Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Mini-Review Article

Modulation of Lignin and its Implications in Salt, Drought and Temperature Stress Tolerance

Author(s): Kavi Kishor P.B.*, Srinivas B., Prashant Singam, Sahitya G., Tulya Rupa Sri V., Rajasheker G. and Prashanth Suravajhala

Volume 17, Issue 1, 2023

Published on: 12 September, 2022

Page: [2 - 12] Pages: 11

DOI: 10.2174/2212796816666220820110616

Price: $65

Abstract

Background: Lignins are phenylpropanoid polymers with complex composition and structures and crucial components in plant cell walls. Lignins are biosynthesized from oxidative polymerization of 4-hydroxycinnamyl alcohols, but differ in the degree of methoxylation.

Objective: This review makes an endeavour to identify the gaps in our understanding of lignin modulation and gain insights into their relevance to abiotic stress tolerance.

Methods: Critical review of the recent literature to understand the regulation of lignin, the major biopolymer involved in a multitude of functions.

Results: Lignin contributes to the growth of tissues, and organs that give mechanical protection or lodging resistance and also responds to multiple biotic and abiotic stresses. The quantity and quality of accumulation of lignin is dependent on the type of plant species and abiotic stress. In this review, we briefly discuss the biosynthesis, modulation of lignin by diverse transcription factors and its role in salt, drought and temperature stress tolerance.

Conclusion: We need to explore many areas to gain comprehensive knowledge about the secondary cell wall deposition of monolignols, and their transport, leading to lignin accumulation which imparts biotic and abiotic stress tolerance to plants.

Keywords: Lignin biosynthesis, salt, drought and temperature stresses, transcription factors, secondary cell wall, monolignol deposition.

Graphical Abstract

[1]
Ralph, J.; Lundquist, K.; Brunow, G.; Lu, F.; Kim, H.; Schatz, P.F.; Marita, J.M.; Hatfield, R.D.; Ralph, S.A.; Christensen, J.H.; Boerjan, W. Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem. Rev., 2004, 3(1-2), 29-60.
[http://dx.doi.org/10.1023/B:PHYT.0000047809.65444.a4]
[2]
Gellerstedt, G.; Henriksson, G. Lignins: Major sources, structure and properties. In: Monomers, Polymers and Composites from Renewable Resources; Belgacem, M.N.; Gandini, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 201-224.
[http://dx.doi.org/10.1016/B978-0-08-045316-3.00009-0]
[3]
Wei, H.; Xu, Q.; Taylor, L.E., II; Baker, J.O.; Tucker, M.P.; Ding, S.Y. Natural paradigms of plant cell wall degradation. Curr. Opin. Biotechnol., 2009, 20(3), 330-338.
[http://dx.doi.org/10.1016/j.copbio.2009.05.008] [PMID: 19523812]
[4]
Wong, D.W.S. Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol., 2009, 157(2), 174-209.
[http://dx.doi.org/10.1007/s12010-008-8279-z] [PMID: 18581264]
[5]
Liu, C.J.; Miao, Y.C.; Zhang, K.W. Sequestration and transport of lignin monomeric precursors. Molecules, 2011, 16(1), 710-727.
[http://dx.doi.org/10.3390/molecules16010710] [PMID: 21245806]
[6]
Chen, F.; Tobimatsu, Y.; Havkin-Frenkel, D.; Dixon, R.A.; Ralph, J. A polymer of caffeyl alcohol in plant seeds. Proc. Natl. Acad. Sci. USA, 2012, 109(5), 1772-1777.
[http://dx.doi.org/10.1073/pnas.1120992109] [PMID: 22307645]
[7]
Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and biological functions in plants. Int. J. Mol. Sci., 2018, 19(2), 335.
[http://dx.doi.org/10.3390/ijms19020335] [PMID: 29364145]
[8]
Constant, S.; Wienk, H.L.J.; Frissen, A.E.; Peinder, P.D.; Boelens, R.; Es, D.S.V.; Grisel, R.J.H.; Weckhuysen, B.M.; Huijgen, W.J.J.; Gosselink, R.J.A. New insights into the structure and composition of technical lignins: A comparative characterisation study. Green Chem., 2016, 18(9), 2651-2665.
[http://dx.doi.org/10.1039/C5GC03043A]
[9]
Lan, W.; Lu, F.; Regner, M.; Zhu, Y.; Rencoret, J.; Ralph, S.A.; Zakai, U.I.; Morreel, K.; Boerjan, W.; Ralph, J. Tricin, a flavonoid monomer in monocot lignification. Plant Physiol., 2015, 167(4), 1284-1295.
[http://dx.doi.org/10.1104/pp.114.253757] [PMID: 25667313]
[10]
del Río, JC; Rencoret, J; Gutiérrez, A; Kim, H; Ralph, J Hydroxystilbenes are monomers in palm fruit endocarp lignins. Plant Physiol., 2017, 174(4), 2072-2082.
[http://dx.doi.org/10.1104/pp.17.00362]
[11]
Rencoret, J.; Neiva, D.; Marques, G.; Gutiérrez, A.; Kim, H.; Gominho, J.; Pereira, H.; Ralph, J.; Del Río, J.C. Hydroxystilbene glucosides are incorporated into Norway spruce bark lignin. Plant Physiol., 2019, 180(3), 1310-1321.
[http://dx.doi.org/10.1104/pp.19.00344] [PMID: 31023874]
[12]
Ralph, J.; Hatfield, R.D.; Piquemal, J.; Yahiaoui, N.; Pean, M.; Lapierre, C.; Boudet, A.M. NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase. Proc. Natl. Acad. Sci. USA, 1998, 95(22), 12803-12808.
[http://dx.doi.org/10.1073/pnas.95.22.12803] [PMID: 9788995]
[13]
Del Río, J.C.; Rencoret, J.; Gutiérrez, A.; Kim, H.; Ralph, J. Structural characterization of lignin from maize (Zea mays L.) fibers: Evidence for diferuloylputrescine incorporated into the lignin polymer in maize kernels. J. Agric. Food Chem., 2018, 66(17), 4402-4413.
[http://dx.doi.org/10.1021/acs.jafc.8b00880] [PMID: 29665690]
[14]
Ralph, J.; Lapierre, C.; Boerjan, W. Lignin structure and its engineering. Curr. Opin. Biotechnol., 2019, 56, 240-249.
[http://dx.doi.org/10.1016/j.copbio.2019.02.019] [PMID: 30921563]
[15]
Yoo, C.G.; Dumitrache, A.; Muchero, W.; Natzke, J.; Akinosho, H.; Li, M.; Sykes, R.W.; Brown, S.D.; Davison, B.; Tuskan, G.A.; Pu, Y.; Ragauskas, A.J. Significance of lignin S/G ratio in biomass recalcitrance of Populus trichocarpa variants for bioethanol production. ACS Sustain. Chem. Eng., 2018, 6(2), 2162-2168.
[http://dx.doi.org/10.1021/acssuschemeng.7b03586]
[16]
Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature, 2016, 529(7584), 84-87.
[http://dx.doi.org/10.1038/nature16467] [PMID: 26738594]
[17]
Xu, Z.; Zhou, G.; Shimizu, H. Plant responses to drought and rewatering. Plant Signal. Behav., 2010, 5(6), 649-654.
[http://dx.doi.org/10.4161/psb.5.6.11398] [PMID: 20404516]
[18]
Sehgal, A.; Sita, K.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; HanumanthaRao, B.; Nair, R.M.; Prasad, P.V.V.; Nayyar, H. Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Front. Plant Sci., 2018, 9, 1705.
[http://dx.doi.org/10.3389/fpls.2018.01705] [PMID: 30542357]
[19]
González-Sarrías, A.; Tomás-Barberán, F.A.; García-Villalba, R. Structural diversity of polyphenols and distribution in foods. In: Dietary Polyphenols: Their Metabolism and Health Effects; Tomás-Barberán, F.A.; González-Sarrías, A.; RocíoGarcía-Villalba, R., Eds.; Wiley: Chichester, UK, 2020; pp. 1-29.
[http://dx.doi.org/10.1002/9781119563754.ch1]
[20]
Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 2019, 24(13), 2452.
[http://dx.doi.org/10.3390/molecules24132452] [PMID: 31277395]
[21]
Alejandro, S.; Lee, Y.; Tohge, T.; Sudre, D.; Osorio, S.; Park, J.; Bovet, L.; Lee, Y.; Geldner, N.; Fernie, A.R.; Martinoia, E. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr. Biol., 2012, 22(13), 1207-1212.
[http://dx.doi.org/10.1016/j.cub.2012.04.064] [PMID: 22704988]
[22]
Miao, Y.C.; Liu, C.J. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. Proc. Natl. Acad. Sci. USA, 2010, 107(52), 22728-22733.
[http://dx.doi.org/10.1073/pnas.1007747108] [PMID: 21149736]
[23]
Prashant, S.; Srilakshmi Sunita, M.; Pramod, S.; Gupta, R.K.; Anil Kumar, S.; Rao Karumanchi, S.; Rawal, S.K.; Kavi Kishor, P.B. Down-regulation of Leucaena leucocephala cinnamoyl CoA reductase (LlCCR) gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco. Plant Cell Rep., 2011, 30(12), 2215-2231.
[http://dx.doi.org/10.1007/s00299-011-1127-6] [PMID: 21847621]
[24]
Sirisha, V.L.; Prashant, S.; Kumar, R.D.; Pramod, S.; Jalaja, N.; Maheswari Rao, P.; Mishra, P.; Rao, K.S.; Kavi Kishor, P.B. Cloning, characterization and impact of up- and down-regulating subabul cinnamyl alcohol dehydrogenase (CAD) gene on plant growth and lignin in transgenic tobacco. Plant Growth Regul., 2012, 66(3), 239-253.
[http://dx.doi.org/10.1007/s10725-011-9647-1]
[25]
Eudes, A.; Dutta, T.; Deng, K.; Jacquet, N.; Sinha, A.; Benites, V.T.; Baidoo, E.E.K.; Richel, A.; Sattler, S.E.; Northen, T.R.; Singh, S.; Simmons, B.A.; Loqué, D. SbCOMT (Bmr12) is involved in the biosynthesis of tricin-lignin in sorghum. PLoS One, 2017, 12(6), e0178160.
[http://dx.doi.org/10.1371/journal.pone.0178160] [PMID: 28594846]
[26]
Guo, D.; Chen, F.; Wheeler, J.; Winder, J.; Selman, S.; Peterson, M.; Dixon, R.A. Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res., 2001, 10(5), 457-464.
[http://dx.doi.org/10.1023/A:1012278106147] [PMID: 11708655]
[27]
Skyba, O.; Douglas, C.J.; Mansfield, S.D. Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi. Appl. Environ. Microbiol., 2013, 79(8), 2560-2571.
[http://dx.doi.org/10.1128/AEM.03182-12] [PMID: 23396333]
[28]
Zeng, J.K.; Li, X.; Zhang, J.; Ge, H.; Yin, X.R.; Chen, K.S. Regulation of loquat fruit low temperature response and lignification involves interaction of heat shock factors and genes associated with lignin biosynthesis. Plant Cell Environ., 2016, 39(8), 1780-1789.
[http://dx.doi.org/10.1111/pce.12741] [PMID: 27006258]
[29]
Guo, H.; Wang, Y.; Wang, L.; Hu, P.; Wang, Y.; Jia, Y.; Zhang, C.; Zhang, Y.; Zhang, Y.; Wang, C. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla. Plant Biotechnol. J., 2017, 15(1), 107-121.
[http://dx.doi.org/10.1111/pbi.12595] [PMID: 27368149]
[30]
Li, H.; Yang, Y.; Wang, Z.; Guo, X.; Liu, F.; Jiang, J.; Liu, G. BpMADS12 gene role in lignin biosynthesis of Betula platyphylla Suk by transcriptome analysis. J. For. Res., 2016, 27(5), 1111-1120.
[http://dx.doi.org/10.1016/jfr.nefu.edu.cn/EN/abstract/ab]
[31]
Zhao, Q.; Nakashima, J.; Chen, F.; Yin, Y.; Fu, C.; Yun, J.; Shao, H.; Wang, X.; Wang, Z.; Dixon, R.A. LACCASE is necessary and non redundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. Plant Cell., 2013, 25(10), 3976-3987.
[http://dx.doi.org/10.1105/tpc.113.117770] [PMID: 24143805]
[32]
Shafi, A.; Chauhan, R.; Gill, T.; Swarnkar, M.K.; Sreenivasulu, Y.; Kumar, S.; Kumar, N.; Shankar, R.; Ahuja, P.S.; Singh, A.K. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol. Biol., 2015, 87(6), 615-631.
[http://dx.doi.org/10.1007/s11103-015-0301-6] [PMID: 25754733]
[33]
Kishimoto, T.; Uraki, Y.; Ubukata, M. Chemical synthesis of β-O-4 type artificial lignin. Org. Biomol. Chem., 2006, 4(7), 1343-1347.
[http://dx.doi.org/10.1039/b518005h] [PMID: 16557323]
[34]
Lancefield, C.S.; Westwood, N.J. The synthesis and analysis of advanced lignin model polymers. Green Chem., 2015, 17(11), 4980-4990.
[http://dx.doi.org/10.1039/C5GC01334H]
[35]
Monties, B.; Fukushima, K. Occurrence, function and biosynthesis of lignins. In: Biopolymers Lignin, Humic Substances and Coal; Hofrichter, M.; Steinbuchel, A., Eds.; Wiley: Weinheim, Germany, 2001; 1, pp. 1-64.
[http://dx.doi.org/10.1002/3527600035.bpol1001]
[36]
Hilal, M.; Zenoff, A.M.; Ponessa, G.; Moreno, H.; Massa, E.M. Saline stress alters the temporal patterns of xylem differentiation and alternative oxidase expression in developing soybean roots. Plant Physiol., 1998, 117(2), 695-701.
[http://dx.doi.org/10.1104/pp.117.2.695] [PMID: 9625723]
[37]
Jbir, N.; Chaïbi, W.; Ammar, S.; Jemmali, A.; Ayadi, A. Root growth and lignification of two wheat species differing in their sensitivity to NaCl, in response to salt stress. C. R. Acad. Sci. III, 2001, 324(9), 863-868.
[http://dx.doi.org/10.1016/S0764-4469(01)01355-5] [PMID: 11558333]
[38]
Sánchez-Aguayo, I.; Rodríguez-Galán, J.M.; García, R.; Torreblanca, J.; Pardo, J.M. Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants. Planta, 2004, 220(2), 278-285.
[http://dx.doi.org/10.1007/s00425-004-1350-2] [PMID: 15322882]
[39]
Neves, G.Y.S.; Marchiosi, R.; Ferrarese, M.L.L.; Siqueira-Soares, R.C.; Ferrarese-Filho, O. Root growth inhibition and lignification induced by salt stress in soybean. J. Agron. Crop Sci., 2010, 196(6), 467-473.
[http://dx.doi.org/10.1111/j.1439-037X.2010.00432.x]
[40]
Park, S.C.; Kim, Y.H.; Jeong, J.C.; Kim, C.Y.; Lee, H.S.; Bang, J.W.; Kwak, S.S. Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic and salt stress-tolerance of transgenic calli. Planta., 2011, 233(3), 621-634.
[http://dx.doi.org/10.1007/s00425-010-1326-3] [PMID: 21136074]
[41]
Chun, H.J.; Baek, D.; Cho, H.M.; Lee, S.H.; Jin, B.J.; Yun, D.J.; Hong, Y.S.; Kim, M.C. Lignin biosynthesis genes play critical roles in the adaptation of Arabidopsis plants to high-salt stress. Plant Signal. Behav., 2019, 14(8), 1625697.
[http://dx.doi.org/10.1080/15592324.2019.1625697] [PMID: 31156026]
[42]
Cao, B.L.; Li, N.; Xu, K. Crosstalk of phenylpropanoid biosynthesis with hormone signaling in Chinese cabbage is key to counteracting salt stress. Environ. Exp. Bot., 2020, 179(3), 104209.
[http://dx.doi.org/10.1016/j.envexpbot.2020.104209]
[43]
Kong, Q.; Mostafa, H.H.A.; Yang, W.; Wang, J.; Nuerawuti, M.; Wang, Y.; Song, J.; Zhang, X.; Ma, L.; Wang, H.; Li, X. Comparative transcriptome profiling reveals that brassinosteroid-mediated lignification plays an important role in garlic adaption to salt stress. Plant Physiol. Biochem., 2021, 158, 34-42.
[http://dx.doi.org/10.1016/j.plaphy.2020.11.033]
[44]
Fan, L.; Linker, R.; Gepstein, S.; Tanimoto, E.; Yamamoto, R.; Neumann, P.M. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol., 2006, 140(2), 603-612.
[http://dx.doi.org/10.1104/pp.105.073130] [PMID: 16384904]
[45]
Srivastava, S.; Vishwakarma, R.K.; Arafat, Y.A.; Gupta, S.K.; Khan, B.M. Abiotic stress induces change in Cinnamoyl CoA Reductase (CCR) protein abundance and lignin deposition in developing seedlings of Leucaena leucocephala. Physiol. Mol. Biol. Plants, 2015, 21(2), 197-205.
[http://dx.doi.org/10.1007/s12298-015-0289-z] [PMID: 25931776]
[46]
Hu, Y.; Li, W.C.; Xu, Y.Q.; Li, G.J.; Liao, Y.; Fu, F.L. Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves. J. Appl. Genet., 2009, 50(3), 213-223.
[http://dx.doi.org/10.1007/BF03195675] [PMID: 19638676]
[47]
Mourasobczak, J.; Souza, U.; Mazzafera, P. Drought stress and changes in the lignin content and composition in Eucalyptus. BMC Proc., 2011, 5(Suppl. 7), P103.
[http://dx.doi.org/10.1186/1753-6561-5-S7-P103]
[48]
Yamaguchi, M.; Valliyodan, B.; Zhang, J.; Lenoble, M.E.; Yu, O.; Rogers, E.E.; Nguyen, H.T.; Sharp, R.E. Regulation of growth response to water stress in the soybean primary root. I. Proteomic analysis reveals region-specific regulation of phenylpropanoid metabolism and control of free iron in the elongation zone. Plant Cell Environ., 2010, 33(2), 223-243.
[http://dx.doi.org/10.1111/j.1365-3040.2009.02073.x] [PMID: 19906149]
[49]
Liu, W.; Jiang, Y.; Jin, Y.; Wang, C.; Yang, J.; Qi, H. Drought-induced ABA, H2O2 and JA positively regulate CmCAD genes and lignin synthesis in melon stems. BMC Plant Biol., 2021, 21(1), 83.
[http://dx.doi.org/10.1186/s12870-021-02869-y] [PMID: 33557758]
[50]
Li, X.; Zhang, X.; Liu, G.; Tang, Y.; Zhou, C.; Zhang, L.; Lv, J. The spike plays important roles in the drought tolerance as compared to the flag leaf through the phenylpropanoid pathway in wheat. Plant Physiol. Biochem., 2020, 152, 100-111.
[http://dx.doi.org/10.1016/j.plaphy.2020.05.002] [PMID: 32408177]
[51]
Le Gall, H.; Philippe, F.; Domon, J.-M.; Gillet, F.; Pelloux, J.; Rayon, C. Cell wall metabolism in response to abiotic stress. Plants, 2015, 4(1), 112-166.
[http://dx.doi.org/10.3390/plants4010112]
[52]
Wang, T.; McFarlane, H.E.; Persson, S. The impact of abiotic factors on cellulose synthesis. J. Exp. Bot., 2016, 67(2), 543-552.
[http://dx.doi.org/10.1093/jxb/erv488] [PMID: 26552883]
[53]
Hori, C.; Takata, N.; Lam, P.Y.; Tobimatsu, Y.; Nagano, S.; Mortimer, J.C.; Cullen, D. Identifying transcription factors that reduce wood recalcitrance and improve enzymatic degradation of xylem cell wall in Populus. Sci. Rep., 2020, 10(1), 22043.
[http://dx.doi.org/10.1038/s41598-020-78781-6] [PMID: 33328495]
[54]
Yan, J.; Aznar, A.; Chalvin, C.; Birdseye, D.S.; Baidoo, E.E.K.; Eudes, A.; Shih, P.M.; Loqué, D.; Zhang, A.; Scheller, H.V. Increased drought tolerance in plants engineered for low lignin and low xylan content. Biotechnol. Biofuels, 2018, 11(1), 195.
[http://dx.doi.org/10.1186/s13068-018-1196-7] [PMID: 30026810]
[55]
Guy, C; Kaplan, F; Kopka, J; Selbig, J; Hincha, DK Metabolomics of temperature stress. Physiol. Plant., 2008, 132(2), 220-235.
[http://dx.doi.org/10.1111/j.1399-3054.2007.00999.x] [PMID: 18251863]
[56]
Wei, H.; Dhanaraj, A.L.; Arora, R.; Rowland, L.J.; Fu, Y.; Sun, L. Identification of cold acclimation-responsive Rhododendron genes for lipid metabolism, membrane transport and lignin biosynthesis: Importance of moderately abundant ESTs in genomic studies. Plant Cell Environ., 2006, 29(4), 558-570.
[http://dx.doi.org/10.1111/j.1365-3040.2005.01432.x] [PMID: 17080607]
[57]
Gindl, W.; Grabner, M.; Wimmer, R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees (Berl.), 2000, 14(7), 409-414.
[http://dx.doi.org/10.1007/s004680000057]
[58]
Zhao, Q.; Tobimatsu, Y.; Zhou, R.; Pattathil, S.; Gallego-Giraldo, L.; Fu, C.; Jackson, L.A.; Hahn, M.G.; Kim, H.; Chen, F.; Ralph, J.; Dixon, R.A. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula. Proc. Natl. Acad. Sci. USA, 2013, 110(33), 13660-13665.
[http://dx.doi.org/10.1073/pnas.1312234110] [PMID: 23901113]
[59]
Cai, Z.; He, F.; Feng, X.; Liang, T.; Wang, H.; Ding, S.; Tian, X. Transcriptomic analysis reveals important roles of lignin and flavonoid biosynthetic pathways in rice thermotolerance during reproductive stage. Front. Genet., 2020, 11, 562937.
[http://dx.doi.org/10.3389/fgene.2020.562937]
[60]
Vanholme, R.; Demedts, B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin biosynthesis and structure. Plant Physiol., 2010, 153(3), 895-905.
[http://dx.doi.org/10.1104/pp.110.155119] [PMID: 20472751]
[61]
Hussey, S.G.; Mizrachi, E.; Creux, N.M.; Myburg, A.A. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition. Front. Plant Sci., 2013, 4, 325.
[http://dx.doi.org/10.3389/fpls.2013.00325] [PMID: 24009617]
[62]
Terzi, R.; Güler, N.S.; Çalişkan, N. Lignification response for rolled leaves of Ctenanthesetosa under long-term drought stress. Turk. J. Biol., 2013, 37, 614-619.
[http://dx.doi.org/10.3906/biy-1210-27]
[63]
Alvarez, S.; Marsh, E.L.; Schroeder, S.G.; Schachtman, D.P. Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ., 2008, 31(3), 325-340.
[http://dx.doi.org/10.1111/j.1365-3040.2007.01770.x] [PMID: 18088330]
[64]
Yang, L.; Wang, C.C.; Guo, W.D.; Li, X.B.; Lu, M.; Yu, C.L. Differential expression of cell wall related genes in the elongation zone of rice roots under water deficit. Russ. J. Plant Physiol., 2006, 53(3), 390-395.
[http://dx.doi.org/10.1134/S1021443706030150]
[65]
Lindberg, J.; Nabbie, F.; Milliot, J.; Smith, R.; Tettamanzi, M.C.; Peethambaran, B. 14-3-3λ affects production of a sinapoyl derivative in lignin biosynthesis during drought stress in Arabidopsis thaliana. Universal J. Plant Sci., 2014, 2(4), 77-85.
[http://dx.doi.org/10.13189/ujps.2014.020401]
[66]
Nyarukowa, C.; Koech, R.; Loots, T.; Apostolides, Z. SWAPDT: A method for short-time withering assessment of probability for drought tolerance in Camellia sinensis validated by targeted metabolomics. J. Plant Physiol., 2016, 198, 39-48.
[http://dx.doi.org/10.1016/j.jplph.2016.04.004]
[67]
Scott, E.R.; Xin, L.; Nicole, K.; Josh, M.; Wenyan, H.; Selena, A.; Sean, C.; Timothy, G.; John, S.; Robbat, A., Jr; Colin, O. Interactive effects of drought severity and simulated herbivory on tea (Camellia sinensis) volatile and non-volatile metabolites. Environ. Exp. Bot., 2019, 157, 283-292.
[http://dx.doi.org/10.1016/j.envexpbot.2018.10.025]
[68]
Hori, C.; Yu, X.; Mortimer, J.C.; Sano, R.; Matsumoto, T.; Kikuchi, J.; Demura, T.; Ohtani, M. Impact of abiotic stress on the regulation of cell wall biosynthesis in Populus trichocarpa. Plant Biotechnol. (Tsukuba), 2020, 37(3), 273-283.
[http://dx.doi.org/10.5511/plantbiotechnology.20.0326a] [PMID: 33088190]
[69]
Zhong, R.; Richardson, E.A.; Ye, Z.H. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell, 2007, 19(9), 2776-2792.
[http://dx.doi.org/10.1105/tpc.107.053678] [PMID: 17890373]
[70]
Chen, K.; Guo, Y.; Song, M.; Liu, L.; Xue, H.; Dai, H.; Zhang, Z. Dual role of MdSND1 in the biosynthesis of lignin and in signal transduction in response to salt and osmotic stress in apple. Hortic. Res., 2020, 7(1), 204.
[http://dx.doi.org/10.1038/s41438-020-00433-7] [PMID: 33328445]
[71]
Mccarthy, R.L.; Zhong, R.Q.; Ye, Z.H. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Physiol., 2009, 50(11), 1950-1964.
[http://dx.doi.org/10.1093/pcp/pcp139] [PMID: 19808805]
[72]
Mitsuda, N.; Seki, M.; Shinozaki, K.; Ohme-Takagi, M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulates secondary wall thickening and are required for anther dehiscence. Plant Cell., 2005, 17(11), 2993-3006.
[http://dx.doi.org/10.1105/tpc.105.036004] [PMID: 16214898]
[73]
Yang, C.; Xu, Z.; Song, J.; Conner, K.; Barrena, G.V.; Wilson, Z.A. Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell., 2007, 19, 534-548.
[http://dx.doi.org/10.1105/tpc.106.046391] [PMID: 34022096]
[74]
Patzlaff, A.; Newman, L.J.; Dubos, C.; Whetten, R.W.; Smith, C.; McInnis, S.; Bevan, M.W.; Sederoff, R.R.; Campbell, M.M. Characterisation of Pt MYB1, an R2R3-MYB from pine xylem. Plant Mol. Biol., 2003, 53(4), 597-608.
[http://dx.doi.org/10.1023/B:PLAN.0000019066.07933.d6] [PMID: 15010621]
[75]
Xu, W.; Tang, W.; Wang, C.; Ge, L.; Sun, J.; Qi, X.; He, Z.; Zhou, Y.; Chen, J.; Xu, Z.; Ma, Y.Z.; Chen, M. SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Front. Plant Sci., 2020, 11, 785.
[http://dx.doi.org/10.3389/fpls.2020.00785] [PMID: 32625221]
[76]
Yu, Y.; Liu, H.; Zhang, N.; Gao, C.; Qi, L.; Wang, C. The BpMYB4 transcription factor from Betula platyphylla contributes toward abiotic stress resistance and secondary cell wall biosynthesis. Front. Plant Sci., 2021, 11, 606062.
[http://dx.doi.org/10.3389/fpls.2020.606062] [PMID: 33537043]
[77]
Zhong, R.; Lee, C.; Zhou, J.; McCarthy, R.L.; Ye, Z.H. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell, 2008, 20(10), 2763-2782.
[http://dx.doi.org/10.1105/tpc.108.061325] [PMID: 18952777]
[78]
Duan, A.Q.; Tao, J.P.; Jia, L.L.; Tan, G.F.; Liu, J.X.; Li, T.; Chen, L.Z.; Su, X.J.; Feng, K.; Xu, Z.S.; Xiong, A.S. AgNAC1, a celery transcription factor, related to regulation on lignin biosynthesis and salt tolerance. Genomics, 2020, 112(6), 5254-5264.
[http://dx.doi.org/10.1016/j.ygeno.2020.09.049] [PMID: 32976976]
[79]
Yan, Y.; Wang, P.; Wei, Y.; Bai, Y.; Lu, Y.I.; Zeng, H.; Liu, G.; Reiter, R.J.; He, C.; Shi, H. The dual interplay of RAV5 in activating nitrate reductases and repressing catalase activity to improve disease resistance in cassava. Plant Biotechno. J., 2021, 19(4), 785-800.
[http://dx.doi.org/10.1111/pbi.13505] [PMID: 33128298]
[80]
Sohn, K.H.; Lee, S.C.; Jung, H.W.; Hong, J.K.; Hwang, B.K. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol. Biol., 2006, 61(6), 897-915.
[http://dx.doi.org/10.1007/s11103-006-0057-0] [PMID: 16927203]
[81]
Yan, Y.; Wang, P.; Lu, Y.; Bai, Y.; Wei, Y.; Liu, G.; Shi, H. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation. Plant J., 2021, 107(3), 847-860.
[http://dx.doi.org/10.1111/tpj.15350] [PMID: 34022096]
[82]
Dai, X.; Zhuang, Z.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res., 2018, 46(W1), W49-W54.
[http://dx.doi.org/10.1093/nar/gky316] [PMID: 29718424]
[83]
Dixon, R.A.; Barros, J. Lignin biosynthesis: Old roads revisited and new roads explored. Open Biol., 2019, 9(12), 190215.
[http://dx.doi.org/10.1098/rsob.190215] [PMID: 31795915]
[84]
Mir Derikvand, M.; Sierra, J.B.; Ruel, K.; Pollet, B.; Do, C.T.; Thévenin, J.; Buffard, D.; Jouanin, L.; Lapierre, C. Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Planta, 2008, 227(5), 943-956.
[http://dx.doi.org/10.1007/s00425-007-0669-x] [PMID: 18046574]
[85]
Moura, J.C.M.S.; Bonine, C.A.V.; Viana, J.D.O.F.; Dornelas, M.C.; Mazzafera, P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol., 2010, 52(4), 360-376.
[http://dx.doi.org/10.1111/j.1744-7909.2010.00892.x] [PMID: 20377698]
[86]
Schuetz, M.; Benske, A.; Smith, R.A.; Watanabe, Y.; Tobimatsu, Y.; Ralph, J.; Demura, T.; Ellis, B.; Samuels, A.L. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol., 2014, 166(2), 798-807.
[http://dx.doi.org/10.1104/pp.114.245597] [PMID: 25157028]
[87]
Ithal, N.; Recknor, J.; Nettleton, D.; Maier, T.; Baum, T.J.; Mitchum, M.G. Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Mol. Plant Microbe Interact., 2007, 20(5), 510-525.
[http://dx.doi.org/10.1094/MPMI-20-5-0510] [PMID: 17506329]
[88]
Xiong, X.P.; Sun, S.C.; Zhu, Q.H.; Zhang, X.Y.; Li, Y.J.; Liu, F.; Xue, F.; Sun, J. The cotton lignin biosynthetic gene Gh4CL30 regulates lignification and phenolic content and contributes to Verticillium wilt resistance. Mol. Plant Microbe Interact., 2021, 34(3), 240-254.
[http://dx.doi.org/10.1094/MPMI-03-20-0071-R] [PMID: 33507814]
[89]
Lupoi, J.S.; Singh, S.; Parthasarathi, R.; Simmons, B.A.; Henry, R.J. Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew. Sustain. Energy Rev., 2015, 49, 871-906.
[http://dx.doi.org/10.1016/j.rser.2015.04.091]
[90]
Boudet, A.M.; Kajita, S.; Grima-Pettenati, J.; Goffner, D. Lignins and lignocellulosics: A better control of synthesis for new and improved uses. Trends Plant Sci., 2003, 8(12), 576-581.
[http://dx.doi.org/10.1016/j.tplants.2003.10.001] [PMID: 14659706]
[91]
Fu, C.; Mielenz, J.R.; Xiao, X.; Ge, Y.; Hamilton, C.Y.; Rodriguez, M., Jr; Chen, F.; Foston, M.; Ragauskas, A.; Bouton, J.; Dixon, R.A.; Wang, Z.Y. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc. Natl. Acad. Sci. USA., 2011, 108(9), 3803-3808.
[http://dx.doi.org/10.1073/pnas.1100310108] [PMID: 21321194]
[92]
Azadfar, M.; Gao, A.H.; Bule, M.V.; Chen, S. Structural characterization of lignin: A potential source of antioxidants guaiacol and 4-vinylguaiacol. Int. J. Biol. Macromol., 2015, 75, 58-66.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.049]
[93]
Vinardell, M.P.; Mitjans, M. Lignins and their derivatives with beneficial effects on human health. Int. J. Mol. Sci., 2017, 18(6), 1219.
[http://dx.doi.org/10.3390/ijms18061219] [PMID: 28590454]
[94]
Tronchet, M.; Balagué, C.; Kroj, T.; Jouanin, L.; Roby, D. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol. Plant Pathol., 2010, 11(1), 83-92.
[http://dx.doi.org/10.1111/j.1364-3703.2009.00578.x] [PMID: 20078778]
[95]
Shi, H.; Liu, Z.; Zhu, L.; Zhang, C.; Chen, Y.; Zhou, Y.; Li, F.; Li, X. Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Acta Biochim. Biophys. Sin. (Shanghai), 2012, 44(7), 555-564.
[http://dx.doi.org/10.1093/abbs/gms035] [PMID: 22595512]
[96]
Eynck, C.; Séguin-Swartz, G.; Clarke, W.E.; Parkin, I.A. Monolignol biosynthesis is associated with resistance to Sclerotinia sclerotiorum in Camelina sativa. Mol. Plant Pathol., 2012, 13(8), 887-899.
[http://dx.doi.org/10.1111/j.1364-3703.2012.00798.x] [PMID: 22487550]
[97]
Liu, H; Guo, Z; Gu, F; Ke, S; Sun, D; Dong, S; Liu, W; Huang, M; Xiao, W; Yang, G; Liu, Y; Guo, T; Wang, H; Wang, J; Chen, Z 4-Coumarate-CoALigase Like Gene OsAAE3 negatively mediates the rice blast resistance, floret development and lignin biosynthesis. Front. Plant Sci., 2017, 7, 2041.
[http://dx.doi.org/10.3389/fpls.2016.02041] [PMID: 28119718]
[98]
Ma, Q.H.; Zhu, H.H.; Han, J.Q. Wheat ROP proteins modulate defense response through lignin metabolism. Plant Sci., 2017, 262, 32-38.
[http://dx.doi.org/10.1016/j.plantsci.2017.04.017] [PMID: 28716418]
[99]
Hu, Q.; Min, L.; Yang, X.; Jin, S.; Zhang, L.; Li, Y.; Ma, Y.; Qi, X.; Li, D.; Liu, H.; Lindsey, K.; Zhu, L.; Zhang, X. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis. Plant Physiol., 2018, 176(2), 1808-1823.
[http://dx.doi.org/10.1104/pp.17.01628] [PMID: 29229698]
[100]
Zhang, Y.; Wu, L.; Wang, X.; Chen, B.; Zhao, J.; Cui, J.; Li, Z.; Yang, J.; Wu, L.; Wu, J.; Zhang, G.; Ma, Z. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants. Mol. Plant Pathol., 2019, 20(3), 309-322.
[http://dx.doi.org/10.1111/mpp.12755] [PMID: 30267563]
[101]
Xiao, S.; Hu, Q.; Shen, J.; Liu, S.; Yang, Z.; Chen, K.; Klosterman, S.J.; Javornik, B.; Zhang, X.; Zhu, L. GhMYB4 downregulates lignin biosynthesis and enhances cotton resistance to Verticillium dahliae. Plant Cell Rep., 2021, 40(4), 735-751.
[http://dx.doi.org/10.1007/s00299-021-02672-x] [PMID: 33638657]
[102]
Liu, D.; Wu, J.; Lin, L.; Li, P.; Li, S.; Wang, Y.; Li, J.; Sun, Q.; Liang, J.; Wang, Y. Overexpression of cinnamoyl-CoA reductase 2 in Brassica napus increases resistance to Sclerotinia sclerotiorum by affecting lignin biosynthesis. Front. Plant Sci., 2021, 12, 732733.
[http://dx.doi.org/10.3389/fpls.2021.732733] [PMID: 34630482]
[103]
Wang, J.; Wang, C.; Zhu, M.; Yu, Y.; Zhang, Y.; Wei, Z. Generation and characterization of transgenic poplar plants overexpressing a cotton laccase gene. Plant Cell Tissue Organ Cult., 2008, 93(3), 303-310.
[http://dx.doi.org/10.1007/s11240-008-9377-x]
[104]
Hu, P.; Zhang, K.; Yang, C. BpNAC012 positively regulates abiotic stress responses and secondary wall biosynthesis. Plant Physiol., 2019, 179(2), 700-717.
[http://dx.doi.org/10.1104/pp.18.01167] [PMID: 30530740]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy