Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

The Mechanism of Action of Lactoferrin - Nucleoside Diphosphate Kinase Complex in Combating Biofilm Formation

Author(s): Juhi Sikarwar, Jiya Singh, Tej P. Singh, Pradeep Sharma* and Sujata Sharma*

Volume 29, Issue 10, 2022

Published on: 27 September, 2022

Page: [839 - 850] Pages: 12

DOI: 10.2174/0929866529666220816160517

Price: $65

conference banner
Abstract

Background: The ESKAPE group of pathogens which comprise of multidrug resistant bacteria, namely Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species are the cause of deadly nosocomial infections all over the world. While these pathogens have developed robust strategies to resist most antibiotics, their ability to form biofilms is one of their most combative properties. Hence there is an urgent need to discover new antibacterial agents which could prevent or destroy the biofilms made by these bacteria. Though it has been established that lactoferrin (LF), a potent iron binding antibacterial, antifungal, and antiviral protein displays anti-biofilm properties, its mechanisms of action, in addition to its iron chelation property, still remains unclear.

Objective: The binding and inhibition studies of LF with the enzyme Nucleoside diphosphate Kinase (NDK) and its elastase cleaved truncated 12 kDa fragment (12-NDK).

Methods: The characterization studies of NDK and 12-NDK using florescence spectroscopy, dynamic light scattering, size exclusion chromatography and ADP-glo Kinase Assay. Inhibition studies of LF-NDK using ADP-glo kinase assay, Surface Plasmon Resonance and Biofilm inhibition studies.

Results: NDK and 12-NDK were cloned, expressed and purified from Acinetobacter baumannii and Pseudomonas aeruginosa. The characterization studies revealed NDK and 12-NDK from both species are stable and functional. The inhibition studies of LF-NDK revealed stable binding and inhibition of kinase activity by LF.

Conclusion: The binding and inhibition studies have shown that while LF binds with both the NDK and their truncated forms, it tends to have a higher binding affinity with the truncated 12 kDa fragments, resulting in their decreased kinase activity. This study essentially gives a new direction to the field of inhibition of biofilm formation, as it proves that LF has a novel mechanism of action in other than iron sequestration.

Keywords: Nucleoside diphosphate kinase, multidrug resistance, Pseudomonas aeruginosa, pathogenesis, biofilm formation, lactoferrin.

Graphical Abstract

[1]
Bassetti, M.; Righi, E.; Esposito, S.; Petrosillo, N.; Nicolini, L. Drug treatment for multidrug-resistant Acinetobacter baumannii infections. Future Microbiol., 2008, 3(6), 649-660.
[http://dx.doi.org/10.2217/17460913.3.6.649] [PMID: 19072182]
[2]
Peleg, A.Y.; Hooper, D.C. Hospital-acquired infections due to gram-negative bacteria. N. Engl. J. Med., 2010, 362(19), 1804-1813.
[http://dx.doi.org/10.1056/NEJMra0904124] [PMID: 20463340]
[3]
Rice, L.B. Progress and challenges in implementing the research on ESKAPE pathogens. Infect. Control Hosp. Epidemiol., 2010, 31(Suppl. 1), S7-S10.
[http://dx.doi.org/10.1086/655995] [PMID: 20929376]
[4]
Vuotto, C.; Longo, F.; Pascolini, C.; Donelli, G.; Balice, M.P.; Libori, M.F.; Tiracchia, V.; Salvia, A.; Varaldo, P.E. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J. Appl. Microbiol., 2017, 123(4), 1003-1018.
[http://dx.doi.org/10.1111/jam.13533] [PMID: 28731269]
[5]
Eijkelkamp, B.A.; Hassan, K.A.; Paulsen, I.T.; Brown, M.H. Investigation of the human pathogen Acinetobacter baumannii under iron limiting conditions. BMC Genomics, 2011, 12, 126.
[http://dx.doi.org/10.1186/1471-2164-12-126]
[6]
Palavutitotai, N.; Jitmuang, A.; Tongsai, S.; Kiratisin, P.; Angkasekwinai, N. Epidemiology and risk factors of extensively drug-resistant Pseudomonas aeruginosa infections. PLoS One, 2018, 13(2), e0193431.
[http://dx.doi.org/10.1371/journal.pone.0193431]
[7]
Klevens, R.M.; Edwards, J.R.; Richards, C.L., Jr; Horan, T.C.; Gaynes, R.P.; Pollock, D.A.; Cardo, D.M. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep., 2007, 122(2), 160-166.
[http://dx.doi.org/10.1177/003335490712200205] [PMID: 17357358]
[8]
Rice, L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis., 2008, 197(8), 1079-1081.
[http://dx.doi.org/10.1086/533452] [PMID: 18419525]
[9]
Navidinia, M. The clinical importance of emerging ESKAPE pathogens in nosocomial infections. Arch. Adv. Biosci., 2016, 7(3), 43-57.
[10]
Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; Ray, S.M.; Thompson, D.L.; Wilson, L.E.; Fridkin, S.K. Multistate point-prevalence survey of health care-associated infections. N. Engl. J. Med., 2014, 370(13), 1198-1208.
[http://dx.doi.org/10.1056/NEJMoa1306801] [PMID: 24670166]
[11]
Ritchie, D.J.; Alexander, B.T.; Finnegan, P.M. New antimicrobial agents for use in the intensive care unit. Infect. Dis. Clin. North Am., 2009, 23(3), 665-681.
[http://dx.doi.org/10.1016/j.idc.2009.04.010] [PMID: 19665089]
[12]
Allegranzi, B.; Bagheri Nejad, S.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. Lancet, 2011, 377(9761), 228-241.
[http://dx.doi.org/10.1016/S0140-6736(10)61458-4] [PMID: 21146207]
[13]
Sandiumenge, A.; Rello, J. Ventilator-associated pneumonia caused by ESKAPE organisms: Cause, clinical features, and management. Curr. Opin. Pulm. Med., 2012, 18(3), 187-193.
[http://dx.doi.org/10.1097/MCP.0b013e328351f974] [PMID: 22366995]
[14]
Sengupta, S.; Chattopadhyay, M.K.; Grossart, H.P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front. Microbiol., 2013, 4, 47.
[http://dx.doi.org/10.3389/fmicb.2013.00047]
[15]
Lushniak, B.D. Antibiotic resistance: A public health crisis. Public Health Rep., 2014, 129(4), 314-316.
[http://dx.doi.org/10.1177/003335491412900402] [PMID: 24982528]
[16]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N.; Aboderin, A.O.; Al-Abri, S.S.; Awang Jalil, N.; Benzonana, N.; Bhattacharya, S.; Brink, A.J.; Burkert, F.R.; Cars, O.; Cornaglia, G.; Dyar, O.J.; Friedrich, A.W.; Gales, A.C.; Gandra, S.; Giske, C.G.; Goff, D.A.; Goossens, H.; Gottlieb, T.; Guzman Blanco, M.; Hryniewicz, W.; Kattula, D.; Jinks, T.; Kanj, S.S.; Kerr, L.; Kieny, M-P.; Kim, Y.S.; Kozlov, R.S.; Labarca, J.; Laxminarayan, R.; Leder, K.; Leibovici, L.; Levy-Hara, G.; Littman, J.; Malhotra-Kumar, S.; Manchanda, V.; Moja, L.; Ndoye, B.; Pan, A.; Paterson, D.L.; Paul, M.; Qiu, H.; Ramon-Pardo, P.; Rodríguez-Baño, J.; Sanguinetti, M.; Sengupta, S.; Sharland, M.; Si-Mehand, M.; Silver, L.L.; Song, W.; Steinbakk, M.; Thomsen, J.; Thwaites, G.E.; van der Meer, J.W.M.; Van Kinh, N.; Vega, S.; Villegas, M.V.; Wechsler-Fördös, A.; Wertheim, H.F.L.; Wesangula, E.; Woodford, N.; Yilmaz, F.O.; Zorzet, A. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[17]
Delcaru, C.; Alexandru, I.; Podgoreanu, P. Microbial biofilms in urinary tract infections and prostatitis: Etiology, pathogenicity, and combating strategies. Pathogens, 2016, 5(4), 65.
[http://dx.doi.org/10.3390/pathogens5040065]
[18]
Wang, G.; Li, X.; Zasloff, M. A database view of naturally occurring antimicrobial peptides: Nomenclature, classification and amino acid sequence analysis.In: Antimicrobial peptides: Discovery, design and novel therapeutic strategies; CABI: Wallingford, UK, 2010, pp. 1-21.
[http://dx.doi.org/10.1079/9781845936570.0001]
[19]
Jiang, Z.; Vasil, A.I.; Gera, L.; Vasil, M.L.; Hodges, R.S. Rational design of α-helical antimicrobial peptides to target Gram-negative pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: Utilization of charge, ‘specificity determinants,’ total hydrophobicity, hydrophobe type and location as design parameters to improve the therapeutic ratio. Chem. Biol. Drug Des., 2011, 77(4), 225-240.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01086.x] [PMID: 21219588]
[20]
Seo, Min-Duk Antimicrobial peptides for therapeutic applications: A review. Molecules (Basel, Switzerland), 2012, 17, 12276-12286.
[http://dx.doi.org/10.3390/molecules171012276]
[21]
Zheng, Z.; Tharmalingam, N.; Liu, Q. Synergistic efficacy of aedes aegypti antimicrobial peptide cecropin A2 and tetracycline against Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2017, 61(7), e00686-e17.
[http://dx.doi.org/10.1128/AAC.00686-17]
[22]
Berglund, N.A.; Piggot, T.J.; Jefferies, D.; Sessions, R.B.; Bond, P.J.; Khalid, S. Interaction of the antimicrobial peptide polymyxin B1 with both membranes of E. coli: A molecular dynamics study. PLOS Comput. Biol., 2015, 11(4), e1004180.
[http://dx.doi.org/10.1371/journal.pcbi.1004180]
[23]
Du, H.; Puri, S.; McCall, A.; Norris, H.L.; Russo, T.; Edgerton, M. Human salivary protein histatin 5 has potent bactericidal activity against ESKAPE pathogens. Front. Cell. Infect. Microbiol., 2017, 7, 41.
[http://dx.doi.org/10.3389/fcimb.2017.00041]
[24]
Björn, C.; Mahlapuu, M.; Mattsby-Baltzer, I.; Håkansson, J. Anti-infective efficacy of the lactoferrin-derived antimicrobial peptide HLR1r. Peptides, 2016, 81, 21-28.
[http://dx.doi.org/10.1016/j.peptides.2016.04.005] [PMID: 27155369]
[25]
Xie, J.; Li, Y.; Li, J.; Yan, Z.; Wang, D.; Guo, X.; Zhang, J.; Zhang, B.; Mou, L.; Yang, W.; Jiang, X. Potent effects of amino acid scanned antimicrobial peptide Feleucin-K3 analogs against both multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Amino Acids, 2018, 50(10), 1471-1483.
[http://dx.doi.org/10.1007/s00726-018-2625-4] [PMID: 30136030]
[26]
Nakonieczna, J.; Wolnikowska, K.; Ogonowska, P.; Neubauer, D.; Bernat, A.; Kamysz, W. Rose Bengal-mediated photoinactivation of multidrug resistant Pseudomonas aeruginosa is enhanced in the presence of antimicrobial peptides. Front. Microbiol., 1949, 2018, 20.
[http://dx.doi.org/10.3389/fmicb.2018.01949] [PMID: 30177928]
[27]
Ostorhazi, E.; Hoffmann, R.; Herth, N.; Wade, J.D.; Kraus, C.N.; Otvos, L., Jr Advantage of a narrow spectrum host defense (Antimicrobial) peptide over a broad-spectrum analog in preclinical drug development. Front Chem., 2018, 6, 359.
[http://dx.doi.org/10.3389/fchem.2018.00359]
[28]
Mamon, P.L.; Heremans, F.; Dive, C. An iron-binding protein common to many external secretions. Clin. Chim. Acta, 1966, 14(6), 735-739.
[http://dx.doi.org/10.1016/0009-8981(66)90004-0]
[29]
Arnold, R.R.; Cole, M.F.; McGhee, J.R. A bactericidal effect for human lactoferrin. Science, 1977, 197(4300), 263-265.
[http://dx.doi.org/10.1126/science.327545] [PMID: 327545]
[30]
Singh, P.K.; Parsek, M.R.; Greenberg, E.P.; Welsh, M.J. A component of innate immunity prevents bacterial biofilm development. Nature, 2002, 417(6888), 552-555.
[http://dx.doi.org/10.1038/417552a] [PMID: 12037568]
[31]
Farnaud, S.; Evans, R.W. Lactoferrin--a multifunctional protein with antimicrobial properties. Mol. Immunol., 2003, 40(7), 395-405.
[http://dx.doi.org/10.1016/S0161-5890(03)00152-4] [PMID: 14568385]
[32]
Baker, E.N.; Baker, H.M. A structural framework for understanding the multifunctional character of lactoferrin. Biochimie, 2009, 91(1), 3-10.
[http://dx.doi.org/10.1016/j.biochi.2008.05.006] [PMID: 18541155]
[33]
González-Chávez, S.A.; Arévalo-Gallegos, S.; Rascón-Cruz, Q. Lactoferrin: Structure, function and applications. Int. J. Antimicrob. Agents, 2009, 33(4), 301.e1-301.e8.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.07.020] [PMID: 18842395]
[34]
Singh, J.; Vijayan, V.; Ahmedi, S. Lactosmart: A novel therapeutic molecule for antimicrobial defense. Front. Microbiol., 2021, 12, 672589.
[http://dx.doi.org/10.3389/fmicb.2021.672589]
[35]
de Sá Almeida, J.S.; de Oliveira Marre, A.T.; Teixeira, F.L.; Boente, R.F.; Domingues, R.M.C.P.; de Paula, G.R.; Lobo, L.A. Lactoferrin and lactoferricin B reduce adhesion and biofilm formation in the intestinal symbionts Bacteroides fragilis and Bacteroides thetaiotaomicron. Anaerobe, 2020, 64, 102232.
[http://dx.doi.org/10.1016/j.anaerobe.2020.102232] [PMID: 32634470]
[36]
Angulo-Zamudio, U.A.; Vidal, J.E.; Nazmi, K. Lactoferrin disaggregates pneumococcal biofilms and inhibits acquisition of resistance through its DNase activity. Front. Microbiol., 2019, 10, 2386.
[http://dx.doi.org/10.3389/fmicb.2019.02386]
[37]
Parks, R.E., Jr; Aganwal, R.P. 9 nucleoside diphosphokinases. Enzymes, 1973, 8, 307-333.
[http://dx.doi.org/10.1016/S1874-6047(08)60069-4]
[38]
Sundin, G.W.; Shankar, S.; Chakrabarty, A.M. Mutational analysis of nucleoside diphosphate kinase from Pseudomonas aeruginosa: Characterization of critical amino acid residues involved in exopolysaccharide alginate synthesis. J. Bacteriol., 1996, 178(24), 7120-7128.
[http://dx.doi.org/10.1128/jb.178.24.7120-7128.1996] [PMID: 8955392]
[39]
Lascu, L. The nucleoside diphosphate kinases 1973-2000. J. Bioenerg. Biomembr., 2000, 32(3), 213-214.
[PMID: 11768304]
[40]
Spooner, R.; Yilmaz, Ö. Nucleoside-diphosphate-kinase: A pleiotropic effector in microbial colonization under interdisciplinary characterization. Microbes Infect., 2012, 14(3), 228-237.
[http://dx.doi.org/10.1016/j.micinf.2011.10.002] [PMID: 22079150]
[41]
Yu, H.; Xiong, J.; Zhang, R. Ndk, a novel host-responsive regulator, negatively regulates bacterial virulence through quorum sensing in Pseudomonas aeruginosa. Sci. Rep., 2016, 6, 28684.
[http://dx.doi.org/10.1038/srep28684]
[42]
Yu, H.; Rao, X.; Zhang, K. Nucleoside diphosphate kinase (Ndk): A pleiotropic effector manipulating bacterial virulence and adaptive responses. Microbiol. Res., 2017, 205, 125-134.
[http://dx.doi.org/10.1016/j.micres.2017.09.001] [PMID: 28942838]
[43]
Shankar, S.; Kamath, S.; Chakrabarty, A.M. Two forms of the nucleoside diphosphate kinase of Pseudomonas aeruginosa 8830: Altered specificity of nucleoside triphosphate synthesis by the cell membrane-associated form of the truncated enzyme. J. Bacteriol., 1996, 178(7), 1777-1781.
[http://dx.doi.org/10.1128/jb.178.7.1777-1781.1996] [PMID: 8606147]
[44]
Chopade, B.A.; Shankar, S.; Sundin, G.W.; Mukhopadhyay, S.; Chakrabarty, A.M. Characterization of membrane-associated Pseudomonas aeruginosa Ras-like protein Pra, a GTP-binding protein that forms complexes with truncated nucleoside diphosphate kinase and pyruvate kinase to modulate GTP synthesis. J. Bacteriol., 1997, 179(7), 2181-2188.
[http://dx.doi.org/10.1128/jb.179.7.2181-2188.1997] [PMID: 9079902]
[45]
Chakrabarty, A.M. Nucleoside diphosphate kinase: Role in bacterial growth, virulence, cell signalling and polysaccharide synthesis. Mol. Microbiol., 1998, 28(5), 875-882.
[http://dx.doi.org/10.1046/j.1365-2958.1998.00846.x] [PMID: 9663675]
[46]
Kapatral, V.; Bina, X.; Chakrabarty, A.M. Succinyl coenzyme A synthetase of Pseudomonas aeruginosa with a broad specificity for nucleoside triphosphate (NTP) synthesis modulates specificity for NTP synthesis by the 12-kilodalton form of nucleoside diphosphate kinase. J. Bacteriol., 2000, 182(5), 1333-1339.
[http://dx.doi.org/10.1128/JB.182.5.1333-1339.2000] [PMID: 10671455]
[47]
Neeld, D.; Jin, Y.; Bichsel, C.; Jia, J.; Guo, J.; Bai, F.; Wu, W.; Ha, U.H.; Terada, N.; Jin, S. Pseudomonas aeruginosa injects NDK into host cells through a type III secretion system. Microbiology, 2014, 160(Pt 7), 1417-1426.
[http://dx.doi.org/10.1099/mic.0.078139-0] [PMID: 24699069]
[48]
Sikarwar, J.; Kaushik, S.; Sinha, M.; Kaur, P.; Sharma, S.; Singh, T.P. Cloning, expression, and purification of nucleoside diphosphate kinase from Acinetobacter baumannii. Enzyme Res., 2013, 2013, 597028.
[http://dx.doi.org/10.1155/2013/597028] [PMID: 23662205]
[49]
Zegzouti, H.; Zdanovskaia, M.; Hsiao, K.; Goueli, S.A. ADP-Glo: A Bioluminescent and homogeneous ADP monitoring assay for kinases. Assay Drug Dev. Technol., 2009, 7(6), 560-572.
[http://dx.doi.org/10.1089/adt.2009.0222] [PMID: 20105026]
[50]
Wayne, P.A. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial susceptibility Tests for Bacteria that grow Aerobically; Approved Standard-Tenth Edition; CLSI document M07-A10 Clinical and Laboratory Standards Institute, 2015.
[51]
Ramamourthy, G.; Arias, M.; Nguyen, L.T.; Ishida, H.; Vogel, H.J. Expression and purification of chemokine MIP-3α (CCL20) through a calmodulin-fusion protein system. Microorganisms, 2019, 7(1), 8.
[http://dx.doi.org/10.3390/microorganisms7010008]
[52]
Randazzo, P.A.; Northup, J.K.; Kahn, R.A. Activation of a small GTP-binding protein by nucleoside diphosphate kinase. Science, 1991, 254(5033), 850-853.
[http://dx.doi.org/10.1126/science.1658935] [PMID: 1658935]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy