Generic placeholder image

Current Cosmetic Science

Editor-in-Chief

ISSN (Print): 2666-7797
ISSN (Online): 2666-7800

Review Article

In vitro and In vivo Evaluation of Sunscreen Formulations Containing Nanolipid Carriers

Author(s): Bhawna Sharma* and Iti Chauhan

Volume 1, Issue 2, 2022

Published on: 03 November, 2022

Article ID: e190822207741 Pages: 10

DOI: 10.2174/2666779701666220819144607

Price: $65

Abstract

The majority of sunscreen cosmetics are emulsions or creams. However, formulations that use lipid nanoparticles as the delivery vehicle for sunscreen chemicals may offer benefits in terms of skin retention, enhancement of penetration through the epidermal layer, and Ultraviolet (UV) absorption and scattering. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been investigated to create sunscreen products with low or medium UV protection. SLN and NLC have a wide range of characteristics and have been proven to effectively control the entry of actives showing UV protection activity through the skin. They have no hazardous effects; therefore, they can be employed safely in dermatological and cosmetic preparations to obtain different traits. When utilized as vehicles for molecular sunscreens, lipid nanoparticles showed a synergistic impact of UV scattering. The ability to minimize the concentration of the molecular sunscreen, its potential adverse effects, and the expenses of formulating pricey sunscreens are all advantages derived from these studies. The review discusses some research on how lipid nanoparticles have been encapsulating sunscreen agents. Exposure to sunlight is a key element in the aetiology of the gradual undesired changes in the skin look and physiology caused by UV rays present in the sunshine; hence evaluating sunscreen activity is an essential aspect of the cosmetic business. The author will also address some of the in vitro and in vivo assessments of sunscreens.

Keywords: In vitro and in vivo evaluation

Graphical Abstract

[1]
Merlin, F.P.; Ratnasooriya, W.D.; Pathirana, R.N. In vitro investigation of sunscreen activity and evaluation of phytochemical profile of Methanolic leaf extract of Rauvolfia tetraphylla. J. Pharmacogn. Phytochem., 2020, 9(2), 2063-2067.
[2]
More, B.H.; Sakharwade, S.N.; Tembhurne, S.V.; Sakarkar, D.M. Evaluation of sunscreen activity of cream containing leaves extract of butea monosperma for topical application. Inter. J. Res. Cosmetic Sci., 2013, 3(1), 1-6.
[3]
Kale, S.; Sonawane, A.; Ansari, A.; Ghoge, P.; Waje, A. Formulation and in-vitro determination of sun protection factor of Ocimum basili-cum, Linn. leaf oils sunscreen cream. Int. J. Pharm. Pharm. Sci., 2010, 2(4), 147-149.
[4]
Abdassah, M.; Aryani, R.; Surachman, E.; Muchtaridi, M. In-vitro assessment of effectiveness and photostability avobenzone in cream for-mulations by combination ethyl ascorbic acid and alpha tocopherol acetate. J. Appl. Pharm. Sci., 2015, 5(6), 70-74.
[http://dx.doi.org/10.7324/JAPS.2015.50611]
[5]
Jose, J.; Netto, G. Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J. Cosmet. Dermatol., 2019, 18(1), 315-321.
[http://dx.doi.org/10.1111/jocd.12504] [PMID: 29441672]
[6]
Bambal, V.; Mishra, M. Evaluation of in vitro sunscreen activity of herbal cream containing extract of curcuma longa and butea mono-sperma. J. Pharm. Res., 2014, 3(2), 3026-3035.
[7]
Gilbert, E.; Roussel, L.; Serre, C.; Sandouk, R.; Salmon, D.; Kirilov, P.; Haftek, M.; Falson, F.; Pirot, F. Percutaneous absorption of benzo-phenone-3 loaded lipid nanoparticles and polymeric nanocapsules: A comparative study. Int. J. Pharm., 2016, 504(1-2), 48-58.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.018] [PMID: 26976501]
[8]
Stiefel, C.; Schwack, W. Photoprotection in changing times - UV filter efficacy and safety, sensitization processes and regulatory aspects. Int. J. Cosmet. Sci., 2015, 37(1), 2-30.
[http://dx.doi.org/10.1111/ics.12165] [PMID: 25256657]
[9]
Diffey, B.L.; Grice, J. The influence of sunscreen type on photoprotection. Br. J. Dermatol., 1997, 137(1), 103-105.
[http://dx.doi.org/10.1111/j.1365-2133.1997.tb03709.x] [PMID: 9274634]
[10]
Ma, Y.; Yoo, J. History of sunscreen: An updated view. J. Cosmet. Dermatol., 2021, 20(4), 1044-1049.
[http://dx.doi.org/10.1111/jocd.14004] [PMID: 33583116]
[11]
Chu, C.C.; Hasan, Z.A.B.A.; Tan, C.P.; Nyam, K.L. In vitro antiaging evaluation of sunscreen formulated from nanostructured lipid carrier and tocotrienol-rich fraction. J. Pharm. Sci., 2021, 110(12), 3929-3936.
[http://dx.doi.org/10.1016/j.xphs.2021.08.020] [PMID: 34425132]
[12]
Sütő, B.; Berkó, S.; Kozma, G.; Kukovecz, Á.; Budai-Szűcs, M.; Erős, G.; Kemény, L.; Sztojkov-Ivanov, A.; Gáspár, R.; Csányi, E. Devel-opment of ibuprofen-loaded nanostructured lipid carrier-based gels: Characterization and investigation of in vitro and in vivo penetration through the skin. Int. J. Nanomedicine, 2016, 11, 1201-1212.
[PMID: 27099487]
[13]
González-Mira, E.; Nikolić, S.; García, M.L.; Egea, M.A.; Souto, E.B.; Calpena, A.C. Potential use of nanostructured lipid carriers for topi-cal delivery of flurbiprofen. J. Pharm. Sci., 2011, 100(1), 242-251.
[http://dx.doi.org/10.1002/jps.22271] [PMID: 20575052]
[14]
Souto, E.B.; Müller, R.H. Cosmetic features and applications of lipid nanoparticles (SLN ®, NLC ®). Int. J. Cosmet. Sci., 2008, 30(3), 157-165.
[http://dx.doi.org/10.1111/j.1468-2494.2008.00433.x] [PMID: 18452432]
[15]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[16]
Wissing, S.A.; Müller, R.H. A novel sunscreen system based on tocopherol acetate incorporated into solid lipid nanoparticles. Int. J. Cosmet. Sci., 2001, 23(4), 233-243.
[http://dx.doi.org/10.1046/j.1467-2494.2001.00087.x] [PMID: 18498463]
[17]
Song, C.; Liu, S. A new healthy sunscreen system for human: Solid lipid nannoparticles as carrier for 3,4,5-trimethoxybenzoylchitin and the improvement by adding Vitamin E. Int. J. Biol. Macromol., 2005, 36(1-2), 116-119.
[http://dx.doi.org/10.1016/j.ijbiomac.2005.05.003] [PMID: 16005509]
[18]
Souto, E.B.; Anselmi, C.; Centini, M.; Müller, R.H. Preparation and characterization of n-dodecyl-ferulate-loaded solid lipid nanoparticles (SLN®). Int. J. Pharm., 2005, 295(1-2), 261-268.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.005] [PMID: 15848010]
[19]
Trombino, S.; Cassano, R.; Muzzalupo, R.; Pingitore, A.; Cione, E.; Picci, N. Stearyl ferulate-based solid lipid nanoparticles for the encap-sulation and stabilization of β-carotene and α-tocopherol. Colloids Surf. B Biointerfaces, 2009, 72(2), 181-187.
[http://dx.doi.org/10.1016/j.colsurfb.2009.03.032] [PMID: 19410436]
[20]
Sanna, V.; Roggio, A.M.; Siliani, S.; Piccinini, M.; Marceddu, S.; Mariani, A.; Sechi, M. Development of novel cationic chitosan-and anion-ic alginate-coated poly(D,L-lactide-co-glycolide) nanoparticles for controlled release and light protection of resveratrol. Int. J. Nanomedicine, 2012, 7, 5501-5516.
[PMID: 23093904]
[21]
Andreani, T.; Dias-Ferreira, J.; Fangueiro, J.F.; Souza, A.L.R.; Kiill, C.P.; Gremião, M.P.D.; García, M.L.; Silva, A.M.; Souto, E.B. Formu-lating octyl methoxycinnamate in hybrid lipid-silica nanoparticles: An innovative approach for UV skin protection. Heliyon, 2020, 6(5), e03831.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03831] [PMID: 32395645]
[22]
Xia, Q.; Saupe, A.; Müller, R.H.; Souto, E.B. Nanostructured lipid carriers as novel carrier for sunscreen formulations. Int. J. Cosmet. Sci., 2007, 29(6), 473-482.
[http://dx.doi.org/10.1111/j.1468-2494.2007.00410.x] [PMID: 18489386]
[23]
Chen, J.; Wei, N.; Lopez-Garcia, M.; Ambrose, D.; Lee, J.; Annelin, C.; Peterson, T. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications. Eur. J. Pharm. Biopharm., 2017, 117, 286-291.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.008] [PMID: 28411056]
[24]
Medeiros, T.S.; Moreira, L.M.C.C.; Oliveira, T.M.T.; Melo, D.F.; Azevedo, E.P.; Gadelha, A.E.G.; Fook, M.V.L.; Oshiro-Júnior, J.A.; Damasceno, B.P.G.L. Bemotrizinol-loaded carnauba wax-based nanostructured lipid carriers for sunscreen: Optimization, characterization, and in vitro evaluation. AAPS PharmSciTech, 2020, 21(8), 288.
[http://dx.doi.org/10.1208/s12249-020-01821-x] [PMID: 33073311]
[25]
Miao, L.; Daozhou, L.; Ying, C.; Qibing, M.; Siyuan, Z. A resveratrol-loaded nanostructured lipid carrier hydrogel to enhance the anti-UV irradiation and anti-oxidant efficacy. Colloids Surf. B Biointerfaces, 2021, 204, 111786.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111786] [PMID: 33984613]
[26]
Sayre, R.M.; Agin, P.P.; LeVee, G.J.; Marlowe, E. A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem. Photobiol., 1979, 29(3), 559-566.
[http://dx.doi.org/10.1111/j.1751-1097.1979.tb07090.x] [PMID: 441130]
[27]
Kale, S.; Bhandare, S.; Gaikwad, M.; Urunkar, V.; Rajmane, A. Formulation and in vitro evaluation for sun protection factor of Lutein ester extracted from Tagetes erecta Linn flower (Family-Asteraceae) sunscreen creams. Res. J. Pharm. Biol. Chem. Sci., 2011, 2(3), 947-955.
[28]
Irwin, C.J. The current status of UVA testing and labeling in the USA.Broadspectrum Sun Protection: The Issues and Status; London, UK; ; , 1997.
[29]
Diffey, B.L. A new substrate to measure sun protection factors throughout the ultraviolet spectrum. J. Soc. Cosmet. Chem., 1989, 40, 127-133.
[30]
Spruce, S.R.; Hewitt, J.P. In vitro SPF, methodology and correlation with in vivo data. Euro Cosmetics., 1995, (Jun), 14-20.
[31]
Imam, S.; Azhar, I.; Mahmood, Za. In-vitro evaluation of sun protection factor of a cream formulation prepared from extracts of Musa accuminata (L.), Psidium gujava (L.) And Pyrus communis (L.). In Vitro, 2015, 8(3)
[32]
Lee, Y.J.; Nam, G.W. Sunscreen boosting effect by solid lipid nanoparticles-loaded fucoxanthin formulation. Cosmetics, 2020, 7(1), 14.
[http://dx.doi.org/10.3390/cosmetics7010014]
[33]
Almeida, W.A.S.; Antunes, A.S.; Penido, R.G.; Correa, H.S.G.; Nascimento, A.M.; Andrade, Â.L.; Santos, V.R.; Cazati, T.; Amparo, T.R.; Souza, G.H.B.; Freitas, K.M.; Santos, O.D.H.; Sousa, L.R.D.; Santos, V.M.R. Photoprotective activity and increase of SPF in sunscreen formulation using lyophilized red propolis extracts from Alagoas. Rev. Bras. Farmacogn., 2019, 29(3), 373-380.
[http://dx.doi.org/10.1016/j.bjp.2019.02.003]
[34]
Netto MPharm G.; Jose, J. Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of si-lymarin. J. Cosmet. Dermatol., 2018, 17(6), 1073-1083.
[http://dx.doi.org/10.1111/jocd.12470] [PMID: 29226503]
[35]
Heppner, A.; Hansen, P.; Schumann, C. Solid lipid nanoparticles containing a UV filter material are useful in aqueous dispersion form as high filter content sunscreen compositions. Germany Patent 1999152410, 2017.
[36]
Herzog, B. Formulation of UV absorbers by incorporation in solid lipid nanoparticles.US Patent 20030235540A1, , 2005.
[37]
Zhang, W.; Zhu, H.; Liu, X. Sun screening agent-coated solid lipid sunscreen particle and preparation method thereof.China Patent 104000740A,, 2014.
[38]
Zhang, W.; Zhu, H.; Bing, J. Solid lipid sunscreen particles coated with high-concentration sun screener and preparation method of solid lipid sunscreen particles.China Patent CN105030554A, 2015.
[39]
Sun, R.; Xia, Q. Titanium dioxide nanostructure lipid carrier and preparation method thereof. China Patent CN103520024A, , 2013.
[40]
Qiang, X. Composite anti-screening agent nanostructured lipid carrier and preparation method thereof.China Patent CN102688152A,, 2012.
[41]
Müller, R.H.; Wissing, S.; Mäder, K. UV radiation reflecting or absorbing agents, protecting against harmful UV radiation and reinforcing the natural skin barrier.European Patent, EP1194111A2,, 2000.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy