Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Mini-Review Article

Varying Effects of Iron Oxide Nanoparticles (IONPs) on the Bacterial Cells

Author(s): Umme Jouvairiya, Mehar Fatima Alvi, Soban Ahmad Faridi, Khwaja Osama and Archana Vimal*

Volume 12, Issue 4, 2022

Published on: 26 September, 2022

Article ID: e220822207852 Pages: 9

DOI: 10.2174/2210681212666220822123017

Price: $65

conference banner
Abstract

Nanoparticles have a wide range of responsive reactions in bacterial cells depending on their characteristics. They interact with organisms at a cellular level and are capable of producing unexpected reactions depending on their own and cell’s morphological features. Some functions provide betterment of cells and some cause disruptions in the cell functioning or exhibit toxicity for them. Nanoparticles, depending on their toxicity, can also cause alterations in cellular physiology. Different nanoparticles affect different biological species in different ways. As a result, a comprehensive investigation is necessary for all types of nanoparticles to demonstrate their beneficial and harmful effects on various species in terms of growth, inhibition, toxicity, and death. In this review, we have only focused on the iron nanoparticle and their effects on bacterial cells as they are the most commonly used nanoparticle in biology and microbiology because of their unique physicochemical properties (size, shape, stability, etc.). These properties of NPs allow them to react with the bacterial cell surfaces and create a response (which can either support the growth of the bacteria or cause an anti-bacterial or anti-microbial effect on them). These properties are also changeable if we alter the morphological features of the NPs. Studies have shown improvement in microbiological reaction rates by using magnetic nanoparticles. However, nanoparticle toxicity is the major area of concern, as it can decrease therapeutic efficiency and cause adverse effects. Considering the wide range of responses and their reasons, this review summarizes the effects an iron oxide nanoparticle can have on the bacterial cell in general, the factors that influence those effects, and the relation of NP's characteristics to their significant differences in effects on bacteria.

Keywords: Iron oxide nanoparticles, bacteria, antibiotic toxicity, top-down, nanobiotechnology, morphological features.

Graphical Abstract

[1]
Leroueil, P.R.; Hong, S.; Mecke, A.; Baker, J.R., Jr; Orr, B.G.; Banaszak Holl, M.M. Nanoparticle interaction with biological membranes: Does nanotechnology present a Janus face? Acc. Chem. Res., 2007, 40(5), 335-342.
[http://dx.doi.org/10.1021/ar600012y] [PMID: 17474708]
[2]
Huber, D.L. Synthesis, properties, and applications of iron nanoparticles. Small, 2005, 1(5), 482-501.
[http://dx.doi.org/10.1002/smll.200500006] [PMID: 17193474]
[3]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[4]
Tartaj, P.; del Puerto Morales, M.; Veintemillas-Verdaguer, S.; González-Carreño, T.; Serna, C.J. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys., 2003, 36(13), R182-R197.
[http://dx.doi.org/10.1088/0022-3727/36/13/202]
[5]
Kudr, J.; Haddad, Y.; Richtera, L.; Heger, Z.; Cernak, M.; Adam, V.; Zitka, O. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials, 2017, 7(9), 243.
[http://dx.doi.org/10.3390/nano7090243] [PMID: 28850089]
[6]
Niemeyer, C.M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. Engl., 2001, 40(22), 4128-4158.
[http://dx.doi.org/10.1002/1521-3773(20011119)40:22<4128:AID-ANIE4128>3.0.CO;2-S] [PMID: 29712109]
[7]
Tristan, C.; Kerr, R.; Alexander, J. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Comprehensive Nanoscience and Nanotechnology; Elsevier BV, 2019, Vol. 3, pp. 193-210.
[8]
Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett., 2012, 7(1), 144.
[http://dx.doi.org/10.1186/1556-276X-7-144] [PMID: 22348683]
[9]
Hasany, S.F.; Ahmed, I.; Rajan, J.; Rehman, A. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci. Nanotechnol., 2013, 2(6), 148-158.
[http://dx.doi.org/10.5923/j.nn.20120206.01]
[10]
Feng, Q.; Liu, Y.; Huang, J.; Chen, K.; Huang, J.; Xiao, K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep., 2018, 8(1), 2082.
[http://dx.doi.org/10.1038/s41598-018-19628-z] [PMID: 29391477]
[11]
Yarjanli, Z.; Ghaedi, K.; Esmaeili, A.; Rahgozar, S.; Zarrabi, A. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci., 2017, 18(1), 51.
[http://dx.doi.org/10.1186/s12868-017-0369-9] [PMID: 28651647]
[12]
Chatterjee, S.; Bandyopadhyay, A.; Sarkar, K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J. Nanobiotechnology, 2011, 9(1), 34.
[http://dx.doi.org/10.1186/1477-3155-9-34] [PMID: 21859494]
[13]
Laha, D.; Pramanik, A.; Laskar, A.; Jana, M.; Pramanik, P.; Karmakar, P. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage. Mater. Res. Bull., 2014, 59, 185-191.
[http://dx.doi.org/10.1016/j.materresbull.2014.06.024]
[14]
Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. Do iron oxide nanoparticles have significant antibacterial properties? Antibiotics, 2021, 10(7), 884.
[http://dx.doi.org/10.3390/antibiotics10070884] [PMID: 34356805]
[15]
Ebrahiminezhad, A.; Davaran, S.; Rasoul-Amini, S.; Barar, J.; Moghadam, M.; Ghasemi, Y. Synthesis, characterization and anti-listeria monocytogenes effect of amino acid coated magnetite nanoparticles. Curr. Nanosci., 2012, 8(6), 868-874.
[http://dx.doi.org/10.2174/157341312803989178]
[16]
Ismail, R.A.; Sulaiman, G.M.; Abdulrahman, S.A.; Marzoog, T.R. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng. C, 2015, 53, 286-297.
[http://dx.doi.org/10.1016/j.msec.2015.04.047] [PMID: 26042717]
[17]
Ramteke, C.; Ketan Sarangi, B.; Chakrabarti, T.; Mudliar, S.; Satpute, D.; Avatar Pandey, R. Synthesis and broad spectrum antibacterial activity of magnetite ferrofluid. Curr. Nanosci., 2010, 6(6), 587-591.
[http://dx.doi.org/10.2174/157341310793348605]
[18]
Borcherding, J.; Baltrusaitis, J.; Chen, H.; Stebounova, L.; Wu, C.M.; Rubasinghege, G.; Mudunkotuwa, I.A.; Caraballo, J.C.; Zabner, J.; Grassian, V.H.; Comellas, A.P. Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environ. Sci. Nano, 2014, 1(2), 123-132.
[http://dx.doi.org/10.1039/c3en00029j] [PMID: 25221673]
[19]
Saif, S.; Tahir, A.; Chen, Y. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 2016, 6(11), 209.
[http://dx.doi.org/10.3390/nano6110209] [PMID: 28335338]
[20]
Ullah, M.; Ali, M.E.; Hamid, S.B.A. Surfactant-assisted ball milling: a novel route to novel materials with controlled nanostructure-A review. Rev. Adv. Mater. Sci., 2014, 37.
[21]
Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev., 2020, 13(3), 223-245.
[http://dx.doi.org/10.1080/17518253.2020.1802517]
[22]
Tavakoli, A.; Sohrabi, M.; Kargari, A. A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem. Pap., 2007, 61(3), 151-170.
[http://dx.doi.org/10.2478/s11696-007-0014-7]
[23]
Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Parishcha, R.; Ajaykumar, P.V.; Alam, M.; Kumar, R.; Sastry, M. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett., 2001, 1(10), 515-519.
[http://dx.doi.org/10.1021/nl0155274]
[24]
Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol., 2019, 101174, 101174.
[http://dx.doi.org/10.1016/j.jddst.2019.101174]
[25]
Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 2010, 156(1-2), 1-13.
[http://dx.doi.org/10.1016/j.cis.2010.02.001] [PMID: 20181326]
[26]
Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761), 622-627.
[http://dx.doi.org/10.1126/science.1114397] [PMID: 16456071]
[27]
Arakha, M.; Pal, S.; Samantarrai, D.; Panigrahi, T.K.; Mallick, B.C.; Pramanik, K.; Mallick, B.; Jha, S. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep., 2015, 5(1), 14813.
[http://dx.doi.org/10.1038/srep14813] [PMID: 26437582]
[28]
Stanić, V.; Tanasković, S.B. Antibacterial activity of metal oxide nanoparticles. Micro and Nano Technologies, Nanotoxicity; Elsevier, 2020, pp. 241-274.
[http://dx.doi.org/10.1016/B978-0-12-819943-5.00011-7]
[29]
Pearson, R.G. Hard and soft acids and bases. J. Am. Chem. Soc., 1963, 85(22), 3533-3539.
[http://dx.doi.org/10.1021/ja00905a001]
[30]
Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; Jimenez de Aberasturi, D.; de Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol., 2012, 30(10), 499-511.
[http://dx.doi.org/10.1016/j.tibtech.2012.06.004] [PMID: 22884769]
[31]
Sathyanarayanan, M.B.; Balachandranath, R.; Genji Srinivasulu, Y.; Kannaiyan, S.K.; Subbiahdoss, G. The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiol., 2013, 2013, 272086.
[http://dx.doi.org/10.1155/2013/272086] [PMID: 24187645]
[32]
Ezealigo, U.S.; Ezealigo, B.N.; Aisida, S.O.; Ezema, F.I. Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective. JCIS Open, 2021, 4, 100027.
[http://dx.doi.org/10.1016/j.jciso.2021.100027]
[33]
Chang, Y.N.; Zhang, M.; Xia, L.; Zhang, J.; Xing, G. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials, 2012, 5(12), 2850-2871.
[http://dx.doi.org/10.3390/ma5122850]
[34]
Baek, Y.W.; An, Y.J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total Environ., 2011, 1603(8), 409.
[35]
Applerot, G.; Lipovsky, A.; Dror, R.; Perkas, N.; Nitzan, Y.; Lubart, R.; Gedanken, A. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS‐mediated cell injury. Adv. Funct. Mater., 2009, 19(6), 842-852.
[http://dx.doi.org/10.1002/adfm.200801081]
[36]
Aruguete, D.M.; Hochella, M.F. Bacteria-nanoparticle interactions and their environmental implications. Environ. Chem., 2010, 3(9), 7.
[http://dx.doi.org/10.1071/EN09115]
[37]
Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2007, 2(4), MR17-MR71.
[http://dx.doi.org/10.1116/1.2815690] [PMID: 20419892]
[38]
Takenaka, S.; Karg, E.; Roth, C.; Schulz, H.; Ziesenis, A.; Heinzmann, U.; Schramel, P.; Heyder, J. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ. Health Perspect., 2001, 109(4)(Suppl. 4), 547-551.
[http://dx.doi.org/10.1289/ehp.01109s4547] [PMID: 11544161]
[39]
Ebrahiminezhad, A.; Amini, S.R.; Kouhpayeh, A.; Davaran, S. Impacts of amine functionalized iron oxide nanoparticles on HepG2 cell line. Curr. Nanosci., 2015, 11(1), 113-119.
[http://dx.doi.org/10.2174/1573413710666140911224743]
[40]
Wiesner, M.R.; Lowry, G.V.; Casman, E.; Bertsch, P.M.; Matson, C.W.; Giulio, R.T.D.; Liu, J.; Hochella, M.F., Jr Meditations on the ubiquity and mutability of nano-sized materials in the environment. ACS Nano, 2011, 8466(70), 204118.
[http://dx.doi.org/10.1021/nn204118p]
[41]
Kolhar, P.; Anselmo, A.C.; Gupta, V.; Pant, K.; Prabhakarpandian, B.; Ruoslahti, E.; Mitragotri, S. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci., 2013, 110(26), 10753-10758.
[http://dx.doi.org/10.1073/pnas.1308345110]
[42]
Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73(6), 1712.
[http://dx.doi.org/10.1128/AEM.02218-06]
[43]
Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study. J. Nanomater., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/720654]
[44]
Hu, X.; Cook, S.; Wang, P.; Hwang, H.M. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci. Total Environ., 2009, 407(8), 3070-3072.
[http://dx.doi.org/10.1016/j.scitotenv.2009.01.033] [PMID: 19215968]
[45]
Brunner, T.J.; Wick, P.; Manser, P.; Spohn, P.; Grass, R.N.; Limbach, L.K.; Bruinink, A.; Stark, W.J. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol., 2006, 40(14), 4374-4381.
[http://dx.doi.org/10.1021/es052069i] [PMID: 16903273]
[46]
Dinali, R.; Ebrahiminezhad, A.; Manley, H.M.; Ghasemi, Y.; Berenjian, A. Iron oxide nanoparticles in modern microbiology and biotechnology. Crit. Rev. Microbiol., 2017, 43(4), 493-507.
[http://dx.doi.org/10.1080/1040841X.2016.1267708] [PMID: 28068855]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy