Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Dual Rifampicin and Isoniazid Mannose-Decorated Lipopolysaccharide Nanospheres for Macrophage- Targeted Lung Delivery

Author(s): Mumuni Sumaila, Pradeep Kumar, Philemon Ubanako, Samson A. Adeyemi and Yahya E. Choonara*

Volume 20, Issue 10, 2023

Published on: 23 September, 2022

Page: [1487 - 1503] Pages: 17

DOI: 10.2174/1567201819666220812092556

Price: $65

conference banner
Abstract

Background: Currently, the treatment protocols for tuberculosis (TB) have several challenges, such as inconsistent oral bioavailability, dose-related adverse effects, and off-target drug toxicity.

Methods: This research reports the design and characterization of rifampicin (RIF) and isoniazid (INH) loaded hybrid lipid-polysaccharide nanoparticles using the solvent injection method, and demonstrated the influence of conjugated mannosyl residue on macrophage targeting and intracellular drug delivery capacity.

Results: The nanospheres, herein called mannose-decorated lipopolysaccharide nanoparticles, were spherical in shape, exhibiting average sizes less than 120 nm (PDI<0.20) and positive zeta potentials. Drug encapsulation was greater than 50% for rifampicin and 60% for isoniazid. The pH-responsive drug release was sustained over a 48-hour period and preferentially released more rifampicin/isoniazid in a simulated acidic phagolysosomal environment (pH 4.8) than in a simulated physiological medium. TGA and FTIR analysis confirmed successful mannose-grafting on nanoparticle surface and optimal degree of mannosylation was achieved within 48-hour mannose-lipopolysaccharide reaction time. The mannosylated nanoparticles were biocompatible and demonstrated a significant improvement towards uptake by RAW 264.7 cells, producing higher intracellular RIF/INH accumulation when compared to the unmannosylated nanocarriers.

Conclusion: Overall, the experimental results suggested that mannose-decorated lipopolysaccharide nanosystems hold promise towards safe and efficacious macrophage-targeted delivery of anti-TB therapeutics.

Keywords: Lipid-polysaccharide nanosystem, targeted-delivery, RAW 264.7 macrophage, cellular uptake, mycobacterium tuberculosis, pulmonary delivery.

Graphical Abstract

[1]
Kaur, M.; Garg, T.; Narang, R.K. A review of emerging trends in the treatment of tuberculosis. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 478-484.
[http://dx.doi.org/10.3109/21691401.2014.962745] [PMID: 25365354]
[3]
Sumaila, M.; Ramburrun, P.; Kumar, P.; Choonara, Y.E.; Pillay, V. Lipopolysaccharide polyelectrolyte complex for oral delivery of an anti-tubercular drug. AAPS PharmSciTech, 2019, 20(3), 107.
[http://dx.doi.org/10.1208/s12249-019-1310-6] [PMID: 30746572]
[4]
Donnellan, S.; Giardiello, M. Nanomedicines towards targeting intracellular MTB for the treatment of tuberculosis. J. Interdiscip. Nanomed., 2019, 4(3), 76-85.
[http://dx.doi.org/10.1002/jin2.61]
[5]
Casals, C.; Campanero-Rhodes, M.A.; García-Fojeda, B.; Solís, D. The role of collectins and galectins in lung innate immune defense. Front. Immunol., 2018, 9, 1998.
[http://dx.doi.org/10.3389/fimmu.2018.01998] [PMID: 30233589]
[6]
Vieira, A.C.C.; Chaves, L.L.; Pinheiro, M.; Lima, S.A.C.; Ferreira, D.; Sarmento, B.; Reis, S. Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 653-663.
[http://dx.doi.org/10.1080/21691401.2018.1434186] [PMID: 29433346]
[7]
Ge, Z.; Ma, R.; Xu, G.; Chen, Z.; Zhang, D.; Wang, Q.; Hei, L.; Ma, W. Development and in vitro release of isoniazid and rifampicin-loaded bovine serum albumin nanoparticles. Med. Sci. Monit., 2018, 24, 473-478.
[http://dx.doi.org/10.12659/MSM.905581] [PMID: 29364864]
[8]
Chokshi, N.V.; Khatri, H.N.; Patel, M.M. Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis. Drug Dev. Ind. Pharm., 2018, 44(12), 1975-1989.
[http://dx.doi.org/10.1080/03639045.2018.1506472] [PMID: 30058392]
[9]
Hussain, M.; Sarma, A.; Rahman, S.S.; Siddique, A.M.; Eeswari, T.P. Formulation and evaluation of ethambutol polymeric nanoparticles. Int. J. Appl. Pharm., 2020, 12, 207-217.
[http://dx.doi.org/10.22159/ijap.2020v12i4.36845]
[10]
Yunus Basha, R. T S, S.K.; Doble, M. Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. Carbohydr. Polym., 2019, 218, 53-62.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.056] [PMID: 31221343]
[11]
Viswanathan, P.; Muralidaran, Y.; Ragavan, G. Challenges in oral drug delivery: A nano-based strategy to overcome. In: Nanostructures for Oral Medicine; Andronescu, E.; Grumezescu, A.M., Eds.; Elsevier: Amsterdam, Netherlands, 2017; pp. 173-201.
[http://dx.doi.org/10.1016/B978-0-323-47720-8.00008-0]
[12]
Rao, S.; Prestidge, C.A. Polymer-lipid hybrid systems: Merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery. Expert Opin. Drug Deliv., 2016, 13(5), 691-707.
[http://dx.doi.org/10.1517/17425247.2016.1151872] [PMID: 26866382]
[13]
Sumaila, M.; Marimuthu, T.; Kumar, P.; Choonara, Y.E. Lipopolysaccharide nanosystems for the enhancement of oral bioavailability. AAPS PharmSciTech, 2021, 22(7), 242.
[http://dx.doi.org/10.1208/s12249-021-02124-5] [PMID: 34595578]
[14]
Bhardwaj, A.; Mehta, S.; Yadav, S.; Singh, S.K.; Grobler, A.; Goyal, A.K.; Mehta, A. Pulmonary delivery of antitubercular drugs using spray-dried lipid-polymer hybrid nanoparticles. Artif. Cells Nanomed. Biotechnol., 2016, 44(6), 1544-1555.
[http://dx.doi.org/10.3109/21691401.2015.1062389] [PMID: 26178768]
[15]
Vieira, A.C.C.; Chaves, L.L.; Pinheiro, S.; Pinto, S.; Pinheiro, M.; Lima, S.C.; Ferreira, D.; Sarmento, B.; Reis, S. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int. J. Pharm., 2018, 536(1), 478-485.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.071] [PMID: 29203137]
[16]
Carrillo-Conde, B.; Song, E.H.; Chavez-Santoscoy, A.; Phanse, Y.; Ramer-Tait, A.E.; Pohl, N.L.B.; Wannemuehler, M.J.; Bellaire, B.H.; Narasimhan, B. Mannose-functionalized “pathogen-like” polyanhydride nanoparticles target C-type lectin receptors on dendritic cells. Mol. Pharm., 2011, 8(5), 1877-1886.
[http://dx.doi.org/10.1021/mp200213r] [PMID: 21882825]
[17]
Tiwari, S.; Chaturvedi, A.P.; Tripathi, Y.B.; Mishra, B. Macrophage-specific targeting of isoniazid through mannosylated gelatin microspheres. AAPS PharmSciTech, 2011, 12(3), 900-908.
[http://dx.doi.org/10.1208/s12249-011-9654-6] [PMID: 21732158]
[18]
Wijagkanalan, W.; Kawakami, S.; Takenaga, M.; Igarashi, R.; Yamashita, F.; Hashida, M. Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J. Control. Release, 2008, 125(2), 121-130.
[http://dx.doi.org/10.1016/j.jconrel.2007.10.011] [PMID: 18037185]
[19]
Zhou, H.; Zhang, Y.; Biggs, D.L.; Manning, M.C.; Randolph, T.W.; Christians, U.; Hybertson, B.M.; Ng, K.Y. Microparticle-based lung delivery of INH decreases INH metabolism and targets alveolar macrophages. J. Control. Release, 2005, 107(2), 288-299.
[http://dx.doi.org/10.1016/j.jconrel.2005.06.009] [PMID: 16009444]
[20]
Kakde, R.B.; Kasture, A.V.; Wadodka, S.G. Spectrophotometric determination of rifampicin and isoniazid in pharmaceutical preparations. Indian J. Pharm. Sci., 2002, 64, 24-27.
[21]
Sonvico, F.; Cagnani, A.; Rossi, A.; Motta, S.; Di Bari, M.T.; Cavatorta, F.; Alonso, M.J.; Deriu, A.; Colombo, P. Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction. Int. J. Pharm., 2006, 324(1), 67-73.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.036] [PMID: 16973314]
[22]
Huang, X.; Li, Y.; Zhong, X. Effect of experimental conditions on size control of Au nanoparticles synthesized by atmospheric microplasma electrochemistry. Nanoscale Res. Lett., 2014, 9(1), 572.
[http://dx.doi.org/10.1186/1556-276X-9-572] [PMID: 25364315]
[23]
Champion, J.A.; Walker, A.; Mitragotri, S. Role of particle size in phagocytosis of polymeric microspheres. Pharm. Res., 2008, 25(8), 1815-1821.
[http://dx.doi.org/10.1007/s11095-008-9562-y] [PMID: 18373181]
[24]
Patel, B.; Gupta, N.; Ahsan, F. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur. J. Pharm. Biopharm., 2015, 89, 163-174.
[http://dx.doi.org/10.1016/j.ejpb.2014.12.001] [PMID: 25497488]
[25]
Lee, W.H.; Loo, C.Y.; Traini, D.; Young, P.M. Nano- and micro-based inhaled drug delivery systems for targeting alveolar macrophages. Expert Opin. Drug Deliv., 2015, 12(6), 1009-1026.
[http://dx.doi.org/10.1517/17425247.2015.1039509] [PMID: 25912721]
[26]
Epstein-Barash, H.; Gutman, D.; Markovsky, E.; Mishan-Eisenberg, G.; Koroukhov, N.; Szebeni, J.; Golomb, G. Physicochemical parameters affecting liposomal bisphosphonates bioactivity for restenosis therapy: Internalization, cell inhibition, activation of cytokines and complement, and mechanism of cell death. J. Control. Release, 2010, 146(2), 182-195.
[http://dx.doi.org/10.1016/j.jconrel.2010.03.011] [PMID: 20359513]
[27]
Vieira, A.C.C.; Magalhães, J.; Rocha, S.; Cardoso, M.S.; Santos, S.G.; Borges, M.; Pinheiro, M.; Reis, S. Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment. Nanomedicine (Lond.), 2017, 12(24), 2721-2736.
[http://dx.doi.org/10.2217/nnm-2017-0248] [PMID: 29119867]
[28]
Jain, S.K.; Gupta, Y.; Jain, A.; Saxena, A.R.; Khare, P.; Jain, A. Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery. Nanomedicine, 2008, 4(1), 41-48.
[http://dx.doi.org/10.1016/j.nano.2007.11.004] [PMID: 18207463]
[29]
Saraogi, G.K.; Sharma, B.; Joshi, B.; Gupta, P.; Gupta, U.D.; Jain, N.K.; Agrawal, G.P. Mannosylated gelatin nanoparticles bearing isoniazid for effective management of tuberculosis. J. Drug Target., 2011, 19(3), 219-227.
[http://dx.doi.org/10.3109/1061186X.2010.492522] [PMID: 20540651]
[30]
Sciolla, F.; Truzzolillo, D.; Chauveau, E.; Trabalzini, S.; Di Marzio, L.; Carafa, M.; Marianecci, C.; Sarra, A.; Bordi, F.; Sennato, S. Influence of drug/lipid interaction on the entrapment efficiency of isoniazid in liposomes for antitubercular therapy: A multi-faced investigation. Colloids Surf. B Biointerfaces, 2021, 208, 112054.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112054] [PMID: 34454365]
[31]
Abdulla, J.M.A.; Tan, Y.T-F.; Darwis, Y. Rehydrated lyophilized rifampicin-loaded mPEG-DSPE formulations for nebulization. AAPS PharmSciTech, 2010, 11(2), 663-671.
[http://dx.doi.org/10.1208/s12249-010-9428-6] [PMID: 20405256]
[32]
Saifullah, B.; El Zowalaty, M.E.; Arulselvan, P.; Fakurazi, S.; Webster, T.J.; Geilich, B.M.; Hussein, M.Z. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites. Int. J. Nanomedicine, 2016, 11, 3225-3237.
[http://dx.doi.org/10.2147/IJN.S102406] [PMID: 27486322]
[33]
Bachhav, S.S.; Dighe, V.D.; Kotak, D.; Devarajan, P.V. Rifampicin lipid-polymer hybrid nanoparticles (LIPOMER) for enhanced Peyer’s patch uptake. Int. J. Pharm., 2017, 532(1), 612-622.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.040] [PMID: 28935258]
[34]
Costa, A.; Sarmento, B.; Seabra, V. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur. J. Pharm. Sci., 2018, 114, 103-113.
[http://dx.doi.org/10.1016/j.ejps.2017.12.006] [PMID: 29229273]
[35]
Alves, T.F.R.; Barros, C.T.; Baldo, D.; Amaral, V.A.; Sever, M.; Santos, C.; Severino, P.; Chaud, M.V. Preparation, characterization and ex vivo intestinal permeability studies of ibuprofen solid dispersion. J. Dispers. Sci. Technol., 2019, 40(4), 546-554.
[http://dx.doi.org/10.1080/01932691.2018.1472014]
[36]
Güncüm, E.; Işıklan, N.; Anlaş, C.; Ünal, N.; Bulut, E.; Bakırel, T. Development and characterization of polymeric-based nanoparticles for sustained release of amoxicillin - an antimicrobial drug. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 964-973.
[http://dx.doi.org/10.1080/21691401.2018.1476371] [PMID: 29806495]
[37]
Ramburrun, P.; Kumar, P.; Choonara, Y.E.; du Toit, L.C.; Pillay, V. Design and characterisation of PHBV-magnesium oleate directional nanofibers for neurosupport. Biomed. Mater., 2019, 14(6), 065015.
[http://dx.doi.org/10.1088/1748-605X/ab453c] [PMID: 31530743]
[38]
Samimi, S.; Maghsoudnia, N.; Eftekhari, R.B.; Dorkoosh, F. Lipid-based nanoparticles for drug delivery systems. In: Micro and Nano Technologies, Characterization and Biology of Nanomaterials for Drug Delivery; Mohapatra, S.S.; Ranjan, S.; Dasgupta, N.; Mishra, R.K.; Thomas, S., Eds.; Elsevier: Amsterdam, Netherlands, 2019; pp. 47-76.
[http://dx.doi.org/10.1016/B978-0-12-814031-4.00003-9]
[39]
Lee, J.; Kim, M.; Hong, C.K.; Shim, S.E. Measurement of the dispersion stability of pristine and surface-modified multiwalled carbon nanotubes in various nonpolar and polar solvents. Meas. Sci. Technol., 2007, 18(12), 3707-3712.
[http://dx.doi.org/10.1088/0957-0233/18/12/005]
[40]
Barbieri, S.; Sonvico, F.; Como, C.; Colombo, G.; Zani, F.; Buttini, F.; Bettini, R.; Rossi, A.; Colombo, P. Lecithin/chitosan controlled release nanopreparations of tamoxifen citrate: Loading, enzyme-trigger release and cell uptake. J. Control. Release, 2013, 167(3), 276-283.
[http://dx.doi.org/10.1016/j.jconrel.2013.02.009] [PMID: 23428841]
[41]
Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev., 2017, 46(14), 4218-4244.
[http://dx.doi.org/10.1039/C6CS00636A] [PMID: 28585944]
[42]
Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles, nanoscale. Nanoscale Res. Lett., 2018, 13(1), 339.
[http://dx.doi.org/10.1186/s11671-018-2728-6] [PMID: 30361809]
[43]
Qiu, Y.; Liu, Y.; Wang, L.; Xu, L.; Bai, R.; Ji, Y.; Wu, X.; Zhao, Y.; Li, Y.; Chen, C. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials, 2010, 31(30), 7606-7619.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.051] [PMID: 20656344]
[44]
Usman, M.; Zaheer, Y.; Younis, M.R.; Demirdogen, R.E.; Hussain, S.Z.; Sarwar, Y.; Rehman, M.; Khan, W.S.; Ihsan, A. The effect of surface charge on cellular uptake and inflammatory behavior of carbon dots. Colloid Interface Sci. Commun., 2020, 35, 100243.
[http://dx.doi.org/10.1016/j.colcom.2020.100243]
[45]
Phanse, Y.; Carrillo-Conde, B.R.; Ramer-Tait, A.E.; Roychoudhury, R.; Broderick, S.; Pohl, N.; Rajan, K.; Narasimhan, B.; Wannemuehler, M.J.; Bellaire, B.H. Functionalization promotes pathogen-mimicking characteristics of polyanhydride nanoparticle adjuvants. J. Biomed. Mater. Res. A, 2017, 105(10), 2762-2771.
[http://dx.doi.org/10.1002/jbm.a.36128] [PMID: 28556563]
[46]
Favi, P.M.; Gao, M.; Johana Sepúlveda Arango, L.; Ospina, S.P.; Morales, M.; Pavon, J.J.; Webster, T.J. Shape and surface effects on the cytotoxicity of nanoparticles: Gold nanospheres versus gold nanostars. J. Biomed. Mater. Res. A, 2015, 103(11), 3449-3462.
[http://dx.doi.org/10.1002/jbm.a.35491] [PMID: 25904210]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy