Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Review Article

Tellurium-containing Thiol-peroxidase-like Antioxidants and their Catalytic Mechanism

Author(s): Antonella Capperucci and Damiano Tanini*

Volume 17, Issue 1, 2023

Published on: 19 December, 2022

Page: [13 - 25] Pages: 13

DOI: 10.2174/2212796817666221121155138

Price: $65

Abstract

The development of novel small molecules with effective catalytic antioxidant properties is highly sought after. A wide array of structurally diverse selenium- and tellurium-containing glutathione peroxidase mimics have been studied over the past two decades. Within this arena, organotellurium compounds generally exhibit higher catalytic properties with respect to selenium-containing analogues. Different mechanisms accounting for the thiol-peroxidase-like activity of various classes of organotellurium derivatives have been proposed. This review documents developments in this area and provides an overview of the catalytic mechanisms proposed for the various classes of telluriumcontaining thiol-peroxidase-like-catalysts.

Graphical Abstract

[1]
Klotz, L.O.; Kröncke, K.D.; Buchczyk, D.P.; Sies, H. Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J. Nutr., 2003, 133(5)(Suppl. 1), 1448S-1451S.
[http://dx.doi.org/10.1093/jn/133.5.1448S] [PMID: 12730440]
[2]
Barchielli, G.; Capperucci, A.; Tanini, D. The role of selenium in pathologies: an updated review. Antioxidants, 2022, 11(2), 251.
[http://dx.doi.org/10.3390/antiox11020251] [PMID: 35204134]
[3]
Gromer, S.; Johansson, L.; Bauer, H.; Arscott, L.D.; Rauch, S.; Ballou, D.P.; Williams, C.H., Jr; Schirmer, R.H.; Arnér, E.S.J. Active sites of thioredoxin reductases: Why selenoproteins? Proc. Natl. Acad. Sci., 2003, 100(22), 12618-12623.
[http://dx.doi.org/10.1073/pnas.2134510100] [PMID: 14569031]
[4]
Reich, H.J.; Hondal, R.J. Why nature chose Selenium? ACS Chem. Biol., 2016, 11(4), 821-841.
[http://dx.doi.org/10.1021/acschembio.6b00031] [PMID: 26949981]
[5]
Lu, X.; Mestres, G.; Singh, V.; Effati, P.; Poon, J.F.; Engman, L.; Ott, M. Selenium- and tellurium-based antioxidants for modulating inflammation and effects on osteoblastic activity. Antioxidants, 2017, 6(1), 13.
[http://dx.doi.org/10.3390/antiox6010013] [PMID: 28216602]
[6]
Engman, L.; Al-Maharik, N.; McNaughton, M.; Birmingham, A.; Powis, G. Thioredoxin reductase and cancer cell growth inhibition by organotellurium antioxidants. Anticancer Drugs, 2003, 14(2), 153-161.
[http://dx.doi.org/10.1097/00001813-200302000-00009] [PMID: 12569302]
[7]
Tanini, D.; Ricci, L.; Capperucci, A.; Di Cesare Mannelli, L.; Ghelardini, C.; Peat, T.S.; Carta, F.; Angeli, A.; Supuran, C.T. Synthesis of novel tellurides bearing benzensulfonamide moiety as carbonic anhydrase inhibitors with antitumor activity. Eur. J. Med. Chem., 2019, 181111586.
[http://dx.doi.org/10.1016/j.ejmech.2019.111586] [PMID: 31401537]
[8]
Tanini, D.; Carradori, S.; Capperucci, A.; Lupori, L.; Zara, S.; Ferraroni, M.; Ghelardini, C.; Di Cesare Mannelli, L.; Micheli, L.; Lucarini, E.; Carta, F.; Angeli, A.; Supuran, C.T. Chalcogenides-incorporating carbonic anhydrase inhibitors concomitantly reverted oxaliplatin-induced neuropathy and enhanced antiproliferative action. Eur. J. Med. Chem., 2021, 225, 113793.
[http://dx.doi.org/10.1016/j.ejmech.2021.113793] [PMID: 34507012]
[9]
Sredni, B.; Caspi, R.R.; Klein, A.; Kalechman, Y.; Danziger, Y.; BenYa’akov, M.; Tamari, T.; Shalit, F.; Albeck, M. A new immunomodulating compound (AS-101) with potential therapeutic application. Nature, 1987, 330(6144), 173-176.
[http://dx.doi.org/10.1038/330173a0] [PMID: 3118216]
[10]
Kalechman, Y.; Albeck, M.; Sredni, B. In vivo synergistic effect of the immunomodulator AS101 and the PKC inducer bryostatin. Cell. Immunol., 1992, 143(1), 143-153.
[http://dx.doi.org/10.1016/0008-8749(92)90012-E] [PMID: 1623562]
[11]
Vrana, J.A.; Rao, A.S.; Wang, Z.; Jarvis, W.D.; Grant, S. Effects of bryostatin 1 and calcium ionophore (A23187) on apoptosis and differentiation in human myeloid leukemia cells (HL-60) following 1-beta-D-arabinofuranosylcytosine exposure. Int. J. Oncol., 1998, 12(4), 927-934.
[http://dx.doi.org/10.3892/ijo.12.4.927] [PMID: 9499457]
[12]
Ávila, D.S.; Colle, D.; Gubert, P.; Palma, A.S.; Puntel, G.; Manarin, F.; Noremberg, S.; Nascimento, P.C.; Aschner, M.; Rocha, J.B.T.; Soares, F.A.A. A possible neuroprotective action of a vinylic telluride against Mn-induced neurotoxicity. Toxicol. Sci., 2010, 115(1), 194-201.
[http://dx.doi.org/10.1093/toxsci/kfq036] [PMID: 20133376]
[13]
Ávila, D.S.; Palma, A.S.; Colle, D.; Scolari, R.; Manarin, F.; da Silveira, A.F.; Nogueira, C.W.; Rocha, J.B.T.; Soares, F.A.A. Hepatoprotective activity of a vinylic telluride against acute exposure to acetaminophen. Eur. J. Pharmacol., 2011, 661(1-3), 92-101.
[http://dx.doi.org/10.1016/j.ejphar.2011.04.031] [PMID: 21549114]
[14]
Tiano, L.; Fedeli, D.; Santroni, A.M.; Villarini, M.; Engman, L.; Falcioni, G. Effect of three diaryl tellurides, and an organoselenium compound in trout erythrocytes exposed to oxidative stress in vitro. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2000, 464(2), 269-277.
[http://dx.doi.org/10.1016/S1383-5718(99)00204-1] [PMID: 10648914]
[15]
Lin, T.; Ding, Z.; Li, N.; Xu, J.; Luo, G.; Liu, J.; Shen, J. Retracted: 2-Tellurium-bridged β-cyclodextrin, a thioredoxin reductase inhibitor, sensitizes human breast cancer cells to TRAIL-induced apoptosis through DR5 induction and NF-κB suppression. Carcinogenesis, 2011, 32(2), 154-167.
[http://dx.doi.org/10.1093/carcin/bgq234] [PMID: 21081474]
[16]
Cunha, R.L.O.R.; Gouvea, I.E.; Juliano, L. A glimpse on biological activities of tellurium compounds. An. Acad. Bras. Cienc., 2009, 81(3), 393-407.
[http://dx.doi.org/10.1590/S0001-37652009000300006] [PMID: 19722011]
[17]
Angeli, A.; Tanini, D.; Capperucci, A.; Supuran, C.T. First evaluation of organotellurium derivatives as carbonic anhydrase I, II, IV, VII and IX inhibitors. Bioorg. Chem., 2018, 76, 268-272.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.010] [PMID: 29223030]
[18]
Tanini, D.; Capperucci, A.; Supuran, C.T.; Angeli, A. Sulfur, selenium and tellurium containing amines act as effective carbonic anhydrase activators. Bioorg. Chem., 2019, 87, 516-522.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.062] [PMID: 30928874]
[19]
Stefanello, S.T.; Gubert, P.; Puntel, B.; Mizdal, C.R.; Campos, M.M.A.; Salman, S.M.; Dornelles, L.; Avila, D.S.; Aschner, M.; Soares, F.A.A. Protective effects of novel organic selenium compounds against oxidative stress in the nematode Caenorhabditis elegans. Toxicol. Rep., 2015, 2, 961-967.
[http://dx.doi.org/10.1016/j.toxrep.2015.06.010] [PMID: 26726309]
[20]
Rooseboom, M.; Vermeulen, N.P.E.; Durgut, F.; Commandeur, J.N.M. Comparative study on the bioactivation mechanisms and cytotoxicity of Te-phenyl-L-tellurocysteine, Se-phenyl-L-selenocys-teine, and S-phenyl-L-cysteine. Chem. Res. Toxicol., 2002, 15(12), 1610-1618.
[http://dx.doi.org/10.1021/tx020034f] [PMID: 12482244]
[21]
Deng, Z.; Zhang, Y.; Yue, J.; Tang, F.; Wei, Q. Green and orange CdTe quantum dots as effective pH-sensitive fluorescent probes for dual simultaneous and independent detection of viruses. J. Phys. Chem. B, 2007, 111(41), 12024-12031.
[http://dx.doi.org/10.1021/jp074609z] [PMID: 17887667]
[22]
Chen, H.; Lesnyak, V.; Bigall, N.C.; Gaponik, N.; Eychmüller, A. Self-assembly of TGA-capped CdTe nanocrystals into three-dimensional luminescent nanostructures. Chem. Mater., 2010, 22(7), 2309-2314.
[http://dx.doi.org/10.1021/cm9032572]
[23]
Wachter, J. Metal telluride clusters — from small molecules to polyhedral structures. Eur. J. Inorg. Chem., 2004, 2004(7), 1367-1378.
[http://dx.doi.org/10.1002/ejic.200300935]
[24]
Zhang, B.; Hou, W.; Ye, X.; Fu, S.; Xie, Y. 1D tellurium nanostructures: Photothermally assisted morphology-controlled synthesis and applications in preparing functional nanoscale materials. Adv. Funct. Mater., 2007, 17(3), 486-492.
[http://dx.doi.org/10.1002/adfm.200600566]
[25]
Fonseca, S.F.; Lima, D.B.; Alves, D.; Jacob, R.G.; Perin, G.; Lenardão, E.J.; Savegnago, L. Synthesis, characterization and antioxidant activity of organoselenium and organotellurium compound derivatives of chrysin. New J. Chem., 2015, 39(4), 3043-3050.
[http://dx.doi.org/10.1039/C4NJ02329C]
[26]
Tanini, D.; Lupori, B.; Malevolti, G.; Ambrosi, M.; Nostro, P.L.; Capperucci, A. Direct biocatalysed synthesis of first sulfur-, selenium- and tellurium- containing L -ascorbyl hybrid derivatives with radical trapping and GPx-like properties. Chem. Commun., 2019, 55(40), 5705-5708.
[http://dx.doi.org/10.1039/C9CC02427A] [PMID: 31033970]
[27]
Ibrahim, M.; Hassan, W.; Meinerz, D.F.; Dos Santos, M.; V Klimaczewski, C.; M Deobald, A.; Costa, M.S.; Nogueira, C.W.; Barbosa, N.B.V.; Rocha, J.B.T. Antioxidant properties of diorganoyl diselenides and ditellurides: Modulation by organic aryl or naphthyl moiety. Mol. Cell. Biochem., 2012, 371(1-2), 97-104.
[http://dx.doi.org/10.1007/s11010-012-1426-4] [PMID: 22983825]
[28]
Capperucci, A.; Coronnello, M.; Salvini, F.; Tanini, D.; Dei, S.; Teodori, E.; Giovannelli, L. Synthesis of functionalised organochalcogenides and in vitro evaluation of their antioxidant activity. Bioorg. Chem., 2021, 110, 104812.
[http://dx.doi.org/10.1016/j.bioorg.2021.104812] [PMID: 33744808]
[29]
Kanda, T.; Engman, L.; Cotgreave, I.A.; Powis, G. Novel water-soluble diorganyl tellurides with thiol peroxidase and antioxidant activity. J. Org. Chem., 1999, 64(22), 8161-8169.
[http://dx.doi.org/10.1021/jo990842k] [PMID: 11674732]
[30]
Engman, L.; Stern, D.; Cotgreave, I.A.; Andersson, C.M. Thiol peroxidase activity of diaryl ditellurides as determined by a proton NMR method. J. Am. Chem. Soc., 1992, 114(25), 9737-9743.
[http://dx.doi.org/10.1021/ja00051a002]
[31]
Tanini, D.; Ricci, L.; Capperucci, A. Rongalite‐promoted on water synthesis of functionalised tellurides and ditellurides. Adv. Synth. Catal., 2020, 362(6), 1323-1332.
[http://dx.doi.org/10.1002/adsc.201901536]
[32]
Tanini, D.; Grechi, A.; Ricci, L.; Dei, S.; Teodori, E.; Capperucci, A. Novel functionalized organotellurides with enhanced thiol peroxidase catalytic activity. New J. Chem., 2018, 42(8), 6077-6083.
[http://dx.doi.org/10.1039/C8NJ00700D]
[33]
You, Y.; Ahsan, K.; Detty, M.R. Mechanistic studies of the tellurium(II)/tellurium(IV) redox cycle in thiol peroxidase-like reactions of diorganotellurides in methanol. J. Am. Chem. Soc., 2003, 125(16), 4918-4927.
[http://dx.doi.org/10.1021/ja029590m] [PMID: 12696911]
[34]
Press, D.J.; Back, T.G. Enhanced glutathione peroxidase activity of conformationally restricted naphthalene peri-dichalcogenides. Org. Lett., 2011, 13(15), 4104-4107.
[http://dx.doi.org/10.1021/ol201617t] [PMID: 21739953]
[35]
Jagdev, K.; Tanini, D.; Lownes, J.W.; Figliola, C.; Male, L.; Capperucci, A.; Grainger, R.S. Glutathione peroxidase mimics based on conformationally-restricted, peri -like, 4,5-disubstituted fluorene dichalcogenides. Org. Biomol. Chem., 2021, 19(48), 10565-10569.
[http://dx.doi.org/10.1039/D1OB02153B] [PMID: 34846405]
[36]
Braga, A.L.; Alberto, E.E.; Soares, L.C.; Rocha, J.B.T.; Sudati, J.H.; Roos, D.H. Synthesis of telluroamino acid derivatives with remarkable GPx like activity. Org. Biomol. Chem., 2009, 7(1), 43-45.
[http://dx.doi.org/10.1039/B814990A] [PMID: 19081943]
[37]
Detty, M.R.; Gibson, S.L. Tellurapyrylium dyes as catalysts for oxidations with hydrogen peroxide and as scavengers of singlet oxygen. Dihydroxytelluranes as mild oxidizing agents. Organometallics, 1992, 11(6), 2147-2156.
[http://dx.doi.org/10.1021/om00042a031]
[38]
Engman, L.; Stern, D.; Pelcman, M.; Andersson, C.M. Thiol peroxidase activity of diorganyl tellurides. J. Org. Chem., 1994, 59(8), 1973-1979.
[http://dx.doi.org/10.1021/jo00087a008]
[39]
Vessman, K.; Ekstroem, M.; Berglund, M.; Andersson, C.M.; Engman, L. Catalytic antioxidant activity of diaryl tellurides in a two-phase lipid peroxidation model. J. Org. Chem., 1995, 60(14), 4461-4467.
[http://dx.doi.org/10.1021/jo00119a024]
[40]
Engman, L.; Lind, J.; Merényi, G. Redox properties of diaryl chalcogenides and their oxides. J. Phys. Chem., 1994, 98(12), 3174-3182.
[http://dx.doi.org/10.1021/j100063a021]
[41]
Organoselenium Chemistry; Wirth, T., Ed.; Wiley-WHC Verlag & Co: Weinheim, Germany, 2012.
[42]
Lenardão, E.J.; Santi, C.; Sancineto, L. New Frontiers in Organoselenium Compounds; Springer: New York, NY, USA, 2018.
[http://dx.doi.org/10.1007/978-3-319-92405-2]
[43]
Bhabak, K.P.; Mugesh, G. Functional mimics of glutathione peroxidase: Bioinspired synthetic antioxidants. Acc. Chem. Res., 2010, 43(11), 1408-1419.
[http://dx.doi.org/10.1021/ar100059g] [PMID: 20690615]
[44]
Bhabak, K.P.; Mugesh, G. Amide-based glutathione peroxidase mimics: Effect of secondary and tertiary amide substituents on antioxidant activity. Chem. Asian J., 2009, 4(6), 974-983.
[http://dx.doi.org/10.1002/asia.200800483] [PMID: 19378298]
[45]
Mugesh, G.; du Mont, W.W. Structure-activity correlation between natural glutathione peroxidase (GPx) and mimics: A biomimetic concept for the design and synthesis of more efficient GPx mimics. Chemistry, 2001, 7(7), 1365-1370.
[http://dx.doi.org/10.1002/1521-3765(20010401)7:7<1365::AID-CHEM1365>3.0.CO;2-Y] [PMID: 11330888]
[46]
Bhowmick, D.; Mugesh, G. Introduction of a catalytic triad increases the glutathione peroxidase-like activity of diaryl diselenides. Org. Biomol. Chem., 2015, 13(34), 9072-9082.
[http://dx.doi.org/10.1039/C5OB01294E] [PMID: 26220806]
[47]
Tripathi, S.K.; Patel, U.; Roy, D.; Sunoj, R.B.; Singh, H.B.; Wolmershäuser, G.; Butcher, R.J. o-hydroxylmethylphenylchal- cogens: Synthesis, intramolecular nonbonded chalcogen...OH interactions, and glutathione peroxidase-like activity. J. Org. Chem., 2005, 70(23), 9237-9247.
[http://dx.doi.org/10.1021/jo051309+] [PMID: 16268596]
[48]
Tanini, D.; Grechi, A.; Dei, S.; Teodori, E.; Capperucci, A. An easy one-step procedure for the synthesis of novel β-functionalised tellurides. Tetrahedron, 2017, 73(38), 5646-5653.
[http://dx.doi.org/10.1016/j.tet.2017.07.061]
[49]
Tanini, D.; Borgogni, C.; Capperucci, A. Mild and selective silicon-mediated access to enantioenriched 1,2-mercaptoamines and β-amino arylchalcogenides. New J. Chem., 2019, 43(16), 6388-6393.
[http://dx.doi.org/10.1039/C9NJ00657E]
[50]
Pascoe, D.J.; Ling, K.B.; Cockroft, S.L. The Origin of Chalcogen-Bonding Interactions. J. Am. Chem. Soc., 2017, 139(42), 15160-15167.
[http://dx.doi.org/10.1021/jacs.7b08511] [PMID: 28985065]
[51]
Nascimento, V.; Alberto, E.E.; Tondo, D.W.; Dambrowski, D.; Detty, M.R.; Nome, F.; Braga, A.L. GPx-Like activity of selenides and selenoxides: Experimental evidence for the involvement of hydroxy perhydroxy selenane as the active species. J. Am. Chem. Soc., 2012, 134(1), 138-141.
[http://dx.doi.org/10.1021/ja209570y] [PMID: 22136421]
[52]
Kheirabadi, R.; Izadyar, M. Computational modeling of the kinetics and mechanism of tellurium‐based glutathione peroxidase mimic. Int. J. Quantum Chem., 2020, 120(12), e26201.
[http://dx.doi.org/10.1002/qua.26201]
[53]
Sarma, B.K.; Manna, D.; Minoura, M.; Mugesh, G. Synthesis, structure, spirocyclization mechanism, and glutathione peroxidase-like antioxidant activity of stable spirodiazaselenurane and spirodiazatellurane. J. Am. Chem. Soc., 2010, 132(15), 5364-5374.
[http://dx.doi.org/10.1021/ja908080u] [PMID: 20345146]
[54]
Back, T.G.; Kuzma, D.; Parvez, M. Aromatic derivatives and tellurium analogues of cyclic seleninate esters and spirodioxyselenuranes that act as glutathione peroxidase mimetics. J. Org. Chem., 2005, 70(23), 9230-9236.
[http://dx.doi.org/10.1021/jo0512711] [PMID: 16268595]
[55]
Poon, J.; Singh, V.P.; Engman, L. In search of catalytic antioxidants--(alkyltelluro)phenols, (alkyltelluro)resorcinols, and bis (alkyltelluro)phenols. J. Org. Chem., 2013, 78(12), 6008-6015.
[http://dx.doi.org/10.1021/jo400703w] [PMID: 23701313]
[56]
Amorati, R.; Valgimigli, L.; Dinér, P.; Bakhtiari, K.; Saeedi, M.; Engman, L. Multi-faceted reactivity of alkyltellurophenols towards peroxyl radicals: Catalytic antioxidant versus thiol-depletion effect. Chemistry, 2013, 19(23), 7510-7522.
[http://dx.doi.org/10.1002/chem.201300451] [PMID: 23576474]
[57]
Singh, V.P.; Poon, J.; Engman, L. Catalytic antioxidants: Regenerable tellurium analogues of vitamin E. Org. Lett., 2013, 15(24), 6274-6277.
[http://dx.doi.org/10.1021/ol403131t] [PMID: 24279415]
[58]
Ren, X.; Xue, Y.; Liu, J.; Zhang, K.; Zheng, J.; Luo, G.; Guo, C.; Mu, Y.; Shen, J. A novel cyclodextrin-derived tellurium compound with glutathione peroxidase activity. ChemBioChem, 2002, 3(4), 356-363.
[http://dx.doi.org/10.1002/1439-7633(20020402)3:4<356::AID-CBIC356>3.0.CO;2-O] [PMID: 11933237]
[59]
McNaughton, M.; Engman, L.; Birmingham, A.; Powis, G.; Cotgreave, I.A. Cyclodextrin-derived diorganyl tellurides as glutathione peroxidase mimics and inhibitors of thioredoxin reductase and cancer cell growth. J. Med. Chem., 2004, 47(1), 233-239.
[http://dx.doi.org/10.1021/jm030916r] [PMID: 14695837]
[60]
Jiao, A.; Yang, N.; Wang, J.; Xu, X.; Jin, Z. Cyclodextrin-derived chalcogenides as glutathione peroxidase mimics and their protection of mitochondria against oxidative damage. J. Incl. Phenom. Macrocycl. Chem., 2013, 75(1-2), 155-163.
[http://dx.doi.org/10.1007/s10847-012-0156-2]
[61]
Wang, L.; Qu, X.; Xie, Y.; Lv, S. Study of 8 types of glutathione peroxidase mimics based on β-cyclodextrin. Catalysts, 2017, 7(10), 289.
[http://dx.doi.org/10.3390/catal7100289]
[62]
Morya, V.K.; Dong, S.J.; Kim, E. Production and characterization Te-peptide by induced autolysis of Saccharomyces cerevisiae. Appl. Biochem. Biotechnol., 2014, 172(7), 3390-3401.
[http://dx.doi.org/10.1007/s12010-014-0780-y] [PMID: 24532446]
[63]
Mao, S.; Dong, Z.; Liu, J.; Li, X.; Liu, X.; Luo, G.; Shen, J. Semisynthetic tellurosubtilisin with glutathione peroxidase activity. J. Am. Chem. Soc., 2005, 127(33), 11588-11589.
[http://dx.doi.org/10.1021/ja052451v] [PMID: 16104720]
[64]
Liu, X.; Silks, L.A.; Liu, C.; Ollivault-Shiflett, M.; Huang, X.; Li, J.; Luo, G.; Hou, Y.M.; Liu, J.; Shen, J. Incorporation of tellurocysteine into glutathione transferase generates high glutathione peroxidase efficiency. Angew. Chem. Int. Ed., 2009, 48(11), 2020-2023.
[http://dx.doi.org/10.1002/anie.200805365] [PMID: 19199319]
[65]
Bortoli, M.; Torsello, M.; Bickelhaupt, F.M.; Orian, L. Role of the chalcogen (S, Se, Te) in the oxidation mechanism of the glutathione peroxidase active site. ChemPhysChem, 2017, 18(21), 2990-2998.
[http://dx.doi.org/10.1002/cphc.201700743] [PMID: 28837255]
[66]
Vernekar, A.A.; Mugesh, G. Catalytic reduction of graphene oxide nanosheets by glutathione peroxidase mimetics reveals a new structural motif in graphene oxide. Chemistry, 2013, 19(49), 16699-16706.
[http://dx.doi.org/10.1002/chem.201303339] [PMID: 24281813]
[67]
Yu, F.; Li, P.; Wang, B.; Han, K. Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo. J. Am. Chem. Soc., 2013, 135(20), 7674-7680.
[http://dx.doi.org/10.1021/ja401360a] [PMID: 23621710]
[68]
Thomas, J.; Dong, Z.; Dehaen, W.; Smet, M. Selenium/tellurium-containing hyperbranched polymers: Effect of molecular weight and degree of branching on glutathione peroxidase-like activity. Macromol. Rapid Commun., 2012, 33(24), 2127-2132.
[http://dx.doi.org/10.1002/marc.201200519] [PMID: 22996964]
[69]
Yin, Y.; Jiao, S.; Zhang, R.; Wang, X.; Zhang, L.; Yang, L. Construction of a soluble supramolecular glutathione peroxidase mimic based on host-guest interaction. Curr. Organocatal., 2015, 2(1), 64-70.
[http://dx.doi.org/10.2174/2213337202666150121230931]
[70]
Yin, Y.; Jiao, S.; Lang, C.; Liu, J. A supramolecular microgel glutathione peroxidase mimic with temperature responsive activity. Soft Matter, 2014, 10(19), 3374-3385.
[http://dx.doi.org/10.1039/c3sm53117a] [PMID: 24652520]
[71]
Yu, S.; Yin, Y.; Zhu, J.; Huang, X.; Luo, Q.; Xu, J.; Shen, J.; Liu, J. A modulatory bifunctional artificial enzyme with both SOD and GPx activities based on a smart star-shaped pseudo-block copolymer. Soft Matter, 2010, 6(21), 5342-5350.
[http://dx.doi.org/10.1039/c0sm00162g]
[72]
Jiao, S.; Liang, X.; Zhang, R.; Zhong, S.; Zheng, Y.; Wang, S.; Liu, M.; Hu, X.; Yin, Y. Facile construction of microgel based biomimetic glutathione peroxidase with temperature responsive catalytic activity. ChemistrySelect, 2019, 4(41), 12143-12150.
[http://dx.doi.org/10.1002/slct.201903025]
[73]
Nogara, P.A.; Rocha, J.B.T.; Bortoli, M.; Orian, L. Biological activity of synthetic organoselenium compounds: What do we know about the mechanism? Curr. Chem. Biol., 2022, 16(1), 12-24.
[http://dx.doi.org/10.2174/2212796816666220422135204]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy