Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Flavonoids by Ultrasonic-Assisted Extraction from Herbal Formulation of Zingiber officinale, Portulaca oleracea, and Tamarindus indica Improved Type 2 Diabetes in C57BL6/J Mice

Author(s): Rosa Martha Pérez Gutiérrez*

Volume 19, Issue 3, 2023

Published on: 17 August, 2022

Article ID: e170822207569 Pages: 17

DOI: 10.2174/1573407218666220817100239

Price: $65

conference banner
Abstract

Background: Diabetes is a problem of public health; in consequence, the increasing prevalence of both diseases needs more functional food products with efficiency and low cost to support treatment.

Methods: Flavonoids from the herbal formulation of Portulaca oleracea, Zingiber officinale, and Tamarindus indica were extracted by ultrasound-assisted extraction technology, where several experiments were conducted to determine the implication of three independent variables on the higher production of flavonoids. Extraction time, ethanol concentration, and the liquid-solid ratio were determined as optimal conditions. Furthermore, flavonoids of interest in the extract were determined by using HPLC with UV/vis and mass spectrum and direct comparison reference compounds. Then was determined and compared the effect of extracts from P. oleracea (P), Z. officinale (Z), T. indica (T), and its combination (PTZ) on high-fat-diet-induced diabetic C57BL6/J mice.

Results: The optimum conditions provided by the model include an extraction time of 30 min, an ethanol concentration of 50%, and a liquid/solid ratio of 40:1 mL/g, The anti-diabetic effect of an extract rich in polyphenolic compounds was evaluated using streptozotocin (STZ) and a high-fat diet-induced diabetic mouse. Effect of extracts on high-fat-diet-induced diabetic mice include decreased FER, improved insulin sensitivity, fasting blood glucose, and serum lipid, and showed reducing bodyweight gain associated with a reduction of food intake. Extracts have protective effects on kidneys, and liver improve lipolysis and successively decrease adipose tissue. Treatment with the polyherbal mixture has shown no toxic effects, possessed potent antihyperlipidemic, antihyperglycemic effects, and decreased glycated hemoglobin. The serum insulin level significantly increased (p < 0.05) on the polyherbal extract treatment, supporting the evidence of β-cell reestablishment in the pancreas. By reducing body weight and food intake, plasma adiponectin level increased while serum leptin level significantly decreased compared with the HFD group. In addition, the activities of key enzymes of carbohydrate metabolism, antioxidant enzymes, lipid peroxidation markers, and glycogen content were also improved in diabetic mice.

Conclusion: The combined form of P. oleracea, Z. officinale, and T. indica had better antidiabetic properties compared with a single therapy, especially related to their high content of phytochemicals in comparison with the bioactive content of a single plant. The results presented here indicated that the use of PTZ due to their synergistic effects can be helpful against diabetes, improving the factors associated with this disease.

Keywords: ultrasonic extraction, polyherbal formulation, diabetes, Portulaca oleracea, Zingiber officinale, Tamarindus indica

Graphical Abstract

[1]
Wilga, J.; Kot-Wasik, A.; Namie’snik, J. Comparison of extraction techniques of robenidine from poultry feed samples. Talanta, 2007, 73,, 812-819.
[http://dx.doi.org/10.1016/j.talanta.2007.04.046]
[2]
Zhang, G.; He, L.; Hu, M. Optimized ultrasonic-assisted extraction of flavonoids from Prunella vulgaris L. and evaluation of antioxidant activities in vitro. Innov. Food Sci. Emerg. Technol., 2011, 12,(1), 18-25.
[http://dx.doi.org/10.1016/j.ifset.2010.12.003]
[3]
Romanik, G.; Gilgenast, E.; Przyjazny, A.; Kamiński, M. Techniques of preparing plant material for chromatographic separation and analysis. J. Biochem. Biophys. Methods, 2007, 70,(2), 253-261.
[http://dx.doi.org/10.1016/j.jbbm.2006.09.012] [PMID: 17126405]
[4]
Fan, J.P.; Yu, J.X.; Xu, R.; Zheng, B.; Xu, X.K.; Zhang, X.H. Optimization of ultrasonic-assisted extraction of three main taxoids in the twigs of Taxus × media using multi-objective response surface methodology. J. Liq. Chromatogr. Relat. Technol., 2016, 39,(8), 394-400.
[http://dx.doi.org/10.1080/10826076.2016.1169424]
[5]
Yuan, J.; Huang, J.; Wu, G.; Tong, J.; Xie, G.; Duan, J.; Qin, M. Multiple responses optimization of ultrasonic-assisted extraction by response surface methodology (RSM) for rapid analysis of bioactive compounds in the flower head of Chrysanthemum morifolium Ramat. Ind. Crops Prod., 2015, 74,, 192-199.
[http://dx.doi.org/10.1016/j.indcrop.2015.04.057]
[6]
Teng, H.; Choi, Y.H. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology. Food Chem., 2014, 142,, 299-305.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.136] [PMID: 24001845]
[7]
Yang, Y.C.; Wei, M.C.; Huang, T.C.; Lee, S.Z.; Lin, S.S. Comparison of modified ultrasound-assisted and traditional extraction methods for the extraction of baicalin and baicalein from Radix Scutellariae. Ind. Crops Prod., 2013, 45,, 182-190.
[http://dx.doi.org/10.1016/j.indcrop.2012.11.041]
[8]
Pan, G.; Yu, G.; Zhu, C.; Qiao, J. Optimization of ultrasound-assisted extraction (UAE) of flavonoids compounds (FC) from hawthorn seed (HS). Ultrason. Sonochem., 2012, 19,(3), 486-490.
[http://dx.doi.org/10.1016/j.ultsonch.2011.11.006] [PMID: 22142939]
[9]
Gutiérrez, P.R.M.; Ramírez, A.M.; Campoy, A.G.; Jose-Maria, M.F. Evaluation of the antidiabetic potential of extracts of Urtica dioica, Apium graveolens, and Zingiber officinale in Mice, Zebrafish, and Pancreatic β-Cell. Plants, 2021, 10, 438.
[http://dx.doi.org/10.3390/plants10071438-1]
[10]
Gutiérrez, P.R.M.; Jerónimo, M.F.F.; Soto, C.J.G.; Ramírez, M.A.; Mendoza, E.M.F. Optimization of ultrasonic-assisted extraction of polyphenols from the polyherbal formulation of Cinnamomum verum, Origanum majorana, and Origanum vulgare and their anti-diabetic capacity in zebrafish (Danio rerio). Heliyon, 2022, 8,(1)e08682.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08682] [PMID: 35036595]
[11]
Sharabi, K.; Lin, H.; Tavares, C.D.; Dominy, J.E.; Camporez, J.P.; Perry, R.J.; Schilling, R.; Rines, A-K.; Lee, J.; Hickey, M. Selective chemical inhibition of PGC-1 gluconeogenic activity ameliorates type 2 diabetes. Cell, 2017, 169,, 148-160.
[http://dx.doi.org/10.1016/j.cell.2017.03.001]
[12]
Mayer, M.; Höcht, C.; Puyó, A.; Taira, C. Recent advances in obesity pharmacotherapy. Curr. Clin. Pharmacol., 2009, 4,(1), 53-61.
[http://dx.doi.org/10.2174/157488409787236128] [PMID: 19149502]
[13]
Jung, J.H.; Hwang, S.B.; Park, H.J.; Jin, G.R.; Lee, B.H. Antiobesity and antidiabetic effects of Portulaca oleracea powder intake in high-fat diet-induced obese C57BL/6 mice. Evid. Based Complement. Alternat. Med., 2021, 2021,, 1-11.
[http://dx.doi.org/10.1155/2021/5587848] [PMID: 34257685]
[14]
Wang, J.; Ke, W.; Bao, R.; Hu, X.; Chen, F. Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: A review. Ann. N. Y. Acad. Sci., 2017, 1398,(1), 83-98.
[http://dx.doi.org/10.1111/nyas.13375] [PMID: 28505392]
[15]
Azman, K.F.; Amom, Z.; Azlan, A.; Esa, N.M.; Ali, R.M.; Shah, Z.M.; Kadir, K.K.A. Antiobesity effect of Tamarindus indica L. pulp aqueous extract in high-fat diet-induced obese rats. J. Nat. Med., 2012, 66,(2), 333-342.
[http://dx.doi.org/10.1007/s11418-011-0597-8] [PMID: 21989999]
[16]
Zhu, J.; Chen, H.; Song, Z.; Wang, X.; Sun, Z. Effects of ginger (Zingiber officinale Roscoe) on type 2 diabetes mellitus and components of the metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Evid. Based Complement. Alternat. Med., 2018, 2018,5692962.
[http://dx.doi.org/10.1155/2018/5692962]
[17]
Krishna, R-N.; Anitha, R.; Ezhilarasan, D. Aqueous extract of Tamarindus indica fruit pulp exhibits antihyperglycaemic activity. Avicenna J. Phytomed., 2020, 10,(5), 440-447.
[PMID: 32995322]
[18]
Council of Europe European Pharmacopoeia, 5th ed; Council of Europe: Strasbourg, France, 2005, p. 221.
[19]
Wang, J.; Sun, B.; Cao, Y.; Tian, Y.; Li, X. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem., 2008, 106,(2), 804-810.
[http://dx.doi.org/10.1016/j.foodchem.2007.06.062]
[20]
Gutiérrez, P.R.M.; Arrioja, M.W. Rapid model to evaluate the antiobesity potential of a combination of Syzygium aromaticum (Clove) and Cuminun cyminum (Cumin) on C57BL6/j mice fed high-fat diet. J. Vis. Exp 2021. (173)
[http://dx.doi.org/10.3791/62087] [PMID: 34398138]
[21]
Sullivan, M.; Harcourt, B.; Xu, P.; Forbes, J.; Gilbert, R. Impairment of liver glycogen storage in the db/db animal model of type 2 diabetes: A potential target for future therapeutics. Curr. Drug Targets, 2015, 16,(10), 1088-1093.
[http://dx.doi.org/10.2174/1389450116666150727123115] [PMID: 26212261]
[22]
Tan, X.; Sullivan, M.A.; Nada, S.S.; Deng, B.; Schulz, B.L.; Gilbert, R.G. Proteomic investigation of the binding agent between liver glycogen beta particles. ACS Omega, 2018, 3,(4), 3640-3645.
[http://dx.doi.org/10.1021/acsomega.8b00119] [PMID: 30023874]
[23]
Mason, T.J.; Paniwnyk, L.; Lorimer, J.P. The uses of ultrasound in food technology. Ultrason. Sonochem., 1996, 3,(3), S253-S260.
[http://dx.doi.org/10.1016/S1350-4177(96)00034-X]
[24]
Zhao, S.; Kwok, K.; Liang, H. Investigation on ultrasound assisted extraction of saikosaponins from Radix Bupleuri. Separ. Purif. Tech., 2007, 55,(3), 307-312.
[http://dx.doi.org/10.1016/j.seppur.2006.12.002] [PMID: 32288611]
[25]
Wang, H.; Sun, X.; Zhang, N.; Ji, Z.; Ma, Z.; Fu, Q.; Ma, S. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway. Physiol. Behav., 2017, 182,, 93-100.
[http://dx.doi.org/10.1016/j.physbeh.2017.10.001]
[26]
Wang, W.; Pan, Y.; Wang, L.; Zhou, H.; Song, G.; Wang, Y.; Liu, J.; Li, A. Optimal dietary ferulic acid for suppressing the obesity-related disorders in leptin-deficient obese C57BL/6J -ob/ob Mice. J. Agric. Food Chem., 2019, 67,(15), 4250-4258.
[http://dx.doi.org/10.1021/acs.jafc.8b06760] [PMID: 30907082]
[27]
Adisakwattana, S. Cinnamic acid and its derivatives: Mechanisms for prevention and management of diabetes and its complications. Nutrients, 2017, 9,(2), 163.
[http://dx.doi.org/10.3390/nu9020163] [PMID: 28230764]
[28]
Wang, Z.; Ge, S.; Li, S.; Lin, H.; Lin, S. Anti-obesity effect of trans-cinnamic acid on HepG2 cells and HFD-fed mice. Food Chem. Toxicol., 2020, 137,111148.
[http://dx.doi.org/10.1016/j.fct.2020.111148] [PMID: 31982449]
[29]
Abdel-Moneim, A.; El-Twab, S.M.A.; Yousef, A.I.; Reheim, E.S.A.; Ashour, M.B. Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid: The role of adipocytokines and PPAR. Biomed. Pharmacother., 2018, 105,, 1091-1097.
[http://dx.doi.org/10.1016/j.biopha.2018.06.096] [PMID: 30021345]
[30]
Paraíso, A.F.; Sousa, J.N.; Andrade, J.M.O.; Mangabeira, E.S.; Lelis, D.F.; de Paula, A.M.B.; Martins, A.M.E.B.L.; Lima, W.J.N.; Guimarães, A.L.S.; Melo, G.A.; Schwarz, M.; Santos, S.H.S. Oral gallic acid improves metabolic profile by modulating SIRT1 expression in obese mice brown adipose tissue: A molecular and bioinformatic approach. Life Sci., 2019, 237,116914.
[http://dx.doi.org/10.1016/j.lfs.2019.116914] [PMID: 31622606]
[31]
Han, X.; Guo, J.; You, Y.; Zhan, J.; Huang, W. pCoumaric acid prevents obesity via activating thermogenesis in brown adipose tissue mediated by mTORC1RPS6. FASEB J., 2020, 34,(6), 7810-7824.
[http://dx.doi.org/10.1096/fj.202000333R] [PMID: 32350925]
[32]
Yan, Y.; Zhou, X.; Guo, K.; Zhou, F.; Yang, H. Use of chlorogenic acid against diabetes mellitus and its complications. J. Immunol. Res., 2020, 2020,, 1-6.
[http://dx.doi.org/10.1155/2020/9680508]
[33]
Cho, A.S.; Jeon, S.M.; Kim, M.J.; Yeo, J.; Seo, K.I.; Choi, M.S.; Lee, M.K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol., 2010, 48,(3), 937-943.
[http://dx.doi.org/10.1016/j.fct.2010.01.003] [PMID: 20064576]
[34]
Oršolić, N.; Sirovina, D.; Odeh, D.; Gajski, G.; Balta, V.; Šver, L.; Jazvinšćak Jembrek, M. Efficacy of caffeic acid on diabetes and its complications in the mouse. Molecules, 2021, 26,(11), 3262.
[http://dx.doi.org/10.3390/molecules26113262] [PMID: 34071554]
[35]
Ngo, Y.L.; Lau, C.H.; Chua, L.S. Review on rosmarinic acid extraction, fractionation and its anti-diabetic potential. Food Chem. Toxicol., 2018, 121,, 687-700.
[http://dx.doi.org/10.1016/j.fct.2018.09.064] [PMID: 30273632]
[36]
Vasileva, L.V.; Savova, M.S.; Tews, D.; Wabitsch, M.; Georgiev, M.I. Rosmarinic acid attenuates obesity and obesity-related inflammation in human adipocytes. Food Chem. Toxicol., 2021, 149,112002.
[http://dx.doi.org/10.1016/j.fct.2021.112002] [PMID: 33476690]
[37]
Chang, W.C.; Wu, J.; Chen, C.W.; Kuo, P.L.; Chien, H.M.; Wang, Y.T.; Shen, S.C. Protective effect of vanillic acid against hyperinsulinemia, hyperglycemia and hyperlipidemia via alleviating hepatic insulin resistance and inflammation in high-fat diet (HFD)-Fed Rats. Nutrients, 2015, 7,(12), 9946-9959.
[http://dx.doi.org/10.3390/nu7125514] [PMID: 26633482]
[38]
Jung, Y.; Park, J.; Kim, H.L.; Sim, J.E.; Youn, D.H.; Kang, J.; Lim, S.; Jeong, M.Y.; Yang, W.M.; Lee, S.G.; Ahn, K.S.; Um, J.Y. Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro. FASEB J., 2018, 32,(3), 1388-1402.
[http://dx.doi.org/10.1096/fj.201700231RR] [PMID: 29141998]
[39]
Behloul, N.; Wu, G. Genistein: A promising therapeutic agent for obesity and diabetes treatment. Eur. J. Pharmacol., 2013, 698,(1-3), 31-38.
[http://dx.doi.org/10.1016/j.ejphar.2012.11.013] [PMID: 23178528]
[40]
Liu, Y.; Fu, X.; Lan, N.; Li, S.; Zhang, J.; Wang, S.; Li, C.; Shang, Y.; Huang, T.; Zhang, L. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav. Brain Res., 2014, 267,, 178-188.
[http://dx.doi.org/10.1016/j.bbr.2014.02.040] [PMID: 24667364]
[41]
Jung, U.; Cho, Y.Y.; Choi, M.S. apigenin ameliorates dyslipidemia, hepatic steatosis and insulin resistance by modulating metabolic and transcriptional profiles in the liver of high-fat diet-induced obese mice. Nutrients, 2016, 8,(5), 305.
[http://dx.doi.org/10.3390/nu8050305] [PMID: 27213439]
[42]
Alkhalidy, H.; Moore, W.; Wang, Y.; Luo, J.; McMillan, R.; Zhen, W.; Zhou, K.; Liu, D. The flavonoid kaempferol ameliorates streptozotocin-induced diabetes by suppressing hepatic glucose production. Molecules, 2018, 23,(9), 2338.
[http://dx.doi.org/10.3390/molecules23092338] [PMID: 30216981]
[43]
Torres-Villarreal, D.; Camacho, A.; Castro, H.; Ortiz-Lopez, R.; de la Garza, A.L. Anti-obesity effects of kaempferol by inhibiting adipogenesis and increasing lipolysis in 3T3-L1 cells. J. Physiol. Biochem., 2019, 75,(1), 83-88.
[http://dx.doi.org/10.1007/s13105-018-0659-4] [PMID: 30539499]
[44]
Yao, Z.; Li, C.; Gu, Y.; Zhang, Q.; Liu, L.; Meng, G.; Wu, H.; Bao, X.; Zhang, S.; Sun, S.; Wang, X.; Zhou, M.; Jia, Q.; Song, K.; Li, Z.; Gao, W.; Niu, K.; Guo, C. Dietary myricetin intake is inversely associated with the prevalence of type 2 diabetes mellitus in a Chinese population. Nutr. Res., 2019, 68,, 82-91.
[http://dx.doi.org/10.1016/j.nutres.2019.06.004] [PMID: 31421396]
[45]
Akindehin, S.; Jung, Y.S.; Kim, S.N.; Son, Y.H.; Lee, I.; Seong, J.; Jeong, H.; Lee, Y.H. Myricetin exerts anti-obesity effects through upregulation of sirt3 in adipose tissue. Nutrients, 2018, 10,(12), 1962.
[http://dx.doi.org/10.3390/nu10121962] [PMID: 30545041]
[46]
Ghorbani, A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother., 2017, 96,, 305-312.
[http://dx.doi.org/10.1016/j.biopha.2017.10.001] [PMID: 29017142]
[47]
Peng, L.; Zhang, Q.; Zhang, Y.; Yao, Z.; Song, P.; Wei, L.; Zhao, G.; Yan, Z. Effect of tartary buckwheat, rutin, and quercetin on lipid metabolism in rats during high dietary fat intake. Food Sci. Nutr., 2020, 8,(1), 199-213.
[http://dx.doi.org/10.1002/fsn3.1291] [PMID: 31993146]
[48]
Jung, C.H.; Kim, H.; Ahn, J.; Jeon, T.I.; Lee, D.H.; Ha, T.Y. Fisetin regulates obesity by targeting mTORC1 signaling. J. Nutr. Biochem., 2013, 24,(8), 1547-1554.
[http://dx.doi.org/10.1016/j.jnutbio.2013.01.003] [PMID: 23517912]
[49]
Den Hartogh, D.J.; Tsiani, E. antidiabetic properties of naringenin: A citrus fruit polyphenol. Biomolecules, 2019, 9,(3), 99.
[http://dx.doi.org/10.3390/biom9030099] [PMID: 30871083]
[50]
Rehman, K.; Chohan, T.A.; Waheed, I.; Gilani, Z.; Akash, M.S.H. Taxifolin prevents postprandial hyperglycemia by regulating the activity of α‐amylase: Evidence from an in vivo and in silico studies. J. Cell. Biochem., 2019, 120,(1), 425-438.
[http://dx.doi.org/10.1002/jcb.27398] [PMID: 30191607]
[51]
Brunner, K.T.; Henneberg, C.J.; Wilechansky, R.M.; Long, M.T. Nonalcoholic fatty liver disease and obesity treatment. Curr. Obes. Rep., 2019, 8,(3), 220-228.
[http://dx.doi.org/10.1007/s13679-019-00345-1] [PMID: 30945129]
[52]
Meier, U.; Gressner, A.M. Endocrine regulation of energy metabolism: Review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin. Chem., 2004, 50,(9), 1511-1525.
[http://dx.doi.org/10.1373/clinchem.2004.032482] [PMID: 15265818]
[53]
Li, S.; Shin, H.J.; Ding, E.L.; van Dam, R.M. Adiponectin levels and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA, 2009, 302,(2), 179-188.
[http://dx.doi.org/10.1001/jama.2009.976] [PMID: 19584347]
[54]
Bao, Y.; Xiao, J.; Weng, Z.; Lu, X.; Shen, X.; Wang, F. A Phenolic glycoside from Moringa oleifera Lam. improves the carbohydrate and lipid metabolisms through AMPK in db/db mice. Food Chem., 2020, 311,125948.
[http://dx.doi.org/10.1016/j.foodchem.2019.125948] [PMID: 31877545]
[55]
Cao, Z.; Xia, W.; Zhang, X.; Yuan, H.; Guan, D.; Gao, L. Hepatotoxicity of nutmeg: A pilot study based on metabolomics. Biomed. Pharmacother., 2020, 131,110780.
[http://dx.doi.org/10.1016/j.biopha.2020.110780] [PMID: 33152938]
[56]
Choi, H.J.; Yeon, M.H.; Jun, H.S. Schisandrae chinensis Fructus extract ameliorates muscle atrophy in streptozotocin-induced diabetic mice by downregulation of the CREB-KLF15 and autophagy-lysosomal pathways. Cells, 2021, 10,(9), 2283.
[http://dx.doi.org/10.3390/cells10092283] [PMID: 34571935]
[57]
Petersen, M.C.; Vatner, D.F.; Shulman, G.I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol., 2017, 13,(10), 572-587.
[http://dx.doi.org/10.1038/nrendo.2017.80] [PMID: 28731034]
[58]
Weyer, C.; Funahashi, T.; Tanaka, S.; Hotta, K.; Matsuzawa, Y.; Pratley, R.E.; Tataranni, P.A. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab., 2001, 86,(5), 1930-1935.
[http://dx.doi.org/10.1210/jcem.86.5.7463] [PMID: 11344187]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy