Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Systematic Review Article

CT Reconstruction Algorithm and Low Contrast Detectability of Phantom Study: A Systematic Review and Meta-Analysis

Author(s): Nur Aimi Adibah Yusof, Muhammad Khalis Abdul Karim*, Nursyazalina Mohd Asikin, Suriati Paiman, Mohd Mustafa Awang Kechik, Mohd Amiruddin Abdul Rahman and Noramaliza Mohd Noor

Volume 19, Issue 10, 2023

Published on: 07 September, 2022

Article ID: e160822207553 Pages: 9

DOI: 10.2174/1573405618666220816160544

Price: $65

Abstract

Background: For almost three decades, computed tomography (CT) has been extensively used in medical diagnosis, which led researchers to conduct linking of CT dose exposure with image quality.

Methods: In this study, a systematic review and a meta-analysis study were conducted on CT phantom for resolution study especially based on the low contrast detectability (LCD). Furthermore, the association between the CT parameter such as tube voltage and the type of reconstruction algorithm, the amount of phantom scanning affecting the image quality and the exposure dose were also investigated in this study. We utilize PubMed, ScienceDirect, Google Scholar and Scopus databases to search related published articles from the year 2011 until 2020. The notable keywords comprise “computed tomography”, “CT phantom”, and “low contrast detectability”. Of 52 articles, 20 articles are within the inclusion criteria in this systematic review.

Results: The dichotomous outcomes were chosen to represent the results in terms of risk ratio as per meta-analysis study. Notably, the noise in iterative reconstruction (IR) reduced by 24%, 33% and 36% with the use of smooth, medium and sharp filters, respectively. Furthermore, adaptive iterative dose reduction (AIDR 3D) improved image quality and the visibility of smaller less dense objects compared to filtered back-projection. Most of the researchers used 120 kVp tube voltage to scan phantom for quality assurance study.

Conclusion: Hence, optimizing primary factors such as tube potential reduces the dose exposure significantly, and the optimized IR technique could substantially reduce the radiation dose while maintaining the image quality.

Keywords: Computed Tomography, Phantom Study, Filtered Back Projection, Low Contrast Detectability, Iterative Reconstruction

[1]
UNSCEAR. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation 2010. United Nations Publication 2011.
[2]
Kayun Z, Abdul Karim MK, Harun HH, Shaari AH, Mahmud R, Hamid HA. Radiation doses and size-specific dose estimate from CT brain examinations according to head sizes in a tertiary hospital in Malaysia. Radiat Phys Chem 2021; 189: 109694.
[http://dx.doi.org/10.1016/j.radphyschem.2021.109694]
[3]
Allert KD, Vangala S, Dibianca FA. Novel materials for low-contrast phantoms for computed tomography. J XRay Sci Technol 2007; 15(1): 9-18.
[PMID: 17710119]
[4]
Harun HH, Abdul Karim MK, Muhammad NA, Awang Kechik MM, Chew MT, Talib ZA. Task-based assessment on various optimization protocols of computed tomography Pulmonary Angiography examination. Radiat Phys Chem 2021; 188(April): 109692.
[http://dx.doi.org/10.1016/j.radphyschem.2021.109692]
[5]
Uthandi D, Sabarudin A, Mohd Z, Rahman MAA, Karim MKA. Effectiveness of Post-Mortem Computed Tomography (PMCT) in comparison with conventional autopsy: A systematic review. Curr Med Imaging Rev 2020; 16(6): 669-76.
[http://dx.doi.org/10.2174/1573405615666190821115426] [PMID: 32723237]
[6]
Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med Phys 2018; 45(9): e740-60.
[http://dx.doi.org/10.1002/mp.13058] [PMID: 29933508]
[7]
Hernandez-Giron I, den Harder JM, Streekstra GJ, Geleijns J, Veldkamp WJH, Veldkamp WJH. Development of a 3D printed anthropomorphic lung phantom for image quality assessment in CT. Phys Med 2019; 57(57): 47-57.
[http://dx.doi.org/10.1016/j.ejmp.2018.11.015] [PMID: 30738531]
[8]
Saba L, di Martino M, Siotto P, et al. Radiation dose and image quality of computed tomography of the supra-aortic arteries: A comparison between single-source and dual-source CT Scanners. J Neuroradiol 2018; 45(2): 136-41.
[http://dx.doi.org/10.1016/j.neurad.2017.09.007] [PMID: 28987274]
[9]
Verdun FR, Racine D, Ott JG, et al. Image quality in CT: From physical measurements to model observers. Phys Med 2015; 31(8): 823-43.
[http://dx.doi.org/10.1016/j.ejmp.2015.08.007] [PMID: 26459319]
[10]
Smith-Bindman R, Wang Y, Chu P, et al. International variation in radiation dose for computed tomography examinations: Prospective cohort study. BMJ 2019; 364: k4931.
[http://dx.doi.org/10.1136/bmj.k4931] [PMID: 30602590]
[11]
Desai N, Singh A, Valentino DJ. Practical evaluation of image quality in Computed Radiographic (CR) imaging systems. Proceedings of SPIE - The International Society for Optical Engineering 2010. 7622.
[http://dx.doi.org/10.1117/12.844640]
[12]
Goldman LW. Principles of CT: Radiation dose and image quality. J Nucl Med Technol 2007; 35(4): 213-25.
[http://dx.doi.org/10.2967/jnmt.106.037846] [PMID: 18006597]
[13]
Paruccini N, Villa R, Pasquali C, Spadavecchia C, Baglivi A, Crespi A. Evaluation of a commercial model based iterative reconstruction algorithm in computed tomography. Phys Med 2017; 41: 58-70.
[http://dx.doi.org/10.1016/j.ejmp.2017.05.066] [PMID: 28583291]
[14]
Karim MKA, Rahim NA, Matsubara K, Hashim S, Mhareb MHA, Musa Y. The effectiveness of bismuth breast shielding with protocol optimization in CT Thorax examination. J XRay Sci Technol 2019; 27(1): 139-47.
[http://dx.doi.org/10.3233/XST-180397] [PMID: 30584178]
[15]
Alsleem H, Davidson R. Factors affecting contrast-detail performance in computed tomography: A review. J Med Imaging Radiat Sci 2013; 44(2): 62-70.
[http://dx.doi.org/10.1016/j.jmir.2012.12.001] [PMID: 31051935]
[16]
Mokhtar A, Aabdelbary ZA, Sarhan A, Gad HM, Ahmed MT. Studies on the radiation dose, image quality and low contrast detectability from MSCT abdomen by using low tube voltage. Egypt J Radiol Nucl Med 2021; 52(1): 1-7.
[http://dx.doi.org/10.1186/s43055-021-00613-y]
[17]
Gulliksrud K, Stokke C, Martinsen AC. How to measure CT image quality: Variations in CT-numbers, uniformity and low contrast resolution for a CT quality assurance phantom. Phys Med 2014; 30(4): 521-6.
[http://dx.doi.org/10.1016/j.ejmp.2014.01.006] [PMID: 24530005]
[18]
Samei E, Peck DJ. Imaging Science. In: Hendee’s Physics of Medical Imaging. 5th ed. Hoboken, NJ, USA: John Wiley & Sons, Inc. 2019; pp. 89-141.
[http://dx.doi.org/10.1002/9781118671016.ch3]
[19]
Jensen K, Hagemo G, Tingberg A, et al. Evaluation of image quality for 7 iterative reconstruction algorithms in chest computed tomography imaging: A phantom study. J Comput Assist Tomogr 2020; 44(5): 673-80.
[http://dx.doi.org/10.1097/RCT.0000000000001037] [PMID: 32936576]
[20]
Kawashima H, Ichikawa K, Matsubara K, Nagata H, Takata T, Kobayashi S. Quality evaluation of image-based iterative reconstruction for CT: Comparison with hybrid iterative reconstruction. J Appl Clin Med Phys 2019; 20(6): 199-205.
[http://dx.doi.org/10.1002/acm2.12597] [PMID: 31050148]
[21]
Racine D, Becce F, Viry A, et al. Task-based characterization of a deep learning image reconstruction and comparison with filtered back-projection and a partial model-based iterative reconstruction in abdominal CT: A phantom study. Phys Med 2020; 76(June): 28-37.
[http://dx.doi.org/10.1016/j.ejmp.2020.06.004] [PMID: 32574999]
[22]
Urikura A, Hara T, Ichikawa K, et al. Objective assessment of low-contrast computed tomography images with iterative reconstruction. Phys Med 2016; 32(8): 992-8.
[http://dx.doi.org/10.1016/j.ejmp.2016.07.003] [PMID: 27422374]
[23]
Solomon J, Ba A, Bochud F, Samei E. Comparison of low-contrast detectability between two CT reconstruction algorithms using voxel-based 3D printed textured phantoms. Med Phys 2016; 43(12): 6497-506.
[http://dx.doi.org/10.1118/1.4967478] [PMID: 27908164]
[24]
Muhammad NA, Sabarudin A, Ismail N, Karim MKAA, Sabaruddin A, Ismail N. A systematic review and meta-analysis of radiation dose exposure from computed tomography examination of thorax-abdomen-pelvic regions among paediatric population. Radiat Phys Chem 2021; 179: 109148.
[http://dx.doi.org/10.1016/j.radphyschem.2020.109148]
[25]
Viry A, Aberle C, Racine D, Knebel J-FF, Schindera ST, Schmidt S. Effects of various generations of iterative CT reconstruction algorithms on low-contrast detectability as a function of the effective abdominal diameter: A quantitative task-based phantom study. Eur J Phys Medica 2017; 48: 111-8.
[http://dx.doi.org/10.1016/j.ejmp.2018.04.006]
[26]
Eck BL, Fahmi R, Brown KM, et al. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction. Med Phys 2015; 42(10): 6098-111.
[http://dx.doi.org/10.1118/1.4929973] [PMID: 26429285]
[27]
Higaki T, Nakamura Y, Zhou J, et al. Deep learning reconstruction at CT: Phantom study of the image characteristics. Acad Radiol 2020; 27(1): 82-7.
[http://dx.doi.org/10.1016/j.acra.2019.09.008] [PMID: 31818389]
[28]
Conzelmann J, Schwarz FB, Hamm B, Scheel M, Jahnke P. Development of a method to create uniform phantoms for task-based assessment of CT image quality. J Appl Clin Med Phys 2020; 21(9): 201-8.
[http://dx.doi.org/10.1002/acm2.12974] [PMID: 32721106]
[29]
Ardila Pardo GL, Conzelmann J, Genske U, Hamm B, Scheel M, Jahnke P. 3D printing of anatomically realistic phantoms with detection tasks to assess the diagnostic performance of CT images. Eur Radiol 2020; 30(8): 4557-63.
[http://dx.doi.org/10.1007/s00330-020-06808-7] [PMID: 32221686]
[30]
Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Phys Med 2012; 28(2): 94-108.
[http://dx.doi.org/10.1016/j.ejmp.2012.01.003] [PMID: 22316498]
[31]
Raman SP, Mahesh M, Blasko RV, Fishman EK. CT scan parameters and radiation dose: Practical advice for radiologists. J Am Coll Radiol 2013; 10(11): 840-6.
[http://dx.doi.org/10.1016/j.jacr.2013.05.032] [PMID: 24183553]
[32]
Artul S. Ring artefact in multidetector CT. BMJ Case Rep 2013; 2013: bcr-2013-201379.
[http://dx.doi.org/10.1136/bcr-2013-201379] [PMID: 24379245]
[33]
Tang K, Wang L, Li R, Lin J, Zheng X, Cao G. Effect of low tube voltage on image quality, radiation dose, and low-contrast detectability at abdominal multidetector CT: Phantom study. J Biomed Res Int 2012; 2012: 130169.
[http://dx.doi.org/10.1155/2012/130169]
[34]
Lee S, Kim YY, Shin J, et al. CT and MRI liver imaging reporting and data system version 2018 for hepatocellular carcinoma: A systematic review with meta-analysis. J Am Coll Radiol 2020; 17(10): 1199-206.
[http://dx.doi.org/10.1016/j.jacr.2020.06.005] [PMID: 32640250]
[35]
Jahnke P, Conzelmann J, Genske U, et al. Task-based assessment of neck CT protocols using patient-mimicking phantoms-effects of protocol parameters on dose and diagnostic performance. Eur Radiol 2021; 31(5): 3177-86.
[http://dx.doi.org/10.1007/s00330-020-07374-8] [PMID: 33151393]
[36]
Greffier J, Hamard A, Pereira F, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: A phantom study. Eur Radiol 2020; 30(7): 3951-9.
[http://dx.doi.org/10.1007/s00330-020-06724-w] [PMID: 32100091]
[37]
Alsleem HA, Almohiy HM. The feasibility of contrast-to-noise ratio on measurements to evaluate CT image quality in terms of low-contrast detailed detectability. Med Sci (Basel) 2020; 8(3): 26.
[http://dx.doi.org/10.3390/medsci8030026] [PMID: 32640553]
[38]
Nagel HD. CT Parameters that influence the radiation dose. In: Radiation dose from adult and pediatric multidetector computed tomography. 2007; pp. 51-79.
[http://dx.doi.org/10.1007/978-3-540-68575-3_4]
[39]
Tafreshi AR, Peng T, Yu C, et al. A phantom study of the spatial precision and accuracy of stereotactic localization using computed tomography imaging with the leksell stereotactic system. World Neurosurg 2020; 139: e297-307.
[http://dx.doi.org/10.1016/j.wneu.2020.03.204] [PMID: 32298832]
[40]
Rubert N, Southard R, Hamman SM, Robison R. Evaluation of low-contrast detectability for iterative reconstruction in pediatric abdominal computed tomography: A phantom study. Pediatr Radiol 2020; 50(3): 345-56.
[http://dx.doi.org/10.1007/s00247-019-04561-8] [PMID: 31705156]
[41]
Funama Y, Takahashi H, Goto T, et al. Improving low-contrast detectability and noise texture pattern for computed tomography using iterative reconstruction accelerated with machine learning method: A phantom study. Acad Radiol 2020; 27(7): 929-36.
[http://dx.doi.org/10.1016/j.acra.2019.09.007] [PMID: 31918961]
[42]
Davis AT, Palmer AL, Pani S, Nisbet A. Assessment of the variation in CT scanner performance (image quality and Hounsfield units) with scan parameters, for image optimisation in radiotherapy treatment planning. Phys Med 2018; 45(45): 59-64.
[http://dx.doi.org/10.1016/j.ejmp.2017.11.036] [PMID: 29472091]
[43]
Andersen HK, Völgyes D, Martinsen ACT, Martinsen T. Image quality with iterative reconstruction techniques in CT of the lungs-A phantom study. Eur J Radiol Open 2018; 5(February): 35-40.
[http://dx.doi.org/10.1016/j.ejro.2018.02.002] [PMID: 29719856]
[44]
Solomon J, Wilson J, Samei E. Characteristic image quality of a third generation dual-source MDCT scanner: Noise, resolution, and detectability. Med Phys 2015; 42(8): 4941-53.
[http://dx.doi.org/10.1118/1.4923172] [PMID: 26233220]
[45]
Hernandez-Giron I, Calzado A, Geleijns J, Joemai RMS, Veldkamp WJH. Low contrast detectability performance of model observers based on CT phantom images: kVp influence. Phys Med 2015; 31(7): 798-807.
[http://dx.doi.org/10.1016/j.ejmp.2015.04.012] [PMID: 25979210]
[46]
Hernandez-Giron I, Geleijns J, Calzado A, Veldkamp WJHH. Automated assessment of low contrast sensitivity for CT systems using a model observer. Med Phys 2011; 38(S1): S25-35.
[http://dx.doi.org/10.1118/1.3577757] [PMID: 21978115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy