Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

Physicochemical and Therapeutic Properties of Malaysian Stingless Bee Kelulut Honey in Comparison with Yemeni Sidr Honey

Author(s): Mohammad A. Al-Kafaween*, Abu Bakar Mohd Hilmi* and Hamid Ali Nagi Al-Jamal

Volume 20, Issue 5, 2022

Published on: 12 September, 2022

Article ID: e180822207622 Pages: 10

DOI: 10.2174/2211352520666220818095716

Price: $65

conference banner
Abstract

Kelulut and Yemeni Sidr honey has been documented to have various therapeutic properties. Investigations associated with the medicinal properties and physicochemical characteristics of Kelulut and Yemeni Sidr honey are growing broadly and receiving raised awareness. This study incorporated and analysed the findings on the biological and physicochemical properties of Kelulut and Yemeni Sidr honey. Kelulut and Yemeni Sidr honey was found to have a wide variety of biological effects attributed to their physicochemical characteristics. Findings showed that Kelulut and Yemeni Sidr honey have anti-bacterial, antibiofilm, anti-virulence, anti-oxidative, anti-cancer, anti-inflammatory, anti-diabetic, antiobesity and wound-healing properties. The physicochemical properties of Kelulut and Yemeni Sidr honey were compared and discussed and results revealed that they have high-quality contents and excellent antioxidant sources.

Keywords: Kelulut honey, yemeni sidr honey, health benefits, natural products, antibacterial, antibiofilm, anti-virulence, anti-oxidative, anti-cancer.

[1]
Kuropatnicki, A.K.; Kłósek, M.; Kucharzewski, M. Honey as medicine: Historical perspectives. J. Apic. Res., 2018, 57(1), 113-118.
[http://dx.doi.org/10.1080/00218839.2017.1411182]
[2]
Al-kafaween, M.A. The beneficial effects of stingless bee Kelulut honey against Pseudomonas aeruginosa and Streptococcus pyogenes planktonic and biofilm. Trop. J. Nat. Prod. Res., 2021, 5(10), 1788-1796.
[http://dx.doi.org/10.26538/tjnpr/v5i10.15]
[3]
Mousa, K.; Magharbeh, K.M.K.; Al-kafaween, M.A.; Razan, S.; Alqaraleh, M.; Qaralleh, H.; Al-Tarawneh, A.; Al-limoun, M.O.; Mousa, K.; El-Hasan, T.; Hujran, T.; Jbour, S.; Jarrah, N.; Amonov, M.; Al-Jamal, H.A. Biodegradation of phenol by Bacillus simplex: Characterization and kinetics study. Appl. Environ. Biotechnol., 2021, 6(2), 1-12.
[4]
Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and health: A review of recent clinical research. Pharmacognosy Res., 2017, 9(2), 121-127.
[PMID: 28539734]
[5]
Yaghoobi, R.; Kazerouni, A. kazerouni, O. Evidence for clinical use of honey in wound healing as an anti-bacterial, anti- inflammatory anti-oxidant and anti-viral agent: A review. Jundishapur J. Nat. Pharm. Prod., 2013, 8(3), 100-104.
[http://dx.doi.org/10.17795/jjnpp-9487] [PMID: 24624197]
[6]
Simon, A.; Traynor, K.; Santos, K.; Blaser, G.; Bode, U.; Molan, P. Medical honey for wound care-still the ‘latest resort’? Evid. Based Complement. Alternat. Med., 2009, 6(2), 165-173.
[http://dx.doi.org/10.1093/ecam/nem175] [PMID: 18955301]
[7]
Al-kafaween, M.A.; Hilmi, A.B.M.; Al-Jamal, H.A.N.; Al-Groom, R.M.; Elsahoryi, N.A.; Al-Sayyed, H. Potential antibacterial activity of Yemeni Sidr honey against Pseudomonas aeruginosa and Streptococcus pyogenes. Antiinfect. Agents, 2021, 19(4), e130621192336.
[http://dx.doi.org/10.2174/2211352519666210319100204]
[8]
Othman, A.S. Original research article antibacterial activity of bee and Yemeni Sidr honey against some pathogenic bacterial species. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(10), 1015-1025.
[9]
Kafaween, M.; Hilmi, A.; Khan, R.; Bouacha, M.; Amonov, M. Effect of trigona honey on Escherichia coli cell culture growth: In vitro study. J. Apither., 2019, 5(2), 10-17.
[http://dx.doi.org/10.5455/ja.20190407083601]
[10]
Al-kafaween, M.A.; Mohd Hilmi, A.B.; Jaffar, N.; Hamid, A.N.J.; Zahri, M.K.; Amonov, M. Effects of trigona honey on the gene expression profile of Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615. Jordan J. Biol. Sci., 2020, 13(2)
[11]
Al-kafaween, M.A.; Hilmi, A.B.M.; Hamid, A.N.J.; Jaffar, N. Al- Sayyed, H.; Zahri, M.K. Effects of selected Malaysian Kelulut honey on biofilm formation and the gene expression profile of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. Jordan J. Pharm. Sci., 2021, 14(1)
[12]
Al-Kafaween, M.A.; Hamid, A.N.J.; Hilmi, A.B.M. Antibacterial activity of selected varieties of Malaysian honey against Escherichia coli: A comparative study. Int. Arab. J. Antimicrob. Agents, 2021, 11, 1-3.
[13]
Mohd Kamal, D.A.; Ibrahim, S.F.; Kamal, H.; Kashim, M.I.A.M.; Mokhtar, M.H. Physicochemical and medicinal properties of tualang, gelam and Kelulut honeys: A comprehensive review. Nutrients, 2021, 13(1), 197.
[http://dx.doi.org/10.3390/nu13010197] [PMID: 33435215]
[14]
Roshan, A.R.A.; Gad, H.A.; El-Ahmady, S.H.; Abou-Shoer, M.I.; Khanbash, M.S.; Al-Azizi, M.M. Characterization and discrimination of the floral origin of Sidr honey by physicochemical data combined with multivariate analysis. Food Anal. Methods, 2017, 10(1), 137-146.
[http://dx.doi.org/10.1007/s12161-016-0563-x]
[15]
Ahmed, S.; Othman, N.H. Review of the medicinal effects of Tualang honey and a comparison with Manuka honey. Malays. J. Med. Sci., 2013, 20(3), 6-13.
[PMID: 23966819]
[16]
Zainol, M.I.; Mohd, Y.K.; Mohd, Y.M.Y. Antibacterial activity of selected Malaysian honey. BMC Complement. Altern. Med., 2013, 13(1), 129.
[http://dx.doi.org/10.1186/1472-6882-13-129] [PMID: 23758747]
[17]
Biluca, F.C.; Braghini, F.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). J. Food Compos. Anal., 2016, 50, 61-69.
[http://dx.doi.org/10.1016/j.jfca.2016.05.007]
[18]
Ehab, W.Z. Classical classification and discrimination analysis of physicochemical characters of Sidr honey produced in some Arab countries. Egypt. J.Plant Protect. Res. Instit., 2019, 2(2), 387-397.
[19]
Khanbash, M. Development of beekeeping in Yemen; Honeybee Center, Hadhramout University of Science & Technology, 2003.
[20]
Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Ibrahim, M.; Liaqat, S.; Fatima, S. Honey as a potential natural antioxidant medicine: An insight into its molecular mechanisms of action. Oxid. Med. Cell. Longev., 2018.
[http://dx.doi.org/10.1155/2018/8367846]
[21]
Chan, B.; Haron, H. Insights into putative health implications of gelam (Melaleuca cajuputi) honey: Evidence from in-vivo and in- vitro studies. Med. Sci. (Basel), 2016, 4(1), 3.
[http://dx.doi.org/10.3390/medsci4010003] [PMID: 29083367]
[22]
El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M.G. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci., 2015, 60(2), 279-287.
[http://dx.doi.org/10.1016/j.aoas.2015.10.015]
[23]
Khadra, Y.M.; Nurul, S.A.M.K.; Nurul, N.A.A.; Shukri, R. Nor- Khaizura, M.A.R. Physicochemical and microbiological quality of selected commercial and traditional honey in klang valley market, Malaysia. J. Sci. Technol., 2018, 10(2), 71-76.
[24]
Saedd, M.; Jayashankar, M. Evaluation of antibacterial activity of some Indian and Yemeni honey against few bacterial isolates from human patients. Egypt. J. Microbiol., 2020.
[http://dx.doi.org/10.21608/ejm.2020.20200.1135]
[25]
Alkhyat, S.H.; Maqtari, M.A.A. Effectiveness of antibiotics blended with honey on some pathogenic bacteria species. Int. J. Microbiol. Immunol. Res., 2014, 2(7), 109-115.
[26]
Živkov Baloš, M.; Popov, N.; Vidaković, S.; Ljubojević Pelić, D.; Pelić, M.; Mihaljev, Ž.; Jakšić, S. Electrical conductivity and acidity of honey. Arh. Vet. Med., 2018, 11(1), 91-101.
[http://dx.doi.org/10.46784/e-avm.v11i1.20]
[27]
Thrasyvoulou, A.; Tananaki, C.; Goras, G.; Karazafiris, E.; Dimou, M.; Liolios, V.; Kanelis, D.; Gounari, S. Legislation of honey criteria and standards. J. Apic. Res., 2018, 57(1), 88-96.
[http://dx.doi.org/10.1080/00218839.2017.1411181]
[28]
Liza A-Rahaman. N.; Suan Chua, L.; Roji Sarmidi, M.; Aziz, R. Physicochemical and radical scavenging activities of honey samples from Malaysia. Agric. Sci., 2013, 4(5), 46-51.
[http://dx.doi.org/10.4236/as.2013.45B009]
[29]
Alkhyat, S.H.; Maqtari, M.A.A. Antibacterial potential and physicochemical properties of selected Yemeni honeys against clinical wounds bacteria and comparative with standard bacteria isolates. Glo. Adv. Res. J. Microbiol., 2014, 3(3), 49-58.
[30]
Zulkhairi, A.F.A; Sabri, S.; Mohammad, S.M.; Ismail, M.; Chan, K.W.; Ismail, N. Therapeutic properties of stingless bee honey in comparison with European bee honey. Adv. Pharmacol. Sci., 2018, 2018
[http://dx.doi.org/10.1155/2018/6179596]
[31]
Al-Haik, W.M.; Al-Haddad, A.M.; Al-kaf, A.; Hassan, W.; Edrees, W. Antimicrobial activities for Hadhrami honey on growth of some pathogenic bacteria. Univ. J. Pharmaceut. Res., 2018, 2(6), 7-12.
[http://dx.doi.org/10.22270/ujpr.v2i6.R2]
[32]
Hussein, S.Z.; Yusoff, K.M.; Makpol, S.; Yusof, Y.A.M. Antioxidant capacities and total phenolic contents increase with gamma irradiation in two types of Malaysian honey. Molecules, 2011, 16(8), 6378-6395.
[http://dx.doi.org/10.3390/molecules16066378] [PMID: 21796076]
[33]
Chua, L.S.; Rahaman, N.L.A.; Adnan, N.A.; Eddie, T.T.T. Antioxidant activity of three honey samples in relation with their biochemical components. J. Anal. Methods Chem., 2013, 2013
[http://dx.doi.org/10.1155/2013/313798]
[34]
Kek, S.P.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Chua, L.S. Total phenolic contents and colour intensity of Malaysian honeys from the Apis spp. and Trigona spp. bees. Agric. Agric. Sci. Procedia, 2014, 2, 150-155.
[http://dx.doi.org/10.1016/j.aaspro.2014.11.022]
[35]
Tomczyk, M.; Tarapatskyy, M.; Dżugan, M. The influence of geographical origin on honey composition studied by Polish and Slovak honeys. Czech J. Food Sci., 2019, 37(4), 232-238.
[http://dx.doi.org/10.17221/40/2019-CJFS]
[36]
Khalafi, R.; Goli, S.A.H.; Behjatian, M. Characterization and classification oHf several monofloral Iranian honeys based on physicochemical properties and antioxidant activity. Int. J. Food Prop., 2016, 19(5), 1065-1079.
[http://dx.doi.org/10.1080/10942912.2015.1055360]
[37]
Khalil, M.I.; Mahaneem, M.; Jamalullail, S.M.S.; Alam, N.; Sulaiman, S.A. Evaluation of radical scavenging activity and colour intensity of nine Malaysian honeys of different origin. J. ApiProd. ApiMed. Sci., 2011, 3(1), 04-11.
[http://dx.doi.org/10.3896/IBRA.4.03.1.02]
[38]
Alzubier, A.A.; Okechukwu, P.N. Investigation of anti- inflammatory, antipyretic and analgesic effect of Yemeni Sidr honey. World Acad. Sci. Eng. Technol., 2011, 80, 47-52.
[39]
Saeed, M.A.; Jayashankar, M.; Tejaswini, H.K. Evaluation of biochemical and antioxidant properties of Indian and Yemeni honey. J. Apic. Res., 2021, 1-14.
[http://dx.doi.org/10.1080/00218839.2021.1898835]
[40]
Al-Mamary, M.; Al-Meeri, A.; Al-Habori, M. Antioxidant activities and total phenolics of different types of honey. Nutr. Res., 2002, 22(9), 1041-1047.
[http://dx.doi.org/10.1016/S0271-5317(02)00406-2]
[41]
Kek, S.P.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Chua, L.S. Classification of entomological origin of honey based on its physicochemical and antioxidant properties. Int. J. Food Prop., 2017, 20, S2723-S2738.
[http://dx.doi.org/10.1080/10942912.2017.1359185]
[42]
Moniruzzaman, M.; Chowdhury, M.A.Z.; Rahman, M.A.; Sulaiman, S.A.; Gan, S.H. Determination of mineral, trace element, and pesticide levels in honey samples originating from different regions of Malaysia compared to Manuka honey. BioMed. Res. Int., 2014, 2014
[http://dx.doi.org/10.1155/2014/359890]
[43]
Kek, S.P.; Chin, N.L.; Tan, S.W.; Yusof, Y.A.; Chua, L.S. Classification of honey from its bee origin via chemical profiles and mineral content. Food Anal. Methods, 2017, 10(1), 19-30.
[http://dx.doi.org/10.1007/s12161-016-0544-0]
[44]
Shamsudin, S.; Selamat, J.; Sanny, M. A R, S.B.; Jambari, N.N.; Khatib, A. A comparative characterization of physicochemical and antioxidants properties of processed Heterotrigona itama honey from different origins and classification by chemometrics analysis. Molecules, 2019, 24(21), 3898.
[http://dx.doi.org/10.3390/molecules24213898] [PMID: 31671885]
[45]
Wong, P.; Hii, S.L.; Koh, C.C.; Moh, T.S.Y.; Gindi, S.R.A. Chemical Analysis on the Honey of Heterotrigona itama and Tetrigona binghami from Sarawak, Malaysia. Sains Malays., 2019, 48(8), 1635-1642.
[http://dx.doi.org/10.17576/jsm-2019-4808-09]
[46]
Rashid, M.R.; Nor Aripin, K.N.; Syed, M.F.B.; Baharom, N.; Omar, K.; Md Taujuddin, N.M.S. The effect of Kelulut honey on fasting blood glucose and metabolic parameters in patients with impaired fasting glucose. J. Nutr. Metab., 2019.
[http://dx.doi.org/10.1155/2019/3176018]
[47]
Saeed, M.A.; Jayashankar, M. Physico-chemical characteristics of some Indian and Yemeni honey. J. Bioenerg. Food Sci., 2020, 7(2), 2832019.
[http://dx.doi.org/10.18067/jbfs.v7i2.283]
[48]
Muhammad, N.I.I.; Sarbon, N.M. Physicochemical profile, antioxidant activity and mineral contents of honey from stingless bee and honey bee species. J. Apic. Res., 2021, 1-8.
[http://dx.doi.org/10.1080/00218839.2021.1896214]
[49]
Nutritional composition of stingless bee honey from different botanical origins. In: Lim, D.; Bakar, M.A.; Majid, M., Eds.; IOP Conference Series: Earth and Environmental Science;, IOP Publishing, 2019.
[50]
Julika, W.N.; Ajit, A.; Sulaiman, A.Z.; Naila, A. Physicochemical and microbiological analysis of stingless bees honey collected from local market in Malaysia. Indones. J. Chem., 2019, 19(2), 522-530.
[http://dx.doi.org/10.22146/ijc.40869]
[51]
Chemical characteristics of Kelulut honey (Trigona sp.) in Bangka Tengah District, Indonesia. Setiawan, I.; Aini, S.; Afriani, Z., Eds.; IOP Conference Series: Earth and Environmental Science, IOP Publishing 2021.
[52]
Taha, M.M.E.; Abdelwahab, S.I.; Elsanousi, R.; Sheikh, B.Y.; Abdulla, M.A.; Babiker, S.E.; Elraih, H.; Mohamed, E. Effectiveness of Sidr honey on the prevention of ethanol-induced gatroulcerogenesis: Role of antioxidant and antiapoptotic mechanism. Pharmacogn. J., 2015, 7(3), 157-164.
[http://dx.doi.org/10.5530/pj.2015.3.3]
[53]
Tarawneh, O.; Alwahsh, W.; Abul-Futouh, H.; Al-Samad, L.A.; Hamadneh, L.; Abu Mahfouz, H.; Fadhil Abed, A. Determination of antimicrobial and antibiofilm activity of combined LVX and AMP Impregnated in p(HEMA) hydrogel. Appl. Sci. (Basel), 2021, 11(18), 8345.
[http://dx.doi.org/10.3390/app11188345]
[54]
Al-Bakri, A.G.; Mahmoud, N.N. Photothermal-induced antibacterial activity of gold nanorods loaded into polymeric hydrogel against Pseudomonas aeruginosa biofilm. Molecules, 2019, 24(14), 2661.
[http://dx.doi.org/10.3390/molecules24142661] [PMID: 31340472]
[55]
Huwaitat, R.; Coulter, S.M.; Porter, S.L.; Pentlavalli, S.; Laverty, G. Antibacterial and antibiofilm efficacy of synthetic polymyxin‐ mimetic lipopeptides. Pept. Sci. (Hoboken), 2021, 113(1), e24188.
[http://dx.doi.org/10.1002/pep2.24188]
[56]
Al-kafaween, M.A.; Hilmi, A.B.M. Evaluation of the effect of different growth media and incubation time on the suitability of biofilm forma-tion by Pseudomonas aeruginosa and Streptococcus pyogenes. Appl. Environ. Biotechnol., 2022, 6(2), 19-26.
[http://dx.doi.org/10.26789/AEB.2021.02.003]
[57]
Ayyash, M.; Shehabi, A.A.; Mahmoud, N.N.; Al-Bakri, A.G. Antibiofilm properties of triclosan with EDTA or cranberry as Foley Catheter lock solutions. J. Appl. Microbiol., 2019, 127(6), 1876-1888.
[http://dx.doi.org/10.1111/jam.14439] [PMID: 31502331]
[58]
Tarawneh, O.; Hamadneh, I.; Huwaitat, R.; Al-Assi, A.R.; El Madani, A. Characterization of chlorhexidine-impregnated cellulose-based hydrogel films intended for the treatment of periodontitis. BioMed Res. Int., 2021.
[http://dx.doi.org/10.1155/2021/9853977]
[59]
Halawani, E.; Shohayeb, M. Survey of the antibacterial activity of Saudi and some international honeys. J. Microbiol. Antimicrob., 2011, 3(4), 94-101.
[60]
Jie Ng, W.; Ying Lye, P.; Jia, Chan Y.; Khoon Lau, Z.; Yaw Ee, K. Synergistic effect of trigona honey and ampicillin on Staphylococcus aureus isolated from infected wound. Int. J. Pharmacol., 2017, 13(4), 403-407.
[http://dx.doi.org/10.3923/ijp.2017.403.407]
[61]
Maringgal, B.; Hashim, N.; Tawakkal, I.; Mohamed, M.; Shukor, N.I.A. Phytochemical compositions and antioxidant activities of Malaysian stingless bee honey. Pertanika J. Sci. Technol., 2019, 27(S1), 15-28.
[62]
Adenan, M.N.H.; Yazan, L.S.; Christianus, A.; Md Hashim, N.F.; Mohd Noor, S.; Shamsudin, S.; Ahmad Bahri, F.J.; Abdul Rahim, K. Radioprotective effects of Kelulut honey in Zebrafish model. Molecules, 2021, 26(6), 1557.
[http://dx.doi.org/10.3390/molecules26061557] [PMID: 33809054]
[63]
Ramli, E.S.; Kamaruzzaman, M.A.; Thanu, A.; Yusof, M.R.; Soelaiman, I.N. Kelulut honey ameliorates glucocorticoid induced osteoporosis via its antioxidant activity in rats. Asian Pac. J. Trop. Biomed., 2019, 9(12), 493.
[http://dx.doi.org/10.4103/2221-1691.271722]
[64]
Saiful, Y.L.; Muhamad, Z.M.F.S.; Mohd, A.R.; Zainal, N.A.; Esa, N.; Sapuan, S. Chemopreventive properties and toxicity of Kelulut honey in Sprague Dawley rats induced with Azoxymethane. BioMed Res. Int., 2016.
[65]
Al-kafaween, M.A.; Hilmi, A.B.M.; Jaffar, N.; Al-Jamal, H.A.N.; Zahri, M.K.; Jibril, F.I. Antibacterial and antibiofilm activities of Malaysian Trigona honey against Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615. Jordan J. Biol. Sci., 2020, 13(1), 69-76.
[66]
Alkafaween, M.A.; Al-Jamal, H.A.N.; Mohmd Hilmi, A.B. Evaluation of antimicrobial and antibiofilm activities of stingless bee Trigona honey (Malaysia) against Streptococcus pneumoniae. Int. Arab. J. Antimicrob. Agents, 2021, 11(2)
[http://dx.doi.org/10.3823/856]
[67]
Al-kafaween, M.A. Characterization of biofilm formation by Escherichia coli: An in vitro study. J. Appl. Biol. Biotechnol., 2019, 7(3), 17-19.
[http://dx.doi.org/10.7324/JABB.2019.70304]
[68]
Al-kafaween, M.A.; Hilmi, A.B.M.; Khan, R.S. In vitro investigation on the effectiveness of Trigona honey against biofilm formation by Escherichia coli. EC Microbiol., 2020, 16(4), 83-89.
[69]
Ng, W.J.; Chan, Y.J.; Lau, Z.K.; Lye, P.Y.; Ee, K.Y. Antioxidant properties and inhibitory effects of trigona honey against Staphylococcus aureus planktonic and biofilm cultures. Int. J., 2017, 12(37), 28-33.
[70]
Sindi, A.; Chawn, M.V.; Hernandez, M.E.; Green, K.; Islam, M.K.; Locher, C.; Hammer, K. Anti-biofilm effects and characterisation of the hydrogen peroxide activity of a range of Western Australian honeys compared to Manuka and multifloral honeys. Scientific Reports, 2019, 9(1), 1-7.
[http://dx.doi.org/10.1038/s41598-019-54217-8]
[71]
Proaño, A.; Coello, D.; Villacrés-Granda, I.; Ballesteros, I.; Debut, A.; Vizuete, K.; Brenciani, A.; Álvarez-Suarez, J.M. The osmotic action of sugar combined with hydrogen peroxide and bee-derived antibacterial peptide Defensin-1 is crucial for the antibiofilm activity of eucalyptus honey. Lebensm. Wiss. Technol., 2021, 136, 110379.
[http://dx.doi.org/10.1016/j.lwt.2020.110379]
[72]
Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed., 2011, 1(2), 154-160.
[http://dx.doi.org/10.1016/S2221-1691(11)60016-6] [PMID: 23569748]
[73]
Budin, S.B.; Jubaidi, F.F.; Mohd, N.A.S.N.F.; Mohamed, Y.N.L.; Taib, I.S.; Mohamed, J. Kelulut honey supplementation prevents sperm and testicular oxidative damage in streptozotocin-induced diabetic rats. J. Teknol., 2017, 79(3)
[http://dx.doi.org/10.11113/jt.v79.9674]
[74]
Chan, B.K.; Haron, H.; Talib, R.A.; Subramaniam, P. Physical properties, antioxidant content and anti-oxidative activities of Malaysian stingless kelulut (Trigona spp.) honey. J. Agric. Sci., 2017, 9(3), 32-40.
[75]
Al-kafaween, I.K.; Hilmi, A.; Soliman, M. Immunomodulatory and anti-inflammatory potentials of Trigona honey in the therapy and prevention against respiratory infection in wistar rats. Inter. J. Res.Pharmaceut. Sci., 2020, 11(3), 2955-2962.
[http://dx.doi.org/10.26452/ijrps.v11i3.2385]
[76]
Al-Yahya, M.; Mothana, R.; Al-Said, M.; Al-Dosari, M.; Al-Musayeib, N.; Al-Sohaibani, M. Attenuation of CCl4-induced oxidative stress and hepatonephrotoxicity by Saudi Sidr honey in rats; Evid. Based Complementary Altern. Med, 2013, 2013, .
[http://dx.doi.org/10.1155/2013/569037]
[77]
Al-Ghamdi, G.; Hussein, R.H.; Al-azragi, R. The antioxidant impact of Saudi Sidr honey against acetyl salicylic acid-induced gastric ulcer. Med. Sci., 2020, 24(104), 1923-1929.
[78]
Socha, R.; Juszczak, L.; Pietrzyk, S.; Fortuna, T. Antioxidant activity and phenolic composition of herbhoneys. Food Chem., 2009, 113(2), 568-574.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.029]
[79]
A., Al-Kafaween M.; Mohd Hilmi, A.B.; A Nagi Al-Jamal, H.; A Elsahoryi, N.; Jaffar, N.; Khairi Zahri, M. Pseudomonas aeruginosa and Streptococcus pyogenes exposed to Malaysian Trigona honey in vitro demonstrated downregulation of virulence factor. Iran. J. Biotechnol., 2020, 18(4), e2542.
[PMID: 34056021]
[80]
Jibril, F.I.; Hilmi, A.B.M.; Manivannan, L. Isolation and characterization of polyphenols in natural honey for the treatment of human diseases. Bull. Natl. Res. Cent., 2019, 43(1), 4.
[http://dx.doi.org/10.1186/s42269-019-0044-7]
[81]
Al-Kafaween, M.A.; Al-Jamal, H.A.N.; Hilmi, A.B.M.; Elsahoryi, N.A.; Jaffar, N.; Zahri, M.K. Antibacterial properties of selected Malaysian Tualang honey against Pseudomonas aeruginosa and Streptococcus pyogenes. Iran. J. Microbiol., 2020, 12(6), 565-576.
[PMID: 33613911]
[82]
Yazan, L.S.; Zainal, N.A.; Ali, R.M.; Zali, M.; Shyfiq, M.F.; Sze, O.Y. Antiulcer properties of Kelulut honey against ethanol-induced gastric ulcer. Pertanika J. Sci. Technol., 2018, 26(1)
[83]
Ahmad, F.; Seerangan, P.; Mustafa, M.Z.; Osman, Z.F.; Abdullah, J.M.; Idris, Z. Anti-cancer properties of Heterotrigona itama sp. honey via induction of apoptosis in malignant glioma cells. Malays. J. Med. Sci., 2019, 26(2), 30-39.
[http://dx.doi.org/10.21315/mjms2019.26.2.4] [PMID: 31447606]
[84]
Badrulhisham, N.S.R.; Ab Hamid, S.N.P.; Ismail, M.A.H.; Yong, Y.K.; Muhamad Zakuan, N.; Harith, H.H.; Saidi, H.I.; Nurdin, A. Harvested locations influence the total phenolic content, antioxidant levels, cytotoxic, and anti-inflammatory activities of stingless bee honey. J. Asia Pac. Entomol., 2020, 23(4), 950-956.
[http://dx.doi.org/10.1016/j.aspen.2020.07.015]
[85]
Ghramh, H.A.; Ibrahim, E.H.; Kilany, M. Study of anticancer, antimicrobial, immunomodulatory, and silver nanoparticles production by Sidr honey from three different sources. Food Sci. Nutr., 2020, 8(1), 445-455.
[http://dx.doi.org/10.1002/fsn3.1328] [PMID: 31993170]
[86]
Almnayan, D. Immune-modulatory effects of Sidr honey: Implications for anti-proliferative effects on cancer cells; Laurentian University of Sudbury, 2020.
[87]
Khleifat, K.M.; Qaralleh, H.; Al-limoun, M.O.; Al-khlifeh, E.M.; Aladaileh, S.A.; Tawarah, N. Antibacterial and antioxidant activities of local honey from Jordan. Trop. J. Nat. Prod. Res., 2021, 5(3), 470-477.
[http://dx.doi.org/10.26538/tjnpr/v5i3.10]
[88]
Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Mahmoud, A.M. Stingless bee honey protects against lipopolysaccharide induced-chronic subclinical systemic inflammation and oxidative stress by modulating Nrf2, NF-κB and p38 MAPK. Nutr. Metab. (Lond.), 2019, 16(1), 15.
[http://dx.doi.org/10.1186/s12986-019-0341-z] [PMID: 30858869]
[89]
Arshad, N.A.; Lin, T.S.; Yahaya, M.F. Stingless bee honey reduces anxiety and improves memory of the metabolic disease-induced rats. CNS Neurol. Disorders-Drug Targets, 2020, 19(2), 115-126.
[http://dx.doi.org/10.2174/1871527319666200117105133]
[90]
Fletcher, M.T.; Hungerford, N.L.; Webber, D.; Carpinelli de Jesus, M.; Zhang, J.; Stone, I.S.J.; Blanchfield, J.T.; Zawawi, N. Stingless bee honey, a novel source of trehalulose: A biologically active disaccharide with health benefits. Sci. Rep., 2020, 10(1), 12128.
[http://dx.doi.org/10.1038/s41598-020-68940-0] [PMID: 32699353]
[91]
Bahrami, M.; Ataie-Jafari, A.; Hosseini, S.; Foruzanfar, M.H.; Rahmani, M.; Pajouhi, M. Effects of natural honey consumption in diabetic patients: An 8-week randomized clinical trial. Int. J. Food Sci. Nutr., 2009, 60(7), 618-626.
[http://dx.doi.org/10.3109/09637480801990389] [PMID: 19817641]
[92]
Mohd, R.A.Z.; Syahir, A.; Wan, A.W.A.N.; Mustafa, M.Z.; Mariatulqabtiah, A.R. Supplementation of stingless bee honey from Heterotrigona itama improves antiobesity parameters in high-fat diet induced obese rat model. Evid. Based Complementary Altern. Med, 2018, 2018
[http://dx.doi.org/10.1155/2018/6371582]
[93]
Ramli, N.Z.; Chin, K.Y.; Zarkasi, K.A.; Ahmad, F. The beneficial effects of stingless bee honey from Heterotrigona itama against metabolic changes in rats fed with high-carbohydrate and high-fat diet. Int. J. Environ. Res. Public Health, 2019, 16(24), 4987.
[http://dx.doi.org/10.3390/ijerph16244987] [PMID: 31817937]
[94]
Meo, S.A.; Al-Asiri, S.A.; Mahesar, A.L.; Ansari, M.J. Role of honey in modern medicine. Saudi J. Biol. Sci., 2017, 24(5), 975-978.
[http://dx.doi.org/10.1016/j.sjbs.2016.12.010] [PMID: 28663690]
[95]
Nordin, A.; Chowdhury, S.R.; Saim, A.B.; Bt Hj Idrus, R. Effect of Kelulut honey on the cellular dynamics of TGFβ-induced epithelial to mesenchymal transition in primary human keratinocytes. Int. J. Environ. Res. Public Health, 2020, 17(9), 3229.
[http://dx.doi.org/10.3390/ijerph17093229] [PMID: 32384749]
[96]
Hananeh, W.M.; Ismail, Z.B.; Alshehabat, M.A.; Abeeleh, M.A.; Ali, J.H. Effects of Sidr honey on second-intention healing of contaminated full-thickness skin wounds in healthy dogs. Bull. Vet. Inst. Pulawy, 2015, 59(3), 433-439.
[http://dx.doi.org/10.1515/bvip-2015-0063]
[97]
Hwisa, N.T.; Katakam, P.; Chandu, B.R.; Abadi, E.G.; Shefha, E.M. Comparative in vivo evaluation of three types of honey on topical wound healing activity in rabbits. J. Appl. Pharm. Sci., 2013, 3(8), 139.
[98]
Jull, A.B.; Cullum, N.; Dumville, J.C.; Westby, M.J.; Deshpande, S.; Walker, N. Honey as a topical treatment for wounds. Cochrane Database Syst. Rev., 2015, 2015(3)
[http://dx.doi.org/10.1002/14651858.CD005083.pub4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy