Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Recent Advances of Nanotechnology in Brain Targeting

Author(s): Vanshita Singh, Akash Garg, Rajeev Sharma and Hitesh Kumar Dewangan*

Volume 19, Issue 3, 2023

Published on: 19 September, 2022

Page: [350 - 361] Pages: 12

DOI: 10.2174/1573413718666220820113550

Price: $65

Abstract

Central nervous system disorders, particularly neurodegenerative disorders, are a serious public health concern that researchers must address to protect the persons against them. The prevalence of the blood-brain barrier (BBB), which segregates the blood from cerebral parenchyma and hence limits the brain uptake of most of the therapeutic agents, makes developing drug delivery systems for brain delivery one of the most challenging research subjects in pharmaceutical domains. The detailed description of BBB-crossing nanotechnology in this article is expected to pique the attention of researchers from a wide range of fields who want to help build powerful BBB-crossing nanosystems for highly effective brain targeting. Recent advances in nanotechnology have resulted in multifunctional nanosystems that can cross or circumvent the BBB, allowing for more accurate assessment and treatment of brain tumours. The application of nanotechnology in targeting different drugs across the brain is included in this review.

Keywords: Brain-targeting, BBB, nanotechnology, targeting, drug delivery, central nervous system.

Graphical Abstract

[1]
Barnabas, W. Drug targeting strategies into the brain for treating neurological diseases. J. Neurosci. Methods, 2019, 311, 133-146.
[http://dx.doi.org/10.1016/j.jneumeth.2018.10.015] [PMID: 30336221]
[2]
Mukhtar, M.; Bilal, M.; Rahdar, A.; Barani, M.; Arshad, R.; Behl, T.; Brisc, C.; Banica, F.; Bungau, S. Nanomaterials for diagnosis and treatment of brain cancer: Recent updates. Chemosensors (Basel), 2020, 8(4), 1-31.
[http://dx.doi.org/10.3390/chemosensors8040117]
[3]
Barani, M.; Mukhtar, M.; Rahdar, A.; Sargazi, G.; Thysiadou, A.; Kyzas, G.Z. Progress in the application of nanoparticles and graphene as drug carriers and on the diagnosis of brain infections. Molecules, 2021, 26(1), 1-19.
[http://dx.doi.org/10.3390/molecules26010186] [PMID: 33401658]
[4]
Simge, E.; Laraib, U.; Arshad, R.; Sargazi, S.; Rahdar, A.; Pandey, S.; Thakur, V.K.; Díez-Pascual, A.M. Amino acids, peptides, and protein S: Implications for nanotechnological applications in biosensing and drug/gene delivery. Nanomaterials (Basel), 2021, 11(3002), 1-36.
[5]
Tang, W.; Fan, W.; Lau, J.; Deng, L.; Shen, Z.; Chen, X. Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev., 2019, 48(11), 2967-3014.
[http://dx.doi.org/10.1039/C8CS00805A] [PMID: 31089607]
[6]
Dong, X. Current strategies for brain drug delivery. Theranostics, 2018, 8(6), 1481-1493.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[7]
Sabir, F.; Zeeshan, M.; Laraib, U.; Barani, M.; Rahdar, A.; Cucchiarini, M.; Pandey, S. DNA based and stimuli-responsive smart nanocarrier for diagnosis and treatment of cancer: Applications and challenges. Cancers (Basel), 2021, 13(14), 1-39.
[http://dx.doi.org/10.3390/cancers13143396] [PMID: 34298610]
[8]
Mohammadzadeh, V.; Barani, M.; Amiri, M.S.; Taghavizadeh Yazd, M.E.T.; Hassanisaadi, M.; Rahdar, A.; Varma, R.S. Applications of plant-based nanoparticles in nanomedicine: A review. Sustain. Chem. Pharm., 2022, 25(April), 100606.
[http://dx.doi.org/10.1016/j.scp.2022.100606]
[9]
Teleanu, D.; Chircov, C.; Grumezescu, A.; Pharmaceutics, AV Blood-brain delivery methods using nanotechnology. Pharmaceutics, 2018, 10(14), 269.
[http://dx.doi.org/10.3390/pharmaceutics10040269]
[10]
Dewangan, H.K.; Singh, N.; Kumar Megh, S.; Singh, S. Lakshmi, Optimisation and evaluation of Gymnema sylvestre extract loaded polymeric nanoparticles for enhancement of in vivo efficacy and reduction of toxicity. J. Microencapsul., 2022, 25, 1-11.
[http://dx.doi.org/10.1080/02652048.2022.2051625] [PMID: 35282781]
[11]
Gauro, R.; Nandave, M.; Jain, V.K.; Jain, K. Advances in dendrimer-mediated targeted drug delivery to the brain. J. Nanopart. Res., 2021.
[http://dx.doi.org/10.1007/s11051-021-05175-8]
[12]
Xu, L.; Zhang, H.; Wu, Y. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem. Neurosci., 2014, 5(1), 2-13.
[http://dx.doi.org/10.1021/cn400182z] [PMID: 24274162]
[13]
Garg, T.; Bhandari, S.; Rath, G.; Goyal, A.K. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J. Drug Target., 2015, 23(10), 865-887.
[http://dx.doi.org/10.3109/1061186X.2015.1029930] [PMID: 25835469]
[14]
Lajoie, J.M.; Shusta, E.V. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu. Rev. Pharmacol. Toxicol., 2015, 55, 613-631.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124852] [PMID: 25340933]
[15]
Patel, M.M.; Patel, B.M. Crossing the blood-brain barrier: recent advances in drug delivery to the brain. CNS Drugs, 2017, 31(2), 109-133.
[http://dx.doi.org/10.1007/s40263-016-0405-9] [PMID: 28101766]
[16]
Mena, I.; Cotzias, G.C. Protein intake and treatment of Parkinson’s disease with levodopa. N. Engl. J. Med., 1975, 292(4), 181-184.
[http://dx.doi.org/10.1056/NEJM197501232920404] [PMID: 1109209]
[17]
Alexander, A.; Agrawal, M.; Uddin, A.; Siddique, S.; Shehata, A.M.; Shaker, M.A.; Ata Ur Rahman, S.; Abdul, M.I.M.; Shaker, M.A. Recent expansions of novel strategies towards the drug targeting into the brain. Int. J. Nanomedicine, 2019, 14, 5895-5909.
[http://dx.doi.org/10.2147/IJN.S210876] [PMID: 31440051]
[18]
Singh, V.; Garg, A.; Dewangan, H.K. Recent Advances in Drug Design and Delivery Across Biological Barriers Using Computational Models. LDDD, 2022, 19, 265-876.
[http://dx.doi.org/10.2174/1570180819999220204110306]
[19]
Dewangan, H.K. Rational application of nanoadjuvant for mucosal vaccine delivery system. J. Immunol. Methods, 2020, 481-482, 112791.
[http://dx.doi.org/10.1016/j.jim.2020.112791] [PMID: 32387695]
[20]
Garg, A.; Dewangan, H.K. Nanoparticles as Adjuvants in Vaccine Delivery. Crit. Rev. Ther. Drug Carrier Syst., 2020, 37(2), 183-204.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2020033273] [PMID: 32865905]
[21]
Sharma, V.; Dewangan, H.K.; Mourya, L.; Vats, K.; Verma, H.; Singh, S. Rational design and in vivo estimation of Ivabradine Hydrochloride loaded nanoparticles for management of stable angina. J Drug Del Sci and Tech, 2019, 54101337-46.
[22]
Yadav, D.; Dewangan, H.K. PEGylation: An important Approach for Novel Drug Delivery System. J. Biomater. Sci. Polym. Ed., 2020, 3, 1-15.
[PMID: 32942961]
[23]
Hersh, A.M.; Alomari, S.; Tyler, B.M. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int. J. Mol. Sci., 2022, 23(8), 1-28.
[http://dx.doi.org/10.3390/ijms23084153] [PMID: 35456971]
[24]
Fatima, I.; Rahdar, A.; Sargazi, S.; Barani, M.; Hassanisaadi, M.; Thakur, V.K. Quantum dots: Synthesis, antibody conjugation, and HER2-receptor targeting for breast cancer therapy. J. Funct. Biomater., 2021, 12(4), 75.
[http://dx.doi.org/10.3390/jfb12040075] [PMID: 34940554]
[25]
Qindeel, M.; Sargazi, S.; Hosseinikhah, S.M.; Rahdar, A.; Barani, M.; Thakur, V.K.; Pandey, S. Razieh Mirsafaei, PB Nanostructures for cancer theranostics: Chemistry, fundamentals and recent advances Chemi. Select., 2021, 6(48), 14082-14099.
[26]
Reddy, S.; Tatiparti, K.; Sau, S.; Iyer, A.K. Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors. Drug Discov. Today, 2021, 26(8), 1944-1952.
[http://dx.doi.org/10.1016/j.drudis.2021.04.008] [PMID: 33865978]
[27]
Patel, D.; Naik, S.; Misra, A. Improved transnasal transport and brain uptake of tizanidine HCl-loaded thiolated chitosan nanoparticles for alleviation of pain. J. Pharm. Sci., 2012, 101(2), 690-706.
[http://dx.doi.org/10.1002/jps.22780] [PMID: 22006260]
[28]
Sood, S.; Jain, K.; Gowthamarajan, K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf. B Biointerfaces, 2014, 113, 330-337.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.030] [PMID: 24121076]
[29]
Wang, X.; Chi, N.; Tang, X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur. J. Pharm. Biopharm., 2008, 70(3), 735-740.
[http://dx.doi.org/10.1016/j.ejpb.2008.07.005] [PMID: 18684400]
[30]
Mittal, D.; Md, S.; Hasan, Q.; Fazil, M.; Ali, A.; Baboota, S.; Ali, J. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route. Drug Deliv., 2016, 23(1), 130-139.
[31]
Kumar, M.; Pathak, K.; Misra, A. Formulation and characterization of nanoemulsion-based drug delivery system of risperidone. Drug Dev. Ind. Pharm., 2009, 35(4), 387-395.
[http://dx.doi.org/10.1080/03639040802363704] [PMID: 19016058]
[32]
Kaur, P.; Garg, T.; Vaidya, B.; Prakash, A.; Rath, G.; Goyal, A.K. Brain delivery of intranasal in situ gel of nanoparticulated polymeric carriers containing antidepressant drug: Behavioral and biochemical assessment. J. Drug Target., 2015, 23(3), 275-286.
[33]
Patel, D.; Naik, S.; Chuttani, K.; Mathur, R.; Mishra, A.K.; Misra, A. Intranasal delivery of cyclobenzaprine hydrochloride-loaded thiolated chitosan nanoparticles for pain relief. J. Drug Target., 2013, 21(8), 759-769.
[http://dx.doi.org/10.3109/1061186X.2013.818676] [PMID: 23879335]
[34]
Alam, S.; Khan, Z.I.; Mustafa, G.; Kumar, M.; Islam, F.; Bhatnagar, A.; Ahmad, F.J. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: A pharmacoscintigraphic study. Int. J. Nanomedicine, 2012, 7, 5705-5718.
[http://dx.doi.org/10.2147/IJN.S35329] [PMID: 23180965]
[35]
Fazil, M.; Md, S.; Haque, S.; Kumar, M.; Baboota, S.; Sahni, J.K.; Ali, J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur. J. Pharm. Sci., 2012, 47(1), 6-15.
[http://dx.doi.org/10.1016/j.ejps.2012.04.013] [PMID: 22561106]
[36]
Bhavna, M.S.; Md, S.; Ali, M.; Ali, R.; Bhatnagar, A.; Baboota, S.; Ali, J. Donepezil nanosuspension intended for nose to brain targeting: in vitro and in vivo safety evaluation. Int. J. Biol. Macromol., 2014, 67, 418-425.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.03.022] [PMID: 24705169]
[37]
Wilson, B.; Samanta, M.K.; Santhi, K.; Kumar, K.P.S.; Paramakrishnan, N.; Suresh, B. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm., 2008, 70(1), 75-84.
[http://dx.doi.org/10.1016/j.ejpb.2008.03.009] [PMID: 18472255]
[38]
Mustafa, G.; Ahuja, A.; Al Rohaimi, A.H.; Muslim, S.; Hassan, A.A.; Baboota, S.; Ali, J. Nano-ropinirole for the management of Parkinsonism: Blood-brain pharmacokinetics and carrier localization. Expert Rev. Neurother., 2015, 15(6), 695-710.
[http://dx.doi.org/10.1586/14737175.2015.1036743] [PMID: 25955028]
[39]
Elnaggar, Y.S.R.; Etman, S.M.; Abdelmonsif, D.A.; Abdallah, O.Y. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in alzheimer’s disease: Optimization, biological efficacy, and potential toxicity. J. Pharm. Sci., 2015, 104, 3544-3556.
[http://dx.doi.org/10.1002/jps.24557]
[40]
Haque, S.; Md, S.; Fazil, M.; Kumar, M.; Sahni, J.K.; Ali, J.; Baboota, S. Venlafaxine loaded chitosan NPs for brain targeting: Pharmacokinetic and pharmacodynamic evaluation. Carbohydr. Polym., 2012, 89(1), 72-79.
[http://dx.doi.org/10.1016/j.carbpol.2012.02.051] [PMID: 24750606]
[41]
Md, S.; Haque, S.; Fazil, M.; Kumar, M.; Baboota, S.; Sahni, J.K.; Ali, J. Expert opinion on drug delivery optimised nanoformulation of bromocriptine for direct nose-to-brain delivery: Biodistribution, pharmacokinetic and dopamine estimation by ultra-HPLC/mass spectrometry method. Exp. Opin. Drug Deliv., 2014, 11(6), 827-842.
[http://dx.doi.org/10.1517/17425247.2014.894504]
[42]
Azadi, A.; Hamidi, M.; Khoshayand, M.R.; Amini, M.; Rouini, M.R. Preparation and optimization of surface-treated methotrexate-loaded nanogels intended for brain delivery. Carbohydr. Polym., 2012, 90(1), 462-471.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.066] [PMID: 24751066]
[43]
Gulati, N.; Nagaich, U.; Saraf, S.A. Intranasal delivery of chitosan nanoparticles for migraine therapy. Sci. Pharm., 2013, 81(3), 843-854.
[http://dx.doi.org/10.3797/scipharm.1208-18] [PMID: 24106677]
[44]
Khan, S.; Patil, K.; Yeole, P.; Gaikwad, R. Brain targeting studies on buspirone hydrochloride after intranasal administration of mucoadhesive formulation in rats. J. Pharm. Pharmacol., 2009, 61(5), 669-675.
[http://dx.doi.org/10.1211/jpp.61.05.0017] [PMID: 19406007]
[45]
Saboktakin, M.R.; Tabatabaie, R.M.; Maharramov, A.; Ramazanov, M.A. Synthesis and characterization of pH-dependent glycol chitosan and dextran sulfate nanoparticles for effective brain cancer treatment. Int. J. Biol. Macromol., 2011, 49(4), 747-751.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.07.006] [PMID: 21782844]
[46]
Kumar, M.; Misra, A.; Mishra, A.K.; Mishra, P.; Pathak, K. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting. J. Drug Target., 2008, 16(10), 806-814.
[http://dx.doi.org/10.1080/10611860802476504] [PMID: 18988064]
[47]
Mittapalli, R.K.; Liu, X.; Adkins, C.E.; Nounou, M.I.; Bohn, K.A.; Terrell, T.B.; Qhattal, H.S.; Geldenhuys, W.J.; Palmieri, D.; Steeg, P.S.; Smith, Q.R.; Lockman, P.R. Paclitaxel-hyaluronic nanoconjugates prolong overall survival in a preclinical brain metastases of breast cancer model. Mol. Cancer Ther., 2013, 12(11), 2389-2399.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0132] [PMID: 24002934]
[48]
Jeong, Y.I.; Kim, S.T.; Jin, S.G.; Ryu, H.H.; Jin, Y.H.; Jung, T.Y.; Kim, I.Y.; Jung, S. Cisplatin-incorporated hyaluronic acid nanoparticles based on ion-complex formation. J. Pharm. Sci., 2008, 97(3), 1268-1276.
[http://dx.doi.org/10.1002/jps.21103] [PMID: 17674407]
[49]
Yang, L.; Gao, S.; Asghar, S.; Liu, G.; Song, J.; Wang, X.; Ping, Q.; Zhang, C.; Xiao, Y. Hyaluronic acid/chitosan nanoparticles for delivery of curcuminoid and its in vitro evaluation in glioma cells. Int. J. Biol. Macromol., 2015, 72, 1391-1401.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.039] [PMID: 25450553]
[50]
Haque, S.; Md, S.; Sahni, J.K.; Ali, J.; Baboota, S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J. Psychiatr. Res., 2014, 48(1), 1-12.
[http://dx.doi.org/10.1016/j.jpsychires.2013.10.011] [PMID: 24231512]
[51]
Lai, F.; Fadda, A.M.; Sinico, C. Liposomes for brain delivery. Expert Opin. Drug Deliv., 2013, 10(7), 1003-1022.
[http://dx.doi.org/10.1517/17425247.2013.766714] [PMID: 23373728]
[52]
Noble, G.T.; Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol., 2014, 32(1), 32-45.
[http://dx.doi.org/10.1016/j.tibtech.2013.09.007] [PMID: 24210498]
[53]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[54]
Joshi, S.; Singh-Moon, R.P.; Wang, M.; Chaudhuri, D.B.; Holcomb, M.; Straubinger, N.L.; Bruce, J.N.; Bigio, I.J.; Straubinger, R.M. Transient cerebral hypoperfusion assisted intraarterial cationic liposome delivery to brain tissue. J. Neurooncol., 2014, 118(1), 73-82.
[http://dx.doi.org/10.1007/s11060-014-1421-6] [PMID: 24664370]
[55]
de Franciscis, V.; Esposito, C.L.; Catuogno, S.; Cellai, L.; Cerchia, L. Aptamers as innovative diagnostic and therapeutic agents in the central nervous system. CNS Neurol. Disord. Drug Targets, 2009, 8(5), 393-401.
[http://dx.doi.org/10.2174/187152709789542023] [PMID: 19702567]
[56]
Nair, M.P.N.; Saiyed, Z.M. Magnetic nanodelivery of therapeutic agents across the blood brain barrier., 2009, US Patent 2011/213193- A1.
[57]
Wen, C.J.; Zhang, L.W.; Al-Suwayeh, S.A.; Yen, T.C.; Fang, J.Y. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int. J. Nanomedicine, 2012, 7, 1599-1611.
[PMID: 22619515]
[58]
Joshi, S.; Singh-Moon, R.; Wang, M.; Chaudhuri, D.B.; Ellis, J.A.; Bruce, J.N.; Bigio, I.J.; Straubinger, R.M. Cationic surface charge enhances early regional deposition of liposomes after intracarotid injection. J. Neurooncol., 2014, 120(3), 489-497.
[http://dx.doi.org/10.1007/s11060-014-1584-1] [PMID: 25195130]
[59]
McNeeley, K.M.; Annapragada, A.; Bellamkonda, R.V. Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma. Nanotechnology, 2007, 18(38), 385101.
[http://dx.doi.org/10.1088/0957-4484/18/38/385101]
[60]
Ding, H.; Sagar, V.; Agudelo, M.; Pilakka-Kanthikeel, S.; Atluri, V.S.R.; Raymond, A.; Samikkannu, T.; Nair, M.P. Enhanced blood-brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation. Nanotechnology, 2014, 25(5), 055101.
[http://dx.doi.org/10.1088/0957-4484/25/5/055101] [PMID: 24406534]
[61]
Guo, H.; Chen, W.; Sun, X.; Liu, Y.N.; Li, J.; Wang, J. Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field. Carbohydr. Polym., 2015, 118, 209-217.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.076] [PMID: 25542126]
[62]
Robinson, R.F.; Nahata, M.C. A comparative review of conventional and lipid formulations of amphotericin B. J. Clin. Pharm. Ther., 1999, 24(4), 249-257.
[http://dx.doi.org/10.1046/j.1365-2710.1999.00220.x] [PMID: 10475983]
[63]
Loyse, A.; Thangaraj, H.; Easterbrook, P.; Ford, N.; Roy, M.; Chiller, T.; Govender, N.; Harrison, T.S.; Bicanic, T. Cryptococcal meningitis: Improving access to essential antifungal medicines in resource-poor countries. Lancet Infect. Dis., 2013, 13(7), 629-637.
[http://dx.doi.org/10.1016/S1473-3099(13)70078-1] [PMID: 23735626]
[64]
Benesch, M.; Urban, C. Liposomal cytarabine for leukemic and lymphomatous meningitis: Recent developments. Expert Opin. Pharmacother., 2008, 9(2), 301-309.
[http://dx.doi.org/10.1517/14656566.9.2.301] [PMID: 18201152]
[65]
Di Legge, A.; Trivellizzi, I.N.; Moruzzi, M.C.; Pesce, A.; Scambia, G.; Lorusso, D. Phase 2 trial of nonpegylated doxorubicin (Myocet) as second-line treatment in advanced or recurrent endometrial cancer. Int. J. Gynecol. Cancer, 2011, 21(8), 1446-1451.
[http://dx.doi.org/10.1097/IGC.0b013e31822d754e] [PMID: 22027749]
[66]
Hau, P.; Fabel, K.; Baumgart, U.; Rümmele, P.; Grauer, O.; Bock, A.; Dietmaier, C.; Dietmaier, W.; Dietrich, J.; Dudel, C.; Hübner, F.; Jauch, T.; Drechsel, E.; Kleiter, I.; Wismeth, C.; Zellner, A.; Brawanski, A.; Steinbrecher, A.; Marienhagen, J.; Bogdahn, U. Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer, 2004, 100(6), 1199-1207.
[http://dx.doi.org/10.1002/cncr.20073] [PMID: 15022287]
[67]
Lippens, R.J.J. Liposomal daunorubicin (daunoxome) in children with recurrent or progressive brain tumors. Pediatr. Hematol. Oncol., 1999, 16(2), 131-139.
[68]
Xu, W.; Ling, P.; Zhang, T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv., 2013, 2013, 340315.
[http://dx.doi.org/10.1155/2013/340315] [PMID: 23936656]
[69]
Joseph, M.; Trinh, H.M.; Mitra, A.K. Peptide and protein-based therapeutic agents. emerg nanotechnologies diagnostics. Drug Deliv Med Devices, 2017, 145-167.
[70]
Sezgin-bayindir, Z.; Ergin, A.D.; Parmaksiz, M.; Elcin, A.E.; Elcin, Y.M.; Yuksel, N. Evaluation of various block copolymers for micelle formation and brain drug delivery: in vitro characterization and cellular uptake studies. J. Drug Deliv. Sci. Technol., 2016, 36, 120-129.
[http://dx.doi.org/10.1016/j.jddst.2016.10.003]
[71]
Batrakova, E.V.; Kabanov, A.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release, 2008, 130(2), 98-106.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.013] [PMID: 18534704]
[72]
Karami, Z.; Sadighian, S.; Rostamizadeh, K.; Hosseini, S.H.; Rezaee, S.; Hamidi, M. Magnetic brain targeting of naproxen-loaded polymeric micelles: Pharmacokinetics and biodistribution study. Mater. Sci. Eng. C, 2019, 100, 771-780.
[http://dx.doi.org/10.1016/j.msec.2019.03.004] [PMID: 30948114]
[73]
Chen, Q.; Luo, L.; Xue, Y.; Han, J.; Liu, Y.; Zhang, Y.; Yin, T.; Wang, L.; Cun, D.; Gou, J.; He, H.; Tang, X. Cisplatin-loaded polymeric complex micelles with a modulated drug/copolymer ratio for improved in vivo performance. Acta Biomater., 2019, 92, 205-218.
[http://dx.doi.org/10.1016/j.actbio.2019.05.007] [PMID: 31071475]
[74]
Shao, K.; Huang, R.; Li, J.; Han, L.; Ye, L.; Lou, J.; Jiang, C. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J. Control. Release, 2010, 147(1), 118-126.
[http://dx.doi.org/10.1016/j.jconrel.2010.06.018] [PMID: 20609375]
[75]
Shao, K.; Zhang, Y.; Ding, N.; Huang, S.; Wu, J.; Li, J.; Yang, C.; Leng, Q.; Ye, L.; Lou, J.; Zhu, L.; Jiang, C. Functionalized nanoscale micelles with brain targeting ability and intercellular microenvironment biosensitivity for anti-intracranial infection applications. Adv. Healthc. Mater., 2015, 4(2), 291-300.
[http://dx.doi.org/10.1002/adhm.201400214] [PMID: 25124929]
[76]
Nour, S.A.; Abdelmalak, N.S.; Naguib, M.J.; Rashed, H.M.; Ibrahim, A.B. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: in vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies. Drug Deliv., 2016, 23(9), 3681-3695.
[http://dx.doi.org/10.1080/10717544.2016.1223216] [PMID: 27648847]
[77]
Zhang, Z; Xiaoli, W; Xiaoyu, Z Weiyue, LU p-Hydroxybenzoic acid (p-HA) modified polymeric micelles for brain-targeted docetaxel delivery. 2013, 58, 2651-2656.
[78]
Xie, Y.T.; Du, Y.Z.; Yuan, H.; Hu, F.Q. Brain-targeting study of stearic acid-grafted chitosan micelle drug-delivery system. Int. J. Nanomedicine, 2012, 7, 3235-3244.
[PMID: 22802685]
[79]
Tian, C.; Asghar, S.; Xu, Y.; Chen, Z.; Zhang, J.; Ping, Q.; Xiao, Y. Tween 80-modified hyaluronic acid-ss-curcumin micelles for targeting glioma: Synthesis, characterization and their in vitro evaluation. Int. J. Biol. Macromol, 2018, 120, Pt B-2579-2588.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.034] [PMID: 30195608]
[80]
Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N.K. Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharm., 2010, 394(1-2), 122-142.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.027] [PMID: 20433913]
[81]
Zhou, Z.; Wang, Y.; Yan, Y.; Zhang, Q.; Cheng, Y. Dendrimer-Templated Ultrasmall and Multifunctional Photothermal Agents for Efficient Tumor Ablation. ACS Nano, 2016, 10(4), 4863-4872.
[http://dx.doi.org/10.1021/acsnano.6b02058] [PMID: 27054555]
[82]
Sharma, R.; Kim, S.Y.; Sharma, A.; Zhang, Z.; Kambhampati, S.P.; Kannan, S.; Kannan, R.M. Activated Microglia Targeting Dendrimer-Minocycline Conjugate as Therapeutics for Neuroinflammation. Bioconjug. Chem., 2017, 28(11), 2874-2886.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00569] [PMID: 29028353]
[83]
Sadekar, S.; Ghandehari, H. Transepithelial transport and toxicity of PAMAM dendrimers: Implications for oral drug delivery. Adv. Drug Deliv. Rev., 2012, 64(6), 571-588.
[http://dx.doi.org/10.1016/j.addr.2011.09.010] [PMID: 21983078]
[84]
Feng, S.S.; Mu, L.; Win, K.Y.; Huang, G. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr. Med. Chem., 2004, 11(4), 413-424.
[http://dx.doi.org/10.2174/0929867043455909] [PMID: 14965222]
[85]
Gamage, N.H.; Jing, L.; Worsham, M.J.; Ali, M.M. Targeted Theranostic Approach for Glioma Using Dendrimer-Based Curcumin Nanoparticle. J. Nanomed. Nanotechnol., 2016, 7(4), 393.
[http://dx.doi.org/10.4172/2157-7439.1000393] [PMID: 27699139]
[86]
Zhu, S.; Hong, M.; Tang, G.; Qian, L.; Lin, J.; Jiang, Y.; Pei, Y. Partly PEGylated polyamidoamine dendrimer for tumor-selective targeting of doxorubicin: The effects of PEGylation degree and drug conjugation style. Biomaterials, 2010, 31(6), 1360-1371.
[http://dx.doi.org/10.1016/j.biomaterials.2009.10.044] [PMID: 19883938]
[87]
Katare, Y.K.; Daya, R.P.; Sookram Gray, C.; Luckham, R.E.; Bhandari, J.; Chauhan, A.S.; Mishra, R.K. Brain Targeting of a Water Insoluble Antipsychotic Drug Haloperidol via the Intranasal Route Using PAMAM Dendrimer. Mol. Pharm., 2015, 12(9), 3380-3388.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00402] [PMID: 26226403]
[88]
Kannan, S.; Dai, H.; Navath, R.S.; Balakrishnan, B.; Jyoti, A.; Janisse, J.; Romero, R.; Kannan, R.M. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci. Transl. Med., 2012, 4(130), 130ra46.
[http://dx.doi.org/10.1126/scitranslmed.3003162] [PMID: 22517883]
[89]
Swami, R.; Singh, I.; Kulhari, H.; Jeengar, M.K.; Khan, W.; Sistla, R. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: An in vitro and in vivo evaluation. J. Nanopart. Res., 2015, 176(17), 1-11.
[http://dx.doi.org/10.1007/s11051-015-3063-9]
[90]
Igartúa, D.E.; Martinez, C.S.; Temprana, C.F.; Alonso, S.D.V.; Prieto, M.J. PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization. Int. J. Pharm., 2018, 544(1), 191-202.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.032] [PMID: 29678547]
[91]
Teow, H.M.; Zhou, Z.; Najlah, M.; Yusof, S.R.; Abbott, N.J.; D’Emanuele, A. Delivery of paclitaxel across cellular barriers using a dendrimer-based nanocarrier. Int. J. Pharm., 2013, 441(1-2), 701-711.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.024] [PMID: 23089576]
[92]
Prieto, M.J.; Temprana, C.F.; del Río Zabala, N.E.; Marotta, C.H. Alonso, Sdel.V. Optimization and in vitro toxicity evaluation of G4 PAMAM dendrimer-risperidone complexes. Eur. J. Med. Chem., 2011, 46(3), 845-850.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.021] [PMID: 21251731]
[93]
Yang, H.; Lopina, S.T. Extended release of a novel antidepressant, venlafaxine, based on anionic polyamidoamine dendrimers and poly(ethylene glycol)-containing semi-interpenetrating networks. J. Biomed. Mater. Res. A, 2005, 72(1), 107-114.
[http://dx.doi.org/10.1002/jbm.a.30220] [PMID: 15543595]
[94]
Li, Y.; He, H.; Jia, X.; Lu, W.L.; Lou, J.; Wei, Y. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials, 2012, 33(15), 3899-3908.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.004] [PMID: 22364698]
[95]
Sk, U.H.; Dixit, D.; Sen, E. Comparative study of microtubule inhibitors--estramustine and natural podophyllotoxin conjugated PAMAM dendrimer on glioma cell proliferation. Eur. J. Med. Chem., 2013, 68, 47-57.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.007] [PMID: 23954240]
[96]
Bardi, G.; Nunes, A.; Gherardini, L.; Bates, K.; Al-Jamal, K.T.; Gaillard, C.; Prato, M.; Bianco, A.; Pizzorusso, T.; Kostarelos, K. Functionalized carbon nanotubes in the brain: Cellular internalization and neuroinflammatory responses. PLoS One, 2013, 8(11), e80964.
[http://dx.doi.org/10.1371/journal.pone.0080964] [PMID: 24260521]
[97]
Ahmed, W.; Elhissi, A.; Dhanak, V.; Subramani, K. Carbon nanotubes: Applications in cancer therapy and drug delivery research; Emerg Nanotechnologies Dent Second Ed;, 2018, pp. 371-389.
[98]
Kafa, H.; Wang, J.T.W.; Rubio, N.; Venner, K.; Anderson, G.; Pach, E.; Ballesteros, B.; Preston, J.E.; Abbott, N.J.; Al-Jamal, K.T. The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials, 2015, 53, 437-452.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.083] [PMID: 25890741]
[99]
Ghaderi, S.; Ramesh, B.; Seifalian, A.M. Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: A review. J. Drug Target., 2011, 19(7), 475-486.
[http://dx.doi.org/10.3109/1061186X.2010.526227] [PMID: 20964619]
[100]
Weng, T.; Guo, J.; Li, X.; Cui, Y.; Zhang, B.; Mikhalovsky, S.V.; Sandeman, S.R.; Howel, C.A.; Mikhalovska, L.I.; Savina, I.N. Synthesis, chloramphenicol uptake, and in vitro release of poly(amps-tea-co-aam) gels with affinity for both water and alcohols. Int J Polym Mater Polym Biomater, 2013, 63, 73-79.
[http://dx.doi.org/10.1080/00914037.2013.769250]
[101]
Li, X.; Tsibouklis, J.; Weng, T.; Zhang, B.; Yin, G.; Feng, G.; Cui, Y.; Savina, I.N.; Mikhalovska, L.I.; Sandeman, S.R.; Howel, C.A.; Mikhalovsky, S.V. Nano carriers for drug transport across the blood-brain barrier. J. Drug Target., 2017, 25(1), 17-28.
[http://dx.doi.org/10.1080/1061186X.2016.1184272] [PMID: 27126681]
[102]
Ganta, S.; Amiji, M. Coadministration of Paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol. Pharm., 2009, 6(3), 928-939.
[http://dx.doi.org/10.1021/mp800240j] [PMID: 19278222]
[103]
Ganta, S.; Deshpande, D.; Korde, A.; Amiji, M. A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Mol. Membr. Biol., 2010, 27(7), 260-273.
[http://dx.doi.org/10.3109/09687688.2010.497971]
[104]
Bonferoni, M.C.; Rossi, S.; Sandri, G.; Ferrari, F.; Gavini, E.; Rassu, G.; Giunchedi, P. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics, 2019, 11(2), E84.
[http://dx.doi.org/10.3390/pharmaceutics11020084] [PMID: 30781585]
[105]
Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[106]
Banks, W.A.; Erickson, M.A. The blood-brain barrier and immune function and dysfunction. Neurobiol. Dis., 2010, 37(1), 26-32.
[http://dx.doi.org/10.1016/j.nbd.2009.07.031] [PMID: 19664708]
[107]
Dhuria, S.V.; Hanson, L.R.; Frey, W.H., II Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J. Pharm. Sci., 2010, 99(4), 1654-1673.
[http://dx.doi.org/10.1002/jps.21924] [PMID: 19877171]
[108]
Guo, J.; Leung, K.K.; Su, H.; Yuan, Q.; Wang, L.; Chu, T.H.; Zhang, W.; Pu, J.K.; Ng, G.K.; Wong, W.M.; Dai, X.; Wu, W. Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Nanomedicine, 2009, 5(3), 345-351.
[http://dx.doi.org/10.1016/j.nano.2008.12.001] [PMID: 19268273]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy