Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Progress in the Detection of Cerebrospinal Fluid by Raman Spectroscopy

Author(s): Yali Song, Handan Bian, Tingting Zeng*, Ting Lin, Yuxin Liu, Shanying Deng, Juan Liao, Zhigang Mao and Si Chen

Volume 19, Issue 3, 2023

Published on: 09 September, 2022

Page: [338 - 349] Pages: 12

DOI: 10.2174/1573413718666220803141856

Price: $65

Abstract

As a precious sterile body fluid, cerebrospinal fluid (CSF) examination plays an important role in the diagnosis of many clinical diseases. Early diagnosis can significantly improve these diseases' survival rate. Raman spectroscopy is a scattering spectrum that has been used for the research and analysis of molecular structures. It has been widely used in many fields, such as protein detection, tumor genes, microbiological pathogen compound materials, and food and medical monitoring, with high sensitivity and specificity. In this review, we briefly introduce the mechanism of Raman spectroscopy and summarize its progress in detecting cerebrospinal fluid, mainly focusing on the application of neurodegenerative diseases by Raman spectroscopy. Meanwhile, we also prospect the development of Raman spectroscopy in the detection of CSF and other fluids.

Keywords: Raman spectroscopy, cerebrospinal fluid, nanostructure, Alzheimer's disease, dopamine, neurodegeneration

Graphical Abstract

[1]
Elumalai, S.; Managó, S.; De Luca, A.C. Raman microscopy: Progress in research on cancer cell sensing. Sensors (Basel), 2020, 20(19), 5525-5534.
[http://dx.doi.org/10.3390/s20195525] [PMID: 32992464]
[2]
Lin, T.; Song, Y-L.; Liao, J.; Liu, F.; Zeng, T-T. Applications of surface-enhanced Raman spectroscopy in detection fields. Nanomedicine (Lond.), 2020, 15(30), 2971-2989.
[http://dx.doi.org/10.2217/nnm-2020-0361] [PMID: 33140686]
[3]
Devitt, G.; Howard, K.; Mudher, A.; Mahajan, S. Raman spectroscopy: An emerging tool in neurodegenerative disease research and diagnosis. ACS Chem. Neurosci., 2018, 9(3), 404-420.
[http://dx.doi.org/10.1021/acschemneuro.7b00413] [PMID: 29308873]
[4]
Liu, Y.; Lyu, N.; Rajendran, V.K.; Piper, J.; Rodger, A.; Wang, Y. Sensitive and direct DNA mutation detection by surface-enhanced raman spectroscopy using rational designed and tunable plasmonic nanostructures. Anal. Chem., 2020, 92(8), 5708-5716.
[http://dx.doi.org/10.1021/acs.analchem.9b04183] [PMID: 32223184]
[5]
Zheng, X.; Zong, C.; Xu, M.; Wang, X.; Ren, B. Raman imaging from microscopy to nanoscopy, and to macroscopy. Small, 2015, 11(28), 3395-3406.
[http://dx.doi.org/10.1002/smll.201403804] [PMID: 25873340]
[6]
Krishnan, K.S. Anharmonicity of the lattice oscillations in the alkali halide crystals. Nature, 1950, 166(4211), 114-115.
[http://dx.doi.org/10.1038/166114b0] [PMID: 15439167]
[7]
Fan, M.; Andrade, G.F.S.; Brolo, A.G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal. Chim. Acta, 2020, 1097, 1-29.
[http://dx.doi.org/10.1016/j.aca.2019.11.049] [PMID: 31910948]
[8]
Walrafen, G.E. New Raman method for aqueous solutions: ξ-function dispersion evidence for strong F(-)-water H-bonds in aqueous CsF and KF solutions. J. Chem. Phys., 2005, 123(7), 074506.
[http://dx.doi.org/10.1063/1.1992472] [PMID: 16229600]
[9]
Gala, U.; Chauhan, H. Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development. Expert Opin. Drug Discov., 2015, 10(2), 187-206.
[http://dx.doi.org/10.1517/17460441.2015.981522] [PMID: 25399993]
[10]
Lin, T.; Song, Y-L.; Kuang, P.; Chen, S.; Mao, Z.; Zeng, T-T. Nanostructure-based surface-enhanced Raman scattering for diagnosis of cancer. Nanomedicine (Lond.), 2021, 16(26), 2389-2406.
[http://dx.doi.org/10.2217/nnm-2021-0298] [PMID: 34530631]
[11]
Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; Choo, J.; Cialla-May, D.; Deckert, V.; Fabris, L.; Faulds, K.; García de Abajo, F.J.; Goodacre, R.; Graham, D.; Haes, A.J.; Haynes, C.L.; Huck, C.; Itoh, T.; Käll, M.; Kneipp, J.; Kotov, N.A.; Kuang, H.; Le Ru, E.C.; Lee, H.K.; Li, J.F.; Ling, X.Y.; Maier, S.A.; Mayerhöfer, T.; Moskovits, M.; Murakoshi, K.; Nam, J.M.; Nie, S.; Ozaki, Y.; Pastoriza-Santos, I.; Perez-Juste, J.; Popp, J.; Pucci, A.; Reich, S.; Ren, B.; Schatz, G.C.; Shegai, T.; Schlücker, S.; Tay, L.L.; Thomas, K.G.; Tian, Z.Q.; Van Duyne, R.P.; Vo-Dinh, T.; Wang, Y.; Willets, K.A.; Xu, C.; Xu, H.; Xu, Y.; Yamamoto, Y.S.; Zhao, B.; Liz-Marzán, L.M. Present and future of surface-enhanced raman scattering. ACS Nano, 2020, 14(1), 28-117.
[http://dx.doi.org/10.1021/acsnano.9b04224] [PMID: 31478375]
[12]
Pyrak, E.; Krajczewski, J.; Kowalik, A.; Kudelski, A.; Jaworska, A. Surface enhanced raman spectroscopy for DNA biosensors-how far are we? Molecules, 2019, 24(24), 4423-4454.
[http://dx.doi.org/10.3390/molecules24244423] [PMID: 31817059]
[13]
Li, M.; Cushing, S.K.; Zhou, G.; Wu, N. Molecular hot spots in surface-enhanced Raman scattering. Nanoscale, 2020, 12(43), 22036-22041.
[http://dx.doi.org/10.1039/D0NR06579J] [PMID: 33146197]
[14]
Wright, B.L.C.; Lai, J.T.F.; Sinclair, A.J. Cerebrospinal fluid and lumbar puncture: A practical review. J. Neurol., 2012, 259(8), 1530-1545.
[http://dx.doi.org/10.1007/s00415-012-6413-x] [PMID: 22278331]
[15]
Hrishi, A.P.; Sethuraman, M. Cerebrospinal Fluid (CSF) Analysis and Interpretation in Neurocritical Care for Acute Neurological Conditions. Indian J. Crit. Care Med., 2019, 23(S2)(Suppl. 2), S115-S119.
[http://dx.doi.org/10.5005/jp-journals-10071-23187] [PMID: 31485118]
[16]
Hepnar, D.; Adam, P.; Žáková, H.; Krušina, M.; Kalvach, P.; Kasík, J.; Karpowicz, I.; Nasler, J.; Bechyně, K.; Fiala, T.; Mamiňák, M.; Malíková, I.; Mareš, J.; Šigut, V.; Tokár, Z.; Vránová, J. Recommendations for cerebrospinal fluid analysis. Folia Microbiol. (Praha), 2019, 64(3), 443-452.
[http://dx.doi.org/10.1007/s12223-018-0663-7] [PMID: 30552580]
[17]
Young, N.; Thomas, M. Meningitis in adults: Diagnosis and management. Intern. Med. J., 2018, 48(11), 1294-1307.
[http://dx.doi.org/10.1111/imj.14102] [PMID: 30387309]
[18]
Rahimi, J.; Woehrer, A. Overview of cerebrospinal fluid cytology. Handb. Clin. Neurol., 2017, 145, 563-571.
[http://dx.doi.org/10.1016/B978-0-12-802395-2.00035-3] [PMID: 28987194]
[19]
Harz, M.; Kiehntopf, M.; Stöckel, S.; Rösch, P.; Deufel, T.; Popp, J. Analysis of single blood cells for CSF diagnostics via a combination of fluorescence staining and micro-Raman spectroscopy. Analyst (Lond.), 2008, 133(10), 1416-1423.
[http://dx.doi.org/10.1039/b716132h] [PMID: 18810290]
[20]
Harz, M.; Kiehntopf, M.; Stöckel, S.; Rösch, P.; Straube, E.; Deufel, T.; Popp, J. Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro-Raman spectroscopy. J. Biophotonics, 2009, 2(1-2), 70-80.
[http://dx.doi.org/10.1002/jbio.200810068] [PMID: 19343686]
[21]
Sathyavathi, R.; Dingari, N.C.; Barman, I.; Prasad, P.S.R.; Prabhakar, S.; Narayana Rao, D.; Dasari, R.R.; Undamatla, J. Raman spectroscopy provides a powerful, rapid diagnostic tool for the detection of tuberculous meningitis in ex vivo cerebrospinal fluid samples. J. Biophotonics, 2013, 6(8), 567-572.
[http://dx.doi.org/10.1002/jbio.201200110] [PMID: 22887773]
[22]
Zhang, K.; Liu, Y.; Wang, Y.; Zhang, R.; Liu, J.; Wei, J.; Qian, H.; Qian, K.; Chen, R.; Liu, B. Quantitative SERS detection of dopamine in cerebrospinal fluid by dual-recognition-induced hot spot generation. ACS Appl. Mater. Interfaces, 2018, 10(18), 15388-15394.
[http://dx.doi.org/10.1021/acsami.8b01063] [PMID: 29616546]
[23]
Liu, L.; Zhao, F.; Ma, F.; Zhang, L.; Yang, S.; Xia, N. Electrochemical detection of β-amyloid peptides on electrode covered with N-terminus-specific antibody based on electrocatalytic O2 reduction by Aβ(1-16)-heme-modified gold nanoparticles. Biosens. Bioelectron., 2013, 49, 231-235.
[http://dx.doi.org/10.1016/j.bios.2013.05.028] [PMID: 23770394]
[24]
Ranc, V.; Markova, Z.; Hajduch, M.; Prucek, R.; Kvitek, L.; Kaslik, J.; Safarova, K.; Zboril, R. Magnetically assisted surface-enhanced raman scattering selective determination of dopamine in an artificial cerebrospinal fluid and a mouse striatum using Fe3O4/Ag nanocomposite. Anal. Chem., 2014, 86(6), 2939-2946.
[http://dx.doi.org/10.1021/ac500394g] [PMID: 24555681]
[25]
Demeritte, T.; Nellore, B.P.V.; Kanchanapally, R.; Sinha, S.S.; Pramanik, A.; Chavva, S.R.; Ray, P.C. Hybrid graphene oxide based plasmonic-magnetic multifunctional nanoplatform for selective separation and label-free identification of alzheimer’s disease biomarkers. ACS Appl. Mater. Interfaces, 2015, 7(24), 13693-13700.
[http://dx.doi.org/10.1021/acsami.5b03619] [PMID: 26027901]
[26]
Kamińska, A.; Witkowska, E.; Kowalska, A.; Skoczyńska, A.; Gawryszewska, I.; Guziewicz, E.; Snigurenko, D.; Waluk, J. Highly efficient SERS-based detection of cerebrospinal fluid neopterin as a diagnostic marker of bacterial infection. Anal. Bioanal. Chem., 2016, 408(16), 4319-4327.
[http://dx.doi.org/10.1007/s00216-016-9535-7] [PMID: 27086021]
[27]
Li, P.; Zhou, B.; Cao, X.; Tang, X.; Yang, L.; Hu, L.; Liu, J. Functionalized acupuncture needle as surface-enhanced resonance raman spectroscopy sensor for rapid and sensitive detection of dopamine in serum and cerebrospinal fluid. Chemistry, 2017, 23(57), 14278-14285.
[http://dx.doi.org/10.1002/chem.201702607] [PMID: 28722332]
[28]
Kamińska, A.; Szymborski, T.; Jaroch, T.; Zmysłowski, A.; Szterk, A. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis. Mater. Sci. Eng. C, 2018, 84, 208-217.
[http://dx.doi.org/10.1016/j.msec.2017.11.029] [PMID: 29519430]
[29]
Kim, W.; Lee, S.H.; Ahn, Y.J.; Lee, S.H.; Ryu, J.; Choi, S.K.; Choi, S. A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications. Biosens. Bioelectron., 2018, 111, 59-65.
[http://dx.doi.org/10.1016/j.bios.2018.04.003] [PMID: 29649653]
[30]
Zhang, X.; Liu, S.; Song, X.; Wang, H.; Wang, J.; Wang, Y.; Huang, J.; Yu, J. Robust and universal SERS sensing platform for multiplexed detection of Alzheimer’s disease core biomarkers using PAapt-AuNPs conjugates. ACS Sens., 2019, 4(8), 2140-2149.
[http://dx.doi.org/10.1021/acssensors.9b00974] [PMID: 31353891]
[31]
Rickard, J.J.S.; Di-Pietro, V.; Smith, D.J.; Davies, D.J.; Belli, A.; Oppenheimer, P.G. Rapid optofluidic detection of biomarkers for traumatic brain injury via surface-enhanced Raman spectroscopy. Nat. Biomed. Eng., 2020, 4(6), 610-623.
[http://dx.doi.org/10.1038/s41551-019-0510-4] [PMID: 32015408]
[32]
Bistaffa, E.; Tagliavini, F.; Matteini, P.; Moda, F. Contributions of molecular and optical techniques to the clinical diagnosis of Alzheimer’s disease. Brain Sci., 2020, 10(11), 815.
[http://dx.doi.org/10.3390/brainsci10110815] [PMID: 33153223]
[33]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[34]
Briggs, R.; Kennelly, S.P.; O’Neill, D. Drug treatments in Alzheimer’s disease. Clin. Med. (Lond.), 2016, 16(3), 247-253.
[http://dx.doi.org/10.7861/clinmedicine.16-3-247] [PMID: 27251914]
[35]
Atri, A. The Alzheimer’s Disease Clinical Spectrum: Diagnosis and Management. Med. Clin. North Am., 2019, 103(2), 263-293.
[http://dx.doi.org/10.1016/j.mcna.2018.10.009] [PMID: 30704681]
[36]
Citron, M.; Teplow, D.B.; Selkoe, D.J. Generation of amyloid beta protein from its precursor is sequence specific. Neuron, 1995, 14(3), 661-670.
[http://dx.doi.org/10.1016/0896-6273(95)90323-2] [PMID: 7695913]
[37]
Chételat, G. Multimodal neuroimaging in Alzheimer’s disease: early diagnosis, physiopathological mechanisms, and impact of lifestyle. J. Alzheimers Dis., 2018, 64(s1), S199-S211.
[http://dx.doi.org/10.3233/JAD-179920] [PMID: 29504542]
[38]
Hane, F.T.; Robinson, M.; Lee, B.Y.; Bai, O.; Leonenko, Z.; Albert, M.S. Recent progress in Alzheimer’s disease research, part 3: diagnosis and treatment. J. Alzheimers Dis., 2017, 57(3), 645-665.
[http://dx.doi.org/10.3233/JAD-160907] [PMID: 28269772]
[39]
Viles, J.H. Metal ions and amyloid fiber formation in neurodegenerative diseases. copper, zinc and iron in Alzheimer’s, Parkinson’s and prion diseases. Coord. Chem. Rev., 2012, 256(19-20), 2271-2284.
[http://dx.doi.org/10.1016/j.ccr.2012.05.003]
[40]
Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res., 2018, 7, 1161-1170.
[http://dx.doi.org/10.12688/f1000research.14506.1] [PMID: 30135715]
[41]
Reitz, C. Genetic diagnosis and prognosis of Alzheimer’s disease: Challenges and opportunities. Expert Rev. Mol. Diagn., 2015, 15(3), 339-348.
[http://dx.doi.org/10.1586/14737159.2015.1002469] [PMID: 25634383]
[42]
Michael, R.; Lenferink, A.; Vrensen, G.F.J.M.; Gelpi, E.; Barraquer, R.I.; Otto, C. Hyperspectral Raman imaging of neuritic plaques and neurofibrillary tangles in brain tissue from Alzheimer’s disease patients. Sci. Rep., 2017, 7(1), 15603.
[http://dx.doi.org/10.1038/s41598-017-16002-3] [PMID: 29142266]
[43]
Del Prete, E.; Beatino, M.F.; Campese, N.; Giampietri, L.; Siciliano, G.; Ceravolo, R.; Baldacci, F. Fluid candidate biomarkers for Alzheimer’s disease: a precision medicine approach. J. Pers. Med., 2020, 10(4), 221-255.
[http://dx.doi.org/10.3390/jpm10040221] [PMID: 33187336]
[44]
Wolinsky, D.; Drake, K.; Bostwick, J. Diagnosis and management of neuropsychiatric symptoms in Alzheimer’s disease. Curr. Psychiatry Rep., 2018, 20(12), 117.
[http://dx.doi.org/10.1007/s11920-018-0978-8] [PMID: 30367272]
[45]
Mantzavinos, V.; Alexiou, A. Biomarkers for Alzheimer’s disease diagnosis. Curr. Alzheimer Res., 2017, 14(11), 1149-1154.
[http://dx.doi.org/10.2174/1567205014666170203125942] [PMID: 28164766]
[46]
Kapogiannis, D.; Mustapic, M.; Shardell, M.D.; Berkowitz, S.T.; Diehl, T.C.; Spangler, R.D.; Tran, J.; Lazaropoulos, M.P.; Chawla, S.; Gulyani, S.; Eitan, E.; An, Y.; Huang, C-W.; Oh, E.S.; Lyketsos, C.G.; Resnick, S.M.; Goetzl, E.J.; Ferrucci, L. Association of extracellular vesicle biomarkers with Alzheimer disease in the baltimore longitudinal study of aging. JAMA Neurol., 2019, 76(11), 1340-1351.
[http://dx.doi.org/10.1001/jamaneurol.2019.2462] [PMID: 31305918]
[47]
Lochocki, B.; Morrema, T.H.J.; Ariese, F.; Hoozemans, J.J.M.; de Boer, J.F. The search for a unique Raman signature of amyloid-beta plaques in human brain tissue from Alzheimer’s disease patients. Analyst (Lond.), 2020, 5(5), 1724-1736.
[http://dx.doi.org/10.1039/C9AN02087J]
[48]
Zengin, A.; Tamer, U.; Caykara, T. A SERS-based sandwich assay for ultrasensitive and selective detection of Alzheimer’s tau protein. Biomacromolecules, 2013, 14(9), 3001-3009.
[http://dx.doi.org/10.1021/bm400968x] [PMID: 23885927]
[49]
Guerrini, L.; Arenal, R.; Mannini, B.; Chiti, F.; Pini, R.; Matteini, P.; Alvarez-Puebla, R.A. SERS Detection of Amyloid Oligomers on Metallorganic-Decorated Plasmonic Beads. ACS Appl. Mater. Interfaces, 2015, 7(18), 9420-9428.
[http://dx.doi.org/10.1021/acsami.5b01056] [PMID: 25897657]
[50]
Buividas, R.; Dzingelevičius, N.; Kubiliūtė, R.; Stoddart, P.R.; Khanh Truong, V.; Ivanova, E.P.; Juodkazis, S. Statistically quantified measurement of an Alzheimer’s marker by surface-enhanced Raman scattering. J. Biophotonics, 2015, 8(7), 567-574.
[http://dx.doi.org/10.1002/jbio.201400017] [PMID: 25116238]
[51]
Eravuchira, P.; Banchelli, M.; D’Andrea, C.; De Angelis, M.; Matteini, P.; Gannot, I. Hollow core photonic crystal fiber-assisted Raman spectroscopy as a tool for the detection of Alzheimer’s disease biomarkers. J. Biomed. Opt., 2020, 25(7), 1-10.
[http://dx.doi.org/10.1117/1.JBO.25.7.077001] [PMID: 32618152]
[52]
Park, H.J.; Cho, S.; Kim, M.; Jung, Y.S. Carboxylic acid-functionalized, graphitic layer-coated three-dimensional SERS substrate for label-free analysis of Alzheimer’s disease biomarkers. Nano Lett., 2020, 20(4), 2576-2584.
[http://dx.doi.org/10.1021/acs.nanolett.0c00048] [PMID: 32207951]
[53]
Yu, X.; Hayden, E.Y.; Wang, P.; Xia, M.; Liang, O.; Bai, Y.; Teplow, D.B.; Xie, Y.H. Ultrasensitive amyloid β-protein quantification with high dynamic range using a hybrid graphene-gold surface-enhanced Raman spectroscopy platform. J. Raman Spectrosc., 2020, 51(3), 432-441.
[http://dx.doi.org/10.1002/jrs.5785] [PMID: 33688113]
[54]
Ma, H.; Liu, S.; Liu, Y.; Zhu, J.; Han, X.X.; Ozaki, Y.; Zhao, B. In-situ fingerprinting phosphorylated proteins via surface-enhanced Raman spectroscopy: Single-site discrimination of Tau biomarkers in Alzheimer’s disease. Biosens. Bioelectron., 2021, 171, 112748.
[http://dx.doi.org/10.1016/j.bios.2020.112748] [PMID: 33113381]
[55]
Ryzhikova, E.; Ralbovsky, N.M.; Sikirzhytski, V.; Kazakov, O.; Halamkova, L.; Quinn, J.; Zimmerman, E.A.; Lednev, I.K. Raman spectroscopy and machine learning for biomedical applications: Alzheimer’s disease diagnosis based on the analysis of cerebrospinal fluid. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 248, 119188.
[http://dx.doi.org/10.1016/j.saa.2020.119188] [PMID: 33268033]
[56]
Carlomagno, C.; Cabinio, M.; Picciolini, S.; Gualerzi, A.; Baglio, F.; Bedoni, M. SERS-based biosensor for Alzheimer disease evaluation through the fast analysis of human serum. J. Biophotonics, 2020, 13(3), e201960033.
[http://dx.doi.org/10.1002/jbio.201960033] [PMID: 31868266]
[57]
Yu, D.; Yin, Q.; Wang, J.; Yang, J.; Chen, Z.; Gao, Z.; Huang, Q.; Li, S. SERS-based immunoassay enhanced with silver probe for selective separation and detection of Alzheimer’s disease biomarkers. Int. J. Nanomedicine, 2021, 16, 1901-1911.
[http://dx.doi.org/10.2147/IJN.S293042] [PMID: 33707945]
[58]
de Oliveira, M.A.S.; Hilt, S.; Chang, C-W.; Lee, C.; Voss, J.C.; Chan, J.W. Surface-enhanced Raman scattering sensing platform for detecting amyloid-β peptide interaction with an aggregation inhibitor. Appl. Opt., 2020, 59(25), 7490-7495.
[http://dx.doi.org/10.1364/AO.399307] [PMID: 32902446]
[59]
Zhou, Y.; Liu, J.; Zheng, T.; Tian, Y. Label-free SERS strategy for in situ monitoring and real-time imaging of Aβ aggregation process in live neurons and brain tissues. Anal. Chem., 2020, 92(8), 5910-5920.
[http://dx.doi.org/10.1021/acs.analchem.9b05837] [PMID: 32227892]
[60]
Schneider, R.B.; Iourinets, J.; Richard, I.H. Parkinson’s disease psychosis: Presentation, diagnosis and management. Neurodegener. Dis. Manag., 2017, 7(6), 365-376.
[http://dx.doi.org/10.2217/nmt-2017-0028] [PMID: 29160144]
[61]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386(9996), 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[62]
Tolosa, E.; Wenning, G.; Poewe, W. The diagnosis of Parkinson’s disease. Lancet Neurol., 2006, 5(1), 75-86.
[http://dx.doi.org/10.1016/S1474-4422(05)70285-4] [PMID: 16361025]
[63]
Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry, 2008, 79(4), 368-376.
[http://dx.doi.org/10.1136/jnnp.2007.131045] [PMID: 18344392]
[64]
Pagano, G.; Niccolini, F.; Politis, M. Imaging in Parkinson’s disease. Clin. Med. (Lond.), 2016, 16(4), 371-375.
[http://dx.doi.org/10.7861/clinmedicine.16-4-371] [PMID: 27481384]
[65]
Lotankar, S.; Prabhavalkar, K.S.; Bhatt, L.K. Biomarkers for Parkinson’s disease: recent advancement. Neurosci. Bull., 2017, 33(5), 585-597.
[http://dx.doi.org/10.1007/s12264-017-0183-5] [PMID: 28936761]
[66]
Martial, B.; Lefèvre, T.; Auger, M. Understanding amyloid fibril formation using protein fragments: Structural investigations via vibrational spectroscopy and solid-state NMR. Biophys. Rev., 2018, 10(4), 1133-1149.
[http://dx.doi.org/10.1007/s12551-018-0427-2] [PMID: 29855812]
[67]
Cheng, H-C.; Ulane, C.M.; Burke, R.E. Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol., 2010, 67(6), 715-725.
[http://dx.doi.org/10.1002/ana.21995] [PMID: 20517933]
[68]
An, J.H.; Choi, D-K.; Lee, K-J.; Choi, J-W. Surface-enhanced Raman spectroscopy detection of dopamine by DNA Targeting amplification assay in Parkisons’s model. Biosens. Bioelectron., 2015, 67, 739-746.
[http://dx.doi.org/10.1016/j.bios.2014.10.049] [PMID: 25465795]
[69]
Jiang, Z.; Gao, P.; Yang, L.; Huang, C.; Li, Y. Facile in situ synthesis of silver nanoparticles on the surface of metal-organic framework for ultrasensitive surface-enhanced raman scattering detection of dopamine. Anal. Chem., 2015, 87(24), 12177-12182.
[http://dx.doi.org/10.1021/acs.analchem.5b03058] [PMID: 26575213]
[70]
Tang, L.; Li, S.; Han, F.; Liu, L.; Xu, L.; Ma, W.; Kuang, H.; Li, A.; Wang, L.; Xu, C. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens. Bioelectron., 2015, 71, 7-12.
[http://dx.doi.org/10.1016/j.bios.2015.04.013] [PMID: 25880832]
[71]
Lu, D.; Fan, M.; Cai, R.; Huang, Z.; You, R.; Huang, L.; Feng, S.; Lu, Y. Silver nanocube coupling with a nanoporous silver film for dual-molecule recognition based ultrasensitive SERS detection of dopamine. Analyst (Lond.), 2020, 145(8), 3009-3016.
[http://dx.doi.org/10.1039/D0AN00177E] [PMID: 32129782]
[72]
Hariharan, A.; Kurnoothala, R.; Chinthakayala, S.K.; Vishnubhatla, K.C.; Vadlamudi, P. SERS of Dopamine: Computational and experimental studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 260, 119962.
[http://dx.doi.org/10.1016/j.saa.2021.119962] [PMID: 34044193]
[73]
Li, L.; Lu, Y.; Qian, Z.; Yang, Z.; Yang, K.; Zong, S.; Wang, Z.; Cui, Y. Ultra-sensitive surface enhanced Raman spectroscopy sensor for in-situ monitoring of dopamine release using zipper-like ortho-nanodimers. Biosens. Bioelectron., 2021, 180, 113100.
[http://dx.doi.org/10.1016/j.bios.2021.113100] [PMID: 33677355]
[74]
Hussein, M.A.; El-Said, W.A.; Abu-Zied, B.M.; Choi, J-W. Nanosheet composed of gold nanoparticle/graphene/epoxy resin based on ultrasonic fabrication for flexible dopamine biosensor using surface-enhanced Raman spectroscopy. Nano Converg., 2020, 7(1), 15.
[http://dx.doi.org/10.1186/s40580-020-00225-8] [PMID: 32367260]
[75]
Putz, K.; Hayani, K.; Zar, F.A. Meningitis. Prim. Care, 2013, 40(3), 707-726.
[http://dx.doi.org/10.1016/j.pop.2013.06.001] [PMID: 23958365]
[76]
Wright, W.F.; Pinto, C.N.; Palisoc, K.; Baghli, S. Viral (aseptic) meningitis: A review. J. Neurol. Sci., 2019, 398, 176-183.
[http://dx.doi.org/10.1016/j.jns.2019.01.050] [PMID: 30731305]
[77]
Heckenberg, S.G.B.; Brouwer, M.C.; van de Beek, D. Bacterial meningitis. Handb. Clin. Neurol., 2014, 121, 1361-1375.
[http://dx.doi.org/10.1016/B978-0-7020-4088-7.00093-6] [PMID: 24365425]
[78]
Slane, V.H.; Unakal, C.G. Tuberculous Meningitis.In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2020.
[79]
Wilkinson, R.J.; Rohlwink, U.; Misra, U.K.; van Crevel, R.; Mai, N.T.H.; Dooley, K.E.; Caws, M.; Figaji, A.; Savic, R.; Solomons, R.; Thwaites, G.E. Tuberculous meningitis. Nat. Rev. Neurol., 2017, 13(10), 581-598.
[http://dx.doi.org/10.1038/nrneurol.2017.120] [PMID: 28884751]
[80]
Heemels, M-T. Neurodegenerative diseases. Nature, 2016, 539(7628), 179.
[http://dx.doi.org/10.1038/539179a] [PMID: 27830810]
[81]
Leuzy, A.; Ashton, N.J.; Mattsson-Carlgren, N.; Dodich, A.; Boccardi, M.; Corre, J.; Drzezga, A.; Nordberg, A.; Ossenkoppele, R.; Zetterberg, H.; Blennow, K.; Frisoni, G.B.; Garibotto, V.; Hansson, O. 2020 update on the clinical validity of cerebrospinal fluid amyloid, tau, and phospho-tau as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(7), 2121-2139.
[http://dx.doi.org/10.1007/s00259-021-05258-7] [PMID: 33674895]
[82]
Reith, W. Neurodegenerative diseases. Radiologe, 2018, 58(3), 241-258.
[http://dx.doi.org/10.1007/s00117-018-0363-y] [PMID: 29511772]
[83]
Ghosh, R.; Tabrizi, S.J. Clinical Features of Huntington’s Disease. Adv. Exp. Med. Biol., 2018, 1049, 1-28.
[http://dx.doi.org/10.1007/978-3-319-71779-1_1] [PMID: 29427096]
[84]
Ghosh, R.; Tabrizi, S.J. Huntington disease. Handb. Clin. Neurol., 2018, 147, 255-278.
[http://dx.doi.org/10.1016/B978-0-444-63233-3.00017-8] [PMID: 29325616]
[85]
Huefner, A.; Kuan, W-L.; Mason, S.L.; Mahajan, S.; Barker, R.A. Serum Raman spectroscopy as a diagnostic tool in patients with Huntington’s disease. Chem. Sci. (Camb.), 2019, 11(2), 525-533.
[http://dx.doi.org/10.1039/C9SC03711J] [PMID: 32190272]
[86]
Sigurdson, C.J.; Bartz, J.C.; Glatzel, M. Cellular and Molecular Mechanisms of Prion Disease. Annu. Rev. Pathol., 2019, 14(1), 497-516.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012418-013109] [PMID: 30355150]
[87]
Baldwin, K.J.; Correll, C.M. Prion Disease. Semin. Neurol., 2019, 39(4), 428-439.
[http://dx.doi.org/10.1055/s-0039-1687841] [PMID: 31533183]
[88]
Thackray, A.M.; Knight, R.; Haswell, S.J.; Bujdoso, R.; Brown, D.R. Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem. J., 2002, 362(Pt 1), 253-258.
[http://dx.doi.org/10.1042/bj3620253] [PMID: 11829763]
[89]
Zhu, F.; Davies, P.; Thompsett, A.R.; Kelly, S.M.; Tranter, G.E.; Hecht, L.; Isaacs, N.W.; Brown, D.R.; Barron, L.D. Raman optical activity and circular dichroism reveal dramatic differences in the influence of divalent copper and manganese ions on prion protein folding. Biochemistry, 2008, 47(8), 2510-2517.
[http://dx.doi.org/10.1021/bi7022893] [PMID: 18205409]
[90]
Frederiksen, K.S. Vascular dementia. Ugeskr. Laeger, 2017, 179.
[91]
Moltó-Jordà, J.M.; Morera-Guitart, J.; Frutos-Alegría, M.T. Matías-Guíu Guía. J. Rev. Neurol., 2005, 41, 484-492.
[http://dx.doi.org/10.33588/rn.4108.2004510] [PMID: 16224735]
[92]
Paraskevaidi, M.; Morais, C.L.M.; Halliwell, D.E.; Mann, D.M.A.; Allsop, D.; Martin-Hirsch, P.L.; Martin, F.L. Raman Spectroscopy to Diagnose Alzheimer’s Disease and Dementia with Lewy Bodies in Blood. ACS Chem. Neurosci., 2018, 9(11), 2786-2794.
[http://dx.doi.org/10.1021/acschemneuro.8b00198] [PMID: 29865787]
[93]
Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; Wu, E.; Dakin, K.; Petzold, M.; Blennow, K.; Zetterberg, H. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol., 2016, 15(7), 673-684.
[http://dx.doi.org/10.1016/S1474-4422(16)00070-3] [PMID: 27068280]
[94]
Hye, A.; Lynham, S.; Thambisetty, M.; Causevic, M.; Campbell, J.; Byers, H.L.; Hooper, C.; Rijsdijk, F.; Tabrizi, S.J.; Banner, S.; Shaw, C.E.; Foy, C.; Poppe, M.; Archer, N.; Hamilton, G.; Powell, J.; Brown, R.G.; Sham, P.; Ward, M.; Lovestone, S. Proteome-based plasma biomarkers for Alzheimer’s disease. Brain, 2006, 129(Pt 11), 3042-3050.
[http://dx.doi.org/10.1093/brain/awl279] [PMID: 17071923]
[95]
Yin, Y.; Wang, Z. ApoE and Neurodegenerative Diseases in Aging. Adv. Exp. Med. Biol., 2018, 1086, 77-92.
[http://dx.doi.org/10.1007/978-981-13-1117-8_5] [PMID: 30232753]
[96]
Krafft, C.; Popp, J. The many facets of Raman spectroscopy for biomedical analysis. Anal. Bioanal. Chem., 2015, 407(3), 699-717.
[http://dx.doi.org/10.1007/s00216-014-8311-9] [PMID: 25428454]
[97]
D’Andrea, C.; Foti, A.; Cottat, M.; Banchelli, M.; Capitini, C.; Barreca, F.; Canale, C.; de Angelis, M.; Relini, A.; Maragò, O.M.; Pini, R.; Chiti, F.; Gucciardi, P.G.; Matteini, P. Nanoscale discrimination between toxic and nontoxic protein misfolded oligomers with tip-enhanced raman spectroscopy. Small, 2018, 14(36), e1800890.
[http://dx.doi.org/10.1002/smll.201800890] [PMID: 30091859]
[98]
Blennow, K.; Zetterberg, H. Biomarkers for Alzheimer’s disease: Current status and prospects for the future. J. Intern. Med., 2018, 284(6), 643-663.
[http://dx.doi.org/10.1111/joim.12816] [PMID: 30051512]
[99]
Ryzhikova, E.; Kazakov, O.; Halamkova, L.; Celmins, D.; Malone, P.; Molho, E.; Zimmerman, E.A.; Lednev, I.K. Raman spectroscopy of blood serum for Alzheimer’s disease diagnostics: Specificity relative to other types of dementia. J. Biophotonics, 2015, 8(7), 584-596.
[http://dx.doi.org/10.1002/jbio.201400060] [PMID: 25256347]
[100]
Habartová, L.; Hrubešová, K.; Syslová, K.; Vondroušová, J.; Fišar, Z.; Jirák, R.; Raboch, J.; Setnička, V. Blood-based molecular signature of Alzheimer’s disease via spectroscopy and metabolomics. Clin. Biochem., 2019, 72, 58-63.
[http://dx.doi.org/10.1016/j.clinbiochem.2019.04.004] [PMID: 30954438]
[101]
Cennamo, G.; Montorio, D.; Morra, V.B.; Criscuolo, C.; Lanzillo, R.; Salvatore, E.; Camerlingo, C.; Lisitskiy, M.; Delfino, I.; Portaccio, M.; Lepore, M. Surface-enhanced Raman spectroscopy of tears: Toward a diagnostic tool for neurodegenerative disease identification. J. Biomed. Opt., 2020, 25(8), 1-12.
[http://dx.doi.org/10.1117/1.JBO.25.8.087002] [PMID: 32767890]
[102]
Chen, P.; Shen, A.; Zhao, W.; Baek, S-J.; Yuan, H.; Hu, J. Raman signature from brain hippocampus could aid Alzheimer’s disease diagnosis. Appl. Opt., 2009, 48(24), 4743-4748.
[http://dx.doi.org/10.1364/AO.48.004743] [PMID: 19696863]
[103]
Huang, C-C.; Isidoro, C. Raman spectrometric detection methods for early and non-invasive diagnosis of Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1145-1156.
[http://dx.doi.org/10.3233/JAD-161238] [PMID: 28304304]
[104]
Rubira, R.J.G.; Camacho, S.A.; Martin, C.S.; Mejía-Salazar, J.R.; Reyes Gómez, F.; Silva, R.R.D.; Oliveira, Junior, O.N.; Alessio, P.; Constantino, C.J.L. Designing Silver Nanoparticles for Detecting Levodopa (3,4-Dihydroxyphenylalanine, L-Dopa) Using Surface-Enhanced Raman Scattering (SERS). Sensors (Basel), 2019, 20(1), 20.
[http://dx.doi.org/10.3390/s20010015] [PMID: 31861443]
[105]
Araujo, C.F.; Nolasco, M.M.; Ribeiro, A.M.P.; Ribeiro-Claro, P.J.A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res., 2018, 142, 426-440.
[http://dx.doi.org/10.1016/j.watres.2018.05.060] [PMID: 29909221]
[106]
Carmona, P.; Monleón, E.; Monzón, M.; Badiola, J.J.; Monreal, J. Raman analysis of prion protein in blood cell membranes from naturally affected scrapie sheep. Chem. Biol., 2004, 11(6), 759-764.
[http://dx.doi.org/10.1016/j.chembiol.2004.04.005] [PMID: 15217609]
[107]
Guerrini, L.; Alvarez-Puebla, R.A. Structural Recognition of Triple-Stranded DNA by Surface-Enhanced Raman Spectroscopy. Nanomaterials (Basel), 2021, 11(2), 326.
[http://dx.doi.org/10.3390/nano11020326] [PMID: 33513847]
[108]
Zhang, L.; Li, C.; Peng, D.; Yi, X.; He, S.; Liu, F.; Zheng, X.; Huang, W.E.; Zhao, L.; Huang, X. Raman spectroscopy and machine learning for the classification of breast cancers. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 264, 120300.
[http://dx.doi.org/10.1016/j.saa.2021.120300] [PMID: 34455388]
[109]
Geng, J.; Zhang, W.; Chen, C.; Zhang, H.; Zhou, A.; Huang, Y. Tracking the Differentiation Status of Human Neural Stem Cells through Label-Free Raman Spectroscopy and Machine Learning-Based Analysis. Anal. Chem., 2021, 93(30), 10453-10461.
[http://dx.doi.org/10.1021/acs.analchem.0c04941] [PMID: 34282890]
[110]
Ralbovsky, N.M.; Lednev, I.K. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning. Chem. Soc. Rev., 2020, 49(20), 7428-7453.
[http://dx.doi.org/10.1039/D0CS01019G] [PMID: 32996518]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy