu, L.; Li, X.; Chen, H.; Zhu, J.; Chen, C.; Luo, Y.; Wang, B.; Li, G. Stearic acid methyl ester promotes migration of mesenchymal stem cells and accelerates cartilage defect repair. J. Orthop. Translat., 2019, 22, 81-91.
[http://dx.doi.org/10.1016/j.jot.2019.09.008] [PMID: 32440503]
[3]
He, T.; Li, B.; Colombani, T.; Joshi-Navare, K.; Mehta, S.; Kisiday, J.; Bencherif, S.A.; Bajpayee, A.G. Hyaluronic acid-based shape-memory cryogel scaffolds for focal cartilage defect repair. Tissue Eng. Part A, 2021, 27(11-12), 748-760.
[http://dx.doi.org/10.1089/ten.tea.2020.0264] [PMID: 33108972]
[4]
Lin, H.; Beck, A.M.; Shimomura, K.; Sohn, J.; Fritch, M.R.; Deng, Y.; Kilroy, E.J.; Tang, Y.; Alexander, P.G.; Tuan, R.S. Optimization of photocrosslinked gelatin/hyaluronic acid hybrid scaffold for the repair of cartilage defect. J. Tissue Eng. Regen. Med., 2019, 13(8), 1418-1429.
[http://dx.doi.org/10.1002/term.2883] [PMID: 31066519]
[5]
Cao, R.; Zhan, A.; Ci, Z.; Wang, C.; She, Y.; Xu, Y.; Xiao, K.; Xia, H.; Shen, L.; Meng, D.; Chen, C. A biomimetic biphasic scaffold consisting of decellularized cartilage and decalcified bone matrixes for osteochondral defect repair. Front. Cell Dev. Biol., 2021, 9639006
[http://dx.doi.org/10.3389/fcell.2021.639006] [PMID: 33681223]
[6]
Khanmohammadi, M.; Khanjani, S.; Edalatkhah, H.; Zarnani, A.H.; Heidari-Vala, H.; Soleimani, M.; Alimoghaddam, K.; Kazemnejad, S. Modified protocol for improvement of differentiation potential of menstrual blood-derived stem cells into adipogenic lineage. Cell Prolif., 2014, 47(6), 615-623.
[http://dx.doi.org/10.1111/cpr.12133] [PMID: 25252214]
[7]
Li, Y.; Feng, Z.; Zhu, L.; Chen, N.; Wan, Q.; Wu, J. Deletion of SDF-1 or CXCR4 regulates platelet activation linked to glucose metabolism and mitochondrial respiratory reserve. Platelets, 2021, 33(4), 536-542.
[PMID: 34346843]
[8]
Toyoma, S.; Suzuki, S.; Kawasaki, Y.; Yamada, T. SDF-1/CXCR4 induces cell invasion through CD147 in squamous cell carcinoma of the hypopharynx. Oncol. Lett., 2020, 20(2), 1817-1823.
[http://dx.doi.org/10.3892/ol.2020.11744] [PMID: 32724425]
[9]
Sun, J.; Zheng, Q. Experimental study on self-assembly of KLD-12 peptide hydrogel and 3-D culture of MSC encapsulated within hydrogel in vitro. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2009, 29(4), 512-516.
[10]
Chen, W.; Xu, Y.; Li, H.; Dai, Y.; Zhou, G.; Zhou, Z.; Xia, H.; Liu, H. Tanshinone IIA delivery silk fibroin scaffolds significantly enhance articular cartilage defect repairing via promoting cartilage regeneration. ACS Appl. Mater. Interfaces, 2020, 12(19), 21470-21480.
[http://dx.doi.org/10.1021/acsami.0c03822] [PMID: 32314911]
[11]
Salonius, E.; Meller, A.; Paatela, T.; Vasara, A.; Puhakka, J.; Hannula, M.; Haaparanta, A.M.; Kiviranta, I.; Muhonen, V. Cartilage repair capacity within a single full-thickness chondral defect in a porcine autologous matrix-induced chondrogenesis model is affected by the location within the defect. Cartilage, 2021, 13(2), 744S-754S.
[http://dx.doi.org/10.1177/19476035211030988] [PMID: 34308665]
[12]
Hakki, S.S.; Bozkurt, B.S.; Hakki, E.E.; Karaoz, E.; Unlu, A.; Kayis, S.A. SDF-1 modulates periodontal ligament-Mesenchymal Stem Cells (pdl-MSCs). J. Periodontal Res., 2021, 56(4), 774-781.
[http://dx.doi.org/10.1111/jre.12876] [PMID: 33733508]
[13]
Wang, S.; Mobasheri, A.; Zhang, Y.; Wang, Y.; Dai, T.; Zhang, Z. Exogenous stromal cell-derived factor-1 (SDF-1) suppresses the NLRP3 inflammasome and inhibits pyroptosis in synoviocytes from osteoarthritic joints via activation of the AMPK signaling pathway. Inflammopharmacology, 2021, 29(3), 695-704.
[http://dx.doi.org/10.1007/s10787-021-00814-x] [PMID: 34085175]
[14]
Wang, Y.; Bai, S.; Cheng, Q.; Zeng, Y.; Xu, X.; Guan, G. Naringenin promotes SDF-1/CXCR4 signaling pathway in BMSCs osteogenic differentiation. Folia Histochem. Cytobiol., 2021, 59(1), 66-73.
[http://dx.doi.org/10.5603/FHC.a2021.0008] [PMID: 33704767]
[15]
Bian, Z.; Sun, J. Development of a KLD-12 polypeptide/TGF-β1-tissue scaffold promoting the differentiation of mesenchymal stem cell into nucleus pulposus-like cells for treatment of intervertebral disc degeneration. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1093-1103.
[PMID: 25972996]
[16]
Zhou, J.; Gao, Y.H.; Zhu, B.Y.; Shao, J.L.; Ma, H.P.; Xian, C.J. Sinusoidal electromagnetic fields increase peak bone mass in rats by activating wnt10b/beta-catenin in primary cilia of osteoblasts. J. Bone Miner. Res., 2019, 34(7), 1336-1351.
[17]
Yodthong, T.; Kedjarune-Leggat, U.; Smythe, C.; Wititsuwannakul, R.; Pitakpornpreecha, T. l-quebrachitol promotes the proliferation, differentiation, and mineralization of MC3T3-E1 cells: Involvement of the BMP-2/Runx2/MAPK/Wnt/β-catenin signaling pathway. Molecules, 2018, 23(12)E3086
[http://dx.doi.org/10.3390/molecules23123086] [PMID: 30486330]
[18]
Zhao, C.; Wu, H.; Qimuge, N.; Pang, W.; Li, X.; Chu, G.; Yang, G. MAT2A promotes porcine adipogenesis by mediating H3K27me3 at Wnt10b locus and repressing Wnt/β-catenin signaling. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2018, 1863(2), 132-142.
[http://dx.doi.org/10.1016/j.bbalip.2017.11.001] [PMID: 29133280]
[19]
Zhang, Q.W.; Zhang, X.T.; Tang, C.T.; Lin, X.L.; Ge, Z.Z.; Li, X.B. EGFL6 promotes cell proliferation in colorectal cancer via regulation of the WNT/β-catenin pathway. Mol. Carcinog., 2019, 58(6), 967-979.
[http://dx.doi.org/10.1002/mc.22985] [PMID: 30693973]
[20]
Zhang, T.; Liu, L.; Fan, J.; Tian, J.; Gan, C.; Yang, Z.; Jiao, H.; Han, B.; Liu, Z. Low-level laser treatment stimulates hair growth via upregulating Wnt10b and β-catenin expression in C3H/HeJ mice. Lasers Med. Sci., 2017, 32(5), 1189-1195.
[http://dx.doi.org/10.1007/s10103-017-2224-8] [PMID: 28508243]
[21]
Wen, X.; Cawthorn, W.P.; MacDougald, O.A.; Stupp, S.I.; Snead, M.L.; Zhou, Y. The influence of Leucine-rich amelogenin peptide on MSC fate by inducing Wnt10b expression. Biomaterials, 2011, 32(27), 6478-6486.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.045] [PMID: 21663957]
[22]
Zhang, W.; Wu, Y.; Hou, B.; Wang, Y.; Deng, D.; Fu, Z.; Xu, Z.A. SOX9-AS1/miR-5590-3p/SOX9 positive feedback loop drives tumor growth and metastasis in hepatocellular carcinoma through the Wnt/β-catenin pathway. Mol. Oncol., 2019, 13(10), 2194-2210.
[http://dx.doi.org/10.1002/1878-0261.12560] [PMID: 31402556]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy