Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Lopinavir-Loaded Self-Nanoemulsifying Drug Delivery System for Enhanced Solubility: Development, Characterisation and Caco-2 Cell Uptake

Author(s): Arshad Ali Khan, Safia Akhtar, Yogesh Yadav, Akhtar Atiya, Walla Alelwani, Azzah M. Bannunah and Syed Mahmood*

Volume 20, Issue 10, 2023

Published on: 07 September, 2022

Page: [1474 - 1486] Pages: 13

DOI: 10.2174/1567201819666220817111054

Price: $65

Abstract

Background: The antiretroviral protease inhibitor drug, lopinavir (LPV), is used to treat HIV-1 infection. LPV is known to have limited oral bioavailability, which may be attributed to its poor aqueous solubility, low efficacy and high first-pass metabolism. Self-nanoemulsifying drug delivery systems (SNEDDS) for LPV have been developed and optimised to counter the current issues.

Methods: The titration method was used to prepare LPV-loaded SNEDDS (LPV-SNEDDS). Six different pseudo-ternary phase diagrams were constructed to identify the nanoemulsifying region. The developed formulations were chosen in terms of globule size < 100 nm, dispersity ≤ 0.5, dispersibility (Grade A) and% transmittance > 85. Heating-cooling cycle, freeze-thaw cycle, and centrifugation studies were performed to confirm the stability of the developed SNEDDS.

Results: The final LPV-SNEDDS (L-14) droplet size was 58.18 ± 0.62 nm, with polydispersity index, zeta potential, and entrapment efficiency (EE%) values of 0.326 ± 0.005, -22.08 ± 1.2 mV, and 98.93 ± 1.18%, respectively. According to high-resolution transmission electron microscopy (HRTEM) analysis, the droplets in the optimised formulation were < 60 nm in size. The selected SNEDDS released nearly 99% of the LPV within 30 min, which was significantly (p < 0.05) higher than the LPV-suspension in methylcellulose (0.5% w/v). It indicates the potential use of SNEDDS to enhance the solubility of LPV, which eventually could help improve the oral bioavailability of LPV. The Caco-2 cellular uptake study showed a significantly (p < 0.05) higher LPV uptake from the SNEEDS (LPV-SNEDDS-L-14) than the free LPV (LPV-suspension).

Conclusion: The LPV-SNEDDS could be a potential carrier for LPV oral delivery.

Keywords: Lopinavir, Pseudo-ternary phase diagrams, titration method, SNEDDS, Caco-2 cells, COVID-19.

Graphical Abstract

[1]
Jewell, B.L.; Smith, J.A.; Hallett, T.B. Understanding the impact of interruptions to HIV Services during the COVID-19 pandemic: A modelling study. EClinicalMedicine, 2020, 26, 100483.
[http://dx.doi.org/10.1016/j.eclinm.2020.100483]
[2]
Rodari, A.; Darcis, G.; Van Lint, C.M. The current status of latency reversing agents for HIV-1 remission. Annu. Rev. Virol., 2021, 8(1), 491-514.
[http://dx.doi.org/10.1146/annurev-virology-091919-103029] [PMID: 34586875]
[3]
Whyte-Allman, S.K.; Bendayan, R. HIV-1 sanctuary sites-the role of membrane-associated drug transporters and drug metabolic enzymes. AAPS J., 2020, 22(5), 118.
[http://dx.doi.org/10.1208/s12248-020-00498-1] [PMID: 32875457]
[4]
Aji Alex, M.R.; Chacko, A.J.; Jose, S.; Souto, E.B. Lopinavir loaded Solid Lipid Nanoparticles (SLN) for intestinal lymphatic targeting. Eur. J. Pharm. Sci., 2011, 42(1-2), 11-18.
[http://dx.doi.org/10.1016/j.ejps.2010.10.002] [PMID: 20971188]
[5]
Sharma, P.; Garg, S. Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv. Drug Deliv. Rev., 2010, 62(4-5), 491-502.
[http://dx.doi.org/10.1016/j.addr.2009.11.019] [PMID: 19931328]
[6]
Elz, A.S.; Trevaskis, N.L.; Porter, C.J.H.; Bowen, J.M.; Prestidge, C.A. Smart design approaches for orally administered lipophilic prodrugs to promote lymphatic transport. J. Control. Release, 2022, 341, 676-701.
[http://dx.doi.org/10.1016/j.jconrel.2021.12.003] [PMID: 34896450]
[7]
Jain, S.; Sharma, J.M.; Jain, A.K.; Mahajan, R.R. Surface-stabilized lopinavir nanoparticles enhance oral bioavailability without coadministration of ritonavir. Nanomedicine (Lond.), 2013, 8(10), 1639-1655.
[http://dx.doi.org/10.2217/nnm.12.181] [PMID: 23351133]
[8]
Ravi, P.R.; Vats, R.; Dalal, V.; Murthy, A.N. A hybrid design to optimize preparation of lopinavir loaded solid lipid nanoparticles and comparative pharmacokinetic evaluation with marketed lopinavir/ritonavir coformulation. J. Pharm. Pharmacol., 2014, 66(7), 912-926.
[http://dx.doi.org/10.1111/jphp.12217] [PMID: 24697749]
[9]
Kassem, A.A.; Mohsen, A.M.; Ahmed, R.S.; Essam, T.M. Self-Nanoemulsifying Drug Delivery System (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: Design, optimization, in vitro and in vivo evaluation. J. Mol. Liq., 2016, 218, 219-232.
[http://dx.doi.org/10.1016/j.molliq.2016.02.081]
[10]
Yeung, P.K.F.; Hubbard, J.W.; Korchinski, E.D.; Midha, K.K. Pharmacokinetics of chlorpromazine and key metabolites. Eur. J. Clin. Pharmacol., 1993, 45(6), 563-569.
[http://dx.doi.org/10.1007/BF00315316] [PMID: 8157044]
[11]
Baloch, J.; Sohail, M.F.; Sarwar, H.S.; Kiani, M.H.; Khan, G.M.; Jahan, S.; Rafay, M.; Chaudhry, M.T.; Yasinzai, M.; Shahnaz, G. Self-Nanoemulsifying Drug Delivery System (SNEDDS) for improved oral bioavailability of chlorpromazine: In vitro and in vivo evaluation. Medicina (Kaunas), 2019, 55(5), E210.
[http://dx.doi.org/10.3390/medicina55050210] [PMID: 31137751]
[12]
Khan, A.A.; Mudassir, J.; Akhtar, S.; Murugaiyah, V.; Darwis, Y. Freeze-dried lopinavir-loaded nanostructured lipid carriers for enhanced cellular uptake and bioavailability: Statistical optimization, in vitro and in vivo evaluations. Pharmaceutics, 2019, 11(2), E97.
[http://dx.doi.org/10.3390/pharmaceutics11020097] [PMID: 30823545]
[13]
Patel, G.; Shelat, P.; Lalwani, A. Statistical modeling, optimization and characterization of solid self-nanoemulsifying drug delivery system of lopinavir using design of experiment. Drug Deliv., 2016, 23(8), 3027-3042.
[http://dx.doi.org/10.3109/10717544.2016.1141260] [PMID: 26882014]
[14]
Imada, C.; Takahashi, T.; Kuramoto, M.; Masuda, K.; Ogawara, K.; Sato, A.; Wataya, Y.; Kim, H.S.; Higaki, K. Improvement of oral bioavailability of N-251, a novel antimalarial drug, by increasing lymphatic transport with long-chain fatty acid-based self-nanoemulsifying drug delivery system. Pharm. Res., 2015, 32(8), 2595-2608.
[http://dx.doi.org/10.1007/s11095-015-1646-x] [PMID: 25715697]
[15]
Lee, M.K. Liposomes for enhanced bioavailability of water-insoluble drugs: In vivo evidence and recent approaches. pharmaceutics, 2020, 12(3), E264.
[http://dx.doi.org/10.3390/pharmaceutics12030264] [PMID: 32183185]
[16]
Patel, G.M.; Shelat, P.K.; Lalwani, A.N. QbD based development of proliposome of lopinavir for improved oral bioavailability. Eur. J. Pharm. Sci., 2017, 108, 50-61.
[http://dx.doi.org/10.1016/j.ejps.2016.08.057] [PMID: 27586019]
[17]
Date, A.A.; Desai, N.; Dixit, R.; Nagarsenker, M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine (Lond.), 2010, 5(10), 1595-1616.
[http://dx.doi.org/10.2217/nnm.10.126] [PMID: 21143036]
[18]
Gupta, S.; Chavhan, S.; Sawant, K.K. Self-nanoemulsifying drug delivery system for adefovir dipivoxil: Design, characterization, in vitro and ex vivo evaluation. Colloids Surf. A Physicochem. Eng. Asp., 2011, 392(1), 145-155.
[http://dx.doi.org/10.1016/j.colsurfa.2011.09.048]
[19]
Sanna, V.; Gavini, E.; Cossu, M.; Rassu, G.; Giunchedi, P. Solid Lipid Nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: In-vitro characterization, ex vivo and in vivo studies. J. Pharm. Pharmacol., 2007, 59(8), 1057-1064.
[http://dx.doi.org/10.1211/jpp.59.8.0002] [PMID: 17725847]
[20]
Fogh, J.; Fogh, J.M.; Orfeo, T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst., 1977, 59(1), 221-226.
[http://dx.doi.org/10.1093/jnci/59.1.221] [PMID: 327080]
[21]
Hidalgo, I.J.; Raub, T.J.; Borchardt, R.T. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 1989, 96(3), 736-749.
[http://dx.doi.org/10.1016/0016-5085(89)90897-4] [PMID: 2914637]
[22]
Artursson, P. Cell cultures as models for drug absorption across the intestinal mucosa. Crit. Rev. Ther. Drug Carrier Syst., 1991, 8(4), 305-330.
[PMID: 1769065]
[23]
Agarwal, S.; Boddu, S.H.S.; Jain, R.; Samanta, S.; Pal, D.; Mitra, A.K. Peptide prodrugs: Improved oral absorption of lopinavir, a HIV protease inhibitor. Int. J. Pharm., 2008, 359(1-2), 7-14.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.031] [PMID: 18455890]
[24]
Joshi, G.; Kumar, A.; Sawant, K. Bioavailability enhancement, Caco-2 cells uptake and intestinal transport of orally administered lopinavir-loaded PLGA nanoparticles. Drug Deliv., 2016, 23(9), 3492-3504.
[http://dx.doi.org/10.1080/10717544.2016.1199605] [PMID: 27297453]
[25]
Khursheed, R.; Singh, S.K.; Kumar, B.; Wadhwa, S.; Gulati, M. A, A.; Awasthi, A.; Vishwas, S.; Kaur, J.; Corrie, L.; K R, A.; Kumar, R.; Jha, N.K.; Gupta, P.K.; Zacconi, F.; Dua, K.; Chitranshi, N.; Mustafa, G.; Kumar, A. Self-nanoemulsifying composition containing curcumin, quercetin, Ganoderma lucidum extract powder and probiotics for effective treatment of type 2 diabetes mellitus in streptozotocin induced rats. Int. J. Pharm., 2022, 612, 121306.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121306] [PMID: 34813906]
[26]
Khan, A.A.; Atiya, A.; Akhtar, S.; Yadav, Y.; Qureshi, K.A.; Jaremko, M.; Mahmood, S. Optimization of a cefuroxime axetil-loaded liquid self-nanoemulsifying drug delivery system: Enhanced solubility, dissolution and Caco-2 cell uptake. Pharmaceutics, 2022, 14(4), 772.
[http://dx.doi.org/10.3390/pharmaceutics14040772] [PMID: 35456606]
[27]
Qian, J.; Meng, H.; Xin, L.; Xia, M.; Shen, H.; Li, G.; Xie, Y. Self-nanoemulsifying drug delivery systems of myricetin: Formulation development, characterization, and in vitro and in vivo evaluation. Colloids Surf. B Biointerfaces, 2017, 160, 101-109.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.020] [PMID: 28917148]
[28]
Khan, A.A.; Kumar, A.; Ali, J.; Sahni, J.K.; Baboota, S. Formulation, optimization and characterization of Self Nanoemulsifying Drug Delivery System (SNEDDS) of paclitaxel for solubility enhancement. Nanosci. Nanotechnol. Lett., 2013, 5(8), 861-867.
[http://dx.doi.org/10.1166/nnl.2013.1619]
[29]
Mahmood, S.; Chatterjee, B.; Mandal, U.K. Pharmacokinetic evaluation of the synergistic effect of raloxifene loaded transfersomes for transdermal delivery. J. Drug Deliv. Sci. Technol., 2021, 63, 102545.
[http://dx.doi.org/10.1016/j.jddst.2021.102545]
[30]
Salem, H.F.; Kharshoum, R.M.; Halawa, A.K.A.; Naguib, D.M. Preparation and optimization of tablets containing a self-nano-emulsifying drug delivery system loaded with rosuvastatin. J. Liposome Res., 2018, 28(2), 149-160.
[http://dx.doi.org/10.1080/08982104.2017.1295990] [PMID: 28287014]
[31]
Khan, A.W.; Kotta, S.; Ansari, S.H.; Sharma, R.K.; Ali, J. Self-Nanoemulsifying Drug Delivery System (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: Design, characterization, in vitro and in vivo evaluation. Drug Deliv., 2015, 22(4), 552-561.
[http://dx.doi.org/10.3109/10717544.2013.878003] [PMID: 24512268]
[32]
Dai, L.; Zhu, W.; Liu, R.; Si, C. Lignin-containing self-nanoemulsifying drug delivery system for enhance stability and oral absorption of trans-resveratrol. Part. Part. Syst. Charact., 2018, 35(4), 1700447.
[http://dx.doi.org/10.1002/ppsc.201700447]
[33]
Na, Y.G.; Byeon, J.J.; Wang, M.; Huh, H.W.; Son, G.H.; Jeon, S.H.; Bang, K.H.; Kim, S.J.; Lee, H.J.; Lee, H.K.; Cho, C.W. Strategic approach to developing a self-microemulsifying drug delivery system to enhance antiplatelet activity and bioavailability of ticagrelor. Int. J. Nanomedicine, 2019, 14, 1193-1212.
[http://dx.doi.org/10.2147/IJN.S190426] [PMID: 30863054]
[34]
Khursheed, R.; Singh, S.K.; Wadhwa, S.; Gulati, M.; Awasthi, A.; Kumar, R.; Ramanunny, A.K.; Kapoor, B.; Kumar, P.; Corrie, L. Exploring role of probiotics and Ganoderma lucidum extract powder as solid carriers to solidify liquid self-nanoemulsifying delivery systems loaded with curcumin. Carbohydr. Polym., 2020, 250, 116996.
[http://dx.doi.org/10.1016/j.carbpol.2020.116996] [PMID: 33049905]
[35]
Agrawal, M.; Saraf, S.; Saraf, S.; Dubey, S.K.; Puri, A.; Patel, R.J. Ajazuddin; Ravichandiran, V.; Murty, U.S.; Alexander, A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J. Control. Release, 2020, 321, 372-415.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.020] [PMID: 32061621]
[36]
Ge, X.; Wei, M.; He, S.; Yuan, W.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics, 2019, 11(2), E55.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[37]
Swenson, E.S.; Milisen, W.B.; Curatolo, W. Intestinal permeability enhancement: Efficacy, acute local toxicity, and reversibility. Pharm. Res., 1994, 11(8), 1132-1142.
[http://dx.doi.org/10.1023/A:1018984731584] [PMID: 7971714]
[38]
Pouton, C.W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and “self-microemulsifying” drug delivery systems. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), S93-S98.
[http://dx.doi.org/10.1016/S0928-0987(00)00167-6]
[39]
Anton, N.; Vandamme, T.F. The universality of low-energy nano-emulsification. Int. J. Pharm., 2009, 377(1-2), 142-147.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.014] [PMID: 19454306]
[40]
Wang, L.; Dong, J.; Chen, J.; Eastoe, J.; Li, X. Design and optimization of a new self-nanoemulsifying drug delivery system. J. Colloid Interface Sci., 2009, 330(2), 443-448.
[http://dx.doi.org/10.1016/j.jcis.2008.10.077] [PMID: 19038395]
[41]
Zeng, L.; Xin, X.; Zhang, Y. Development and characterization of promising cremophor el-stabilized o/w nanoemulsions containing short-chain alcohols as a cosurfactant. RSC Advances, 2017, 7(32), 19815-19827.
[http://dx.doi.org/10.1039/C6RA27096D]
[42]
Shakeel, F.; Shazly, G.A.; Raish, M.; Ahmad, A.; Kalam, M.A.; Ali, N.; Ansari, M.A.; Elosaily, G.M. Biological investigation of a supersaturated self-nanoemulsifying drug delivery system of piper cubeba essential oil. RSC Adv., 2015, 5(127), 105206-105217.
[http://dx.doi.org/10.1039/C5RA22900F]
[43]
Mahmood, S.; Kiong, K.C.; Tham, C.S.; Chien, T.C.; Hilles, A.R.; Venugopal, J.R. PEGylated lipid polymeric nanoparticle-encapsulated acyclovir for in vitro controlled release and ex vivo gut sac permeation. AAPS PharmSciTech, 2020, 21(7), 285.
[http://dx.doi.org/10.1208/s12249-020-01810-0] [PMID: 33057878]
[44]
Bandyopadhyay, S.; Katare, O.P.; Singh, B. Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides. Colloids Surf. B Biointerfaces, 2012, 100, 50-61.
[http://dx.doi.org/10.1016/j.colsurfb.2012.05.019] [PMID: 22766282]
[45]
Shakeel, F.; Alam, P.; Anwer, M.K.; Alanazi, S.A.; Alsarra, I.A.; Alqarni, M.H. Wound healing evaluation of self-nanoemulsifying drug delivery system containing piper cubeba essential oil 3 Biotech., 2019, 9(3), 82.
[http://dx.doi.org/10.1007/s13205-019-1630-y]
[46]
Nasr, A.; Gardouh, A.; Ghorab, M. Novel Solid Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) for oral delivery of olmesartan medoxomil: Design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics, 2016, 8(3), E20.
[http://dx.doi.org/10.3390/pharmaceutics8030020] [PMID: 27355963]
[47]
Pouton, C.W.; Porter, C.J.H. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Adv. Drug Deliv. Rev., 2008, 60(6), 625-637.
[http://dx.doi.org/10.1016/j.addr.2007.10.010] [PMID: 18068260]
[48]
Atef, E.; Belmonte, A.A. Formulation and in vitro and in vivo characterization of a phenytoin Self-Emulsifying Drug Delivery System (SEDDS). Eur. J. Pharm. Sci., 2008, 35(4), 257-263.
[http://dx.doi.org/10.1016/j.ejps.2008.07.004] [PMID: 18706499]
[49]
Wei, Y.; Tong, Z.; Dai, L.; Ma, P.; Zhang, M.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y. Novel colloidal particles and natural small molecular surfactants co-stabilized Pickering emulsions with hierarchical interfacial structure: Enhanced stability and controllable lipolysis. J. Colloid Interface Sci., 2020, 563, 291-307.
[http://dx.doi.org/10.1016/j.jcis.2019.12.085] [PMID: 31884251]
[50]
Nielsen, F.S.; Petersen, K.B.; Müllertz, A. Bioavailability of probucol from lipid and surfactant based formulations in minipigs: Influence of droplet size and dietary state. Eur. J. Pharm. Biopharm., 2008, 69(2), 553-562.
[http://dx.doi.org/10.1016/j.ejpb.2007.12.020]
[51]
Hodaei, D.; Baradaran, B.; Valizadeh, H.; Zakeri-Milani, P. Effects of polyethylene glycols on intestinal efflux pump expression and activity in Caco-2 cells. Braz. J. Pharm. Sci., 2015, 51(3), 745-754.
[http://dx.doi.org/10.1590/S1984-82502015000300026]
[52]
Kontogiannidou, E.; Meikopoulos, T.; Gika, H.; Panteris, E.; Vizirianakis, I.S.; Müllertz, A.; Fatouros, D.G. In vitro evaluation of Self-Nano-Emulsifying Drug Delivery Systems (SNEDDS) containing Room Temperature Ionic Liquids (RTILs) for the oral delivery of amphotericin B. Pharmaceutics, 2020, 12(8), 1-14.
[http://dx.doi.org/10.3390/pharmaceutics12080699] [PMID: 32722400]
[53]
Kumar, R.; Khursheed, R.; Kumar, R.; Awasthi, A.; Sharma, N.; Khurana, S.; Kapoor, B.; Khurana, N.; Singh, S.K.; Gowthamarajan, K.; Wadhwani, A. Self-nanoemulsifying drug delivery system of fisetin: Formulation, optimization, characterization and cytotoxicity assessment. J. Drug Deliv. Sci. Technol., 2019, 54, 101252.
[http://dx.doi.org/10.1016/j.jddst.2019.101252]
[54]
Rachmawati, H.; Novel, M.A.; Ayu, S.; Berlian, G.; Tandrasasmita, O.M.; Tjandrawinata, R.R.; Anggadiredja, K. The in vitro - in vivo safety confirmation of PEG-40 hydrogenated castor oil as a surfactant for oral nanoemulsion formulation. Scientia. Pharmaceutica., 2017, 85(2), 18.
[http://dx.doi.org/10.3390/scipharm85020018]
[55]
Jarc, T.; Novak, M.; Hevir, N.; Rižner, T.L.; Kreft, M.E.; Kristan, K. Demonstrating suitability of the Caco-2 cell model for BCS-based biowaiver according to the recent FDA and ICH harmonised guidelines. J. Pharm. Pharmacol., 2019, 71(8), 1231-1242.
[http://dx.doi.org/10.1111/jphp.13111] [PMID: 31155721]
[56]
Li, W.; Zhou, J.; Xu, Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed. Rep., 2015, 3(5), 617-620.
[http://dx.doi.org/10.3892/br.2015.481] [PMID: 26405534]
[57]
Mahmood, A.; Prüfert, F.; Efiana, N.A.; Ashraf, M.I.; Hermann, M.; Hussain, S.; Bernkop-Schnürch, A. Cell-penetrating Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for oral gene delivery. Expert Opin. Drug Deliv., 2016, 13(11), 1503-1512.
[http://dx.doi.org/10.1080/17425247.2016.1213236] [PMID: 27458781]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy