Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Characteristic Hallmarks of Aging and the Impact on Carcinogenesis

Author(s): Sergio Terracina, Giampiero Ferraguti, Carla Petrella, Sabina Maria Bruno, Giovanna Blaconà, Maria Grazia Di Certo, Antonio Minni, Antonio Greco, Angela Musacchio, Massimo Ralli, Luigi Tarani, Mauro Ceccanti, Antonella Polimeni, Viviana Triaca and Marco Fiore*

Volume 23, Issue 2, 2023

Published on: 07 September, 2022

Page: [87 - 102] Pages: 16

DOI: 10.2174/1568009622666220816120353

Price: $65

Abstract

Evidence shows that there is a synergistic, bidirectional association between cancer and aging with many shared traits. Age itself is a risk factor for the onset of most cancers, while evidence suggests that cancer and its treatments might accelerate aging by causing genotoxic and cytotoxic insults. Aging has been associated with a series of alterations that can be linked to cancer: i) genomic instability caused by DNA damage or epigenetic alterations coupled with repair errors, which lead to progressive accumulation of mutations; ii) telomere attrition with possible impairment of telomerase, shelterin complex, or the trimeric complex (Cdc13, Stn1 and Ten1 - CST) activities associated with abnormalities in DNA replication and repair; iii) altered proteostasis, especially when leading to an augmented proteasome, chaperon and autophagy-lysosome activity; iv) mitochondrial dysfunction causing oxidative stress; v) cellular senescence; vi) stem cells exhaustion, intercellular altered communication and deregulated nutrient sensing which are associated with microenvironmental modifications which may facilitate the subsequential role of cancer stem cells. Nowadays, anti-growth factor agents and epigenetic therapies seem to assume an increasing role in fighting aging-related diseases, especially cancer. This report aims to discuss the impact of age on cancer growth.

Keywords: aging, cancer, epigenetic, genomic instability, microenvironment, oxidative stress.

Graphical Abstract

[1]
Cheng, X.; Yang, Y.; Schwebel, D.C.; Liu, Z.; Li, L.; Cheng, P.; Ning, P.; Hu, G. Population ageing and mortality during 1990-2017: A global decomposition analysis. PLoS Med., 2020, 17(6), e1003138.
[http://dx.doi.org/10.1371/journal.pmed.1003138] [PMID: 32511229]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
World Health Organization. Global health estimates: Leading causes of death. Glob Heal Obs Explor a World Heal Data. Available from: https//WwwWhoInt/Data/Gho/Data/Themes/ Mortality-and-Global-Health-Estimates/Ghe-Leading-Causes-of- Death 2020.
[4]
GLOBOCAN 2018: Counting the toll of cancer. Lancet, 2018, 392(10152), 985.
[http://dx.doi.org/10.1016/S0140-6736(18)32252-9] [PMID: 30264708]
[5]
Franceschi, C.; Garagnani, P.; Morsiani, C.; Conte, M.; Santoro, A.; Grignolio, A.; Monti, D.; Capri, M.; Salvioli, S. The continuum of aging and age-related diseases: Common mechanisms but different rates. Front. Med. (Lausanne), 2018, 5, 61.
[http://dx.doi.org/10.3389/fmed.2018.00061] [PMID: 29662881]
[6]
Guida, J.L.; Ahles, T.A.; Belsky, D.; Campisi, J.; Cohen, H.J.; DeGregori, J.; Fuldner, R.; Ferrucci, L.; Gallicchio, L.; Gavrilov, L.; Gavrilova, N.; Green, P.A.; Jhappan, C.; Kohanski, R.; Krull, K.; Mandelblatt, J.; Ness, K.K.; O’Mara, A.; Price, N.; Schrack, J.; Studenski, S.; Theou, O.; Tracy, R.P.; Hurria, A. Measuring aging and identifying aging phenotypes in cancer survivors. J. Natl. Cancer Inst., 2019, 111(12), 1245-1254.
[http://dx.doi.org/10.1093/jnci/djz136] [PMID: 31321426]
[7]
López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell, 2013, 153(6), 1194-1217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[8]
Aunan, J.R.; Cho, W.C.; Søreide, K. The biology of aging and cancer: A brief overview of shared and divergent molecular hallmarks. Aging Dis., 2017, 8(5), 628-642.
[http://dx.doi.org/10.14336/AD.2017.0103] [PMID: 28966806]
[9]
Fane, M.; Weeraratna, A.T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer, 2020, 20(2), 89-106.
[http://dx.doi.org/10.1038/s41568-019-0222-9] [PMID: 31836838]
[10]
Ness, K.K.; Krull, K.R.; Jones, K.E.; Mulrooney, D.A.; Armstrong, G.T.; Green, D.M.; Chemaitilly, W.; Smith, W.A.; Wilson, C.L.; Sklar, C.A.; Shelton, K.; Srivastava, D.K.; Ali, S.; Robison, L.L.; Hudson, M.M. Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: A report from the St Jude Lifetime cohort study. J. Clin. Oncol., 2013, 31(36), 4496-4503.
[http://dx.doi.org/10.1200/JCO.2013.52.2268] [PMID: 24248696]
[11]
Henderson, TO; Ness, KK; Cohen, HJ Accelerated aging among cancer survivors: From pediatrics to geriatrics. Am. Soc. Clin. Oncol. Educ B, 2014, e423-30.
[http://dx.doi.org/10.14694/EdBook_AM.2014.34.e423]
[12]
Hurria, A.; Jones, L.; Muss, H.B. Cancer treatment as an accelerated aging process: Assessment, biomarkers, and interventions. Am. Soc. Clin. Oncol. Educ. Book, 2016, 35, e516-e522.
[http://dx.doi.org/10.1200/EDBK_156160] [PMID: 27249761]
[13]
Armenian, S.H.; Gibson, C.J.; Rockne, R.C.; Ness, K.K. Premature aging in young cancer survivors. J. Natl. Cancer Inst., 2019, 111(3), 226-232.
[http://dx.doi.org/10.1093/jnci/djy229] [PMID: 30715446]
[14]
Alfano, C.M.; Peng, J.; Andridge, R.R.; Lindgren, M.E.; Povoski, S.P.; Lipari, A.M.; Agnese, D.M.; Farrar, W.B.; Yee, L.D.; Carson, W.E., III; Kiecolt-Glaser, J.K. Inflammatory cytokines and comorbidity development in breast cancer survivors versus noncancer controls: Evidence for accelerated aging? J. Clin. Oncol., 2017, 35(2), 149-156.
[http://dx.doi.org/10.1200/JCO.2016.67.1883] [PMID: 27893337]
[15]
Pagiatakis, C.; Musolino, E.; Gornati, R.; Bernardini, G.; Papait, R. Epigenetics of aging and disease: A brief overview. Aging Clin. Exp. Res., 2021, 33(4), 737-745.
[http://dx.doi.org/10.1007/s40520-019-01430-0] [PMID: 31811572]
[16]
White, M.C.; Holman, D.M.; Boehm, J.E.; Peipins, L.A.; Grossman, M.; Henley, S.J. Age and cancer risk: A potentially modifiable relationship. Am. J. Prev. Med., 2014, 46(3)(Suppl. 1), S7-S15.
[http://dx.doi.org/10.1016/j.amepre.2013.10.029] [PMID: 24512933]
[17]
Wissler Gerdes, E.O.; Vanichkachorn, G.; Verdoorn, B.P.; Hanson, G.J.; Joshi, A.Y.; Murad, M.H. Role of senescence in the chronic health consequences of COVID-19. Transl. Res., 2022, 241, 96-108.
[http://dx.doi.org/10.1016/j.trsl.2021.10.003] [PMID: 34695606]
[18]
Rando, T.A. The ins and outs of aging and longevity. Annu. Rev. Physiol., 2013, 75, 617-619.
[http://dx.doi.org/10.1146/annurev-physiol-092712-103439] [PMID: 23398156]
[19]
Ory, M.G.; Anderson, L.A.; Friedman, D.B.; Pulczinski, J.C.; Eugene, N.; Satariano, W.A. Cancer prevention among adults aged 45-64 years: Setting the stage. Am. J. Prev. Med., 2014, 46(3)(Suppl. 1), S1-S6.
[http://dx.doi.org/10.1016/j.amepre.2013.10.027] [PMID: 24512925]
[20]
Morimoto, R.I.; Cuervo, A.M. Proteostasis and the aging proteome in health and disease. Med. Sci., 2014, 69(Suppl. 1), S33-S38.
[http://dx.doi.org/10.1093/gerona/glu049] [PMID: 24833584]
[21]
Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol., 2019, 15(10), 565-581.
[http://dx.doi.org/10.1038/s41582-019-0244-7] [PMID: 31501588]
[22]
Farr, J.N.; Almeida, M. The Spectrum of Fundamental Basic Science Discoveries Contributing to Organismal Aging. J. Bone Miner. Res., 2018, 33(9), 1568-1584.
[http://dx.doi.org/10.1002/jbmr.3564] [PMID: 30075061]
[23]
Margolick, J.B.; Ferrucci, L. Accelerating aging research: How can we measure the rate of biologic aging? Exp. Gerontol., 2015, 64, 78-80.
[http://dx.doi.org/10.1016/j.exger.2015.02.009] [PMID: 25683017]
[24]
Ferrucci, L.; Levine, M.E.; Kuo, P-L.; Simonsick, E.M. Time and the Metrics of Aging. Circ. Res., 2018, 123(7), 740-744.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312816] [PMID: 30355074]
[25]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[26]
Fishbein, A.; Hammock, B.D.; Serhan, C.N.; Panigrahy, D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol. Ther., 2021, 218, 107670.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107670] [PMID: 32891711]
[27]
Robey, R.B.; Weisz, J.; Kuemmerle, N.B.; Salzberg, A.C.; Berg, A.; Brown, D.G.; Kubik, L.; Palorini, R.; Al-Mulla, F.; Al-Temaimi, R.; Colacci, A.; Mondello, C.; Raju, J.; Woodrick, J.; Scovassi, A.I.; Singh, N.; Vaccari, M.; Roy, R.; Forte, S.; Memeo, L.; Salem, H.K.; Amedei, A.; Hamid, R.A.; Williams, G.P.; Lowe, L.; Meyer, J.; Martin, F.L.; Bisson, W.H.; Chiaradonna, F.; Ryan, E.P. Metabolic reprogramming and dysregulated metabolism: Cause, consequence and/or enabler of environmental carcinogenesis? Carcinogenesis, 2015, 36(Suppl. 1), S203-S231.
[http://dx.doi.org/10.1093/carcin/bgv037] [PMID: 26106140]
[28]
Moon, J.J.; Lu, A.; Moon, C. Role of genomic instability in human carcinogenesis. Exp. Biol. Med. (Maywood), 2019, 244(3), 227-240.
[http://dx.doi.org/10.1177/1535370219826031] [PMID: 30760030]
[29]
Haigis, M.C.; Yankner, B.A. The aging stress response. Mol. Cell, 2010, 40(2), 333-344.
[http://dx.doi.org/10.1016/j.molcel.2010.10.002] [PMID: 20965426]
[30]
Bao, S.; Zhao, H.; Yuan, J.; Fan, D.; Zhang, Z.; Su, J.; Zhou, M. Computational identification of mutator-derived lncRNA signatures of genome instability for improving the clinical outcome of cancers: A case study in breast cancer. Brief. Bioinform., 2020, 21(5), 1742-1755.
[http://dx.doi.org/10.1093/bib/bbz118] [PMID: 31665214]
[31]
Wei, X.; Wang, Y.; Ji, C.; Luan, J.; Yao, L.; Zhang, X.; Wang, S.; Yao, B.; Qin, C.; Song, N. Genomic instability promotes the progression of clear cell renal cell carcinoma through influencing the immune microenvironment. Front. Genet., 2021, 12, 706661.
[http://dx.doi.org/10.3389/fgene.2021.706661] [PMID: 34712264]
[32]
Liu, J.; He, M.H.; Peng, J.; Duan, Y.M.; Lu, Y.S.; Wu, Z.; Gong, T.; Li, H.T.; Zhou, J.Q. Tethering telomerase to telomeres increases genome instability and promotes chronological aging in yeast. Aging (Albany NY), 2016, 8(11), 2827-2847.
[http://dx.doi.org/10.18632/aging.101095] [PMID: 27855118]
[33]
Bautista-Niño, P.K.; Portilla-Fernandez, E.; Vaughan, D.E.; Danser, A.H.J.; Roks, A.J.M. DNA damage: A main determinant of vascular aging. Int. J. Mol. Sci., 2016, 17(5), E748.
[http://dx.doi.org/10.3390/ijms17050748] [PMID: 27213333]
[34]
Marteijn, J.A.; Lans, H.; Vermeulen, W.; Hoeijmakers, J.H.J. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol., 2014, 15(7), 465-481.
[http://dx.doi.org/10.1038/nrm3822] [PMID: 24954209]
[35]
Chaldakov, G.N.; Fiore, M.; Tonchev, A.B.; Dimitrov, D.; Pancheva, R.; Rancic, G.; Aloe, L. Homo obesus: A metabotrophin-deficient species. Pharmacology and nutrition insight. Curr. Pharm. Des., 2007, 13(21), 2176-2179.
[http://dx.doi.org/10.2174/138161207781039616] [PMID: 17627549]
[36]
Childs, B.G.; Durik, M.; Baker, D.J.; van Deursen, J.M. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat. Med., 2015, 21(12), 1424-1435.
[http://dx.doi.org/10.1038/nm.4000] [PMID: 26646499]
[37]
Bakhtiar, S.M.; Ali, A.; Barh, D. Epigenetics in head and neck cancer. Methods Mol. Biol., 2015, 1238, 751-769.
[http://dx.doi.org/10.1007/978-1-4939-1804-1_39] [PMID: 25421690]
[38]
Ralli, M.; Angeletti, D.; Fiore, M.; D’Aguanno, V.; Lambiase, A.; Artico, M.; de Vincentiis, M.; Greco, A. Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun. Rev., 2020, 19(10), 102649.
[http://dx.doi.org/10.1016/j.autrev.2020.102649] [PMID: 32805423]
[39]
Ciafrè, S.; Carito, V.; Ferraguti, G.; Greco, A.; Chaldakov, G.N.; Fiore, M.; Ceccanti, M. How alcohol drinking affects our genes: An epigenetic point of view. Biochem. Cell Biol., 2019, 97(4), 345-356.
[http://dx.doi.org/10.1139/bcb-2018-0248] [PMID: 30412425]
[40]
Bulut, O.; Kilic, G.; Domínguez-Andrés, J. Immune memory in aging: A wide perspective covering microbiota, brain, metabolism, and epigenetics. Clin. Rev. Allergy Immunol., 2021, 1, 1.
[http://dx.doi.org/10.1007/s12016-021-08905-x] [PMID: 34910283]
[41]
Saptarshi, N.; Green, D.; Cree, A.; Lotery, A.; Paraoan, L.; Porter, L.F. Epigenetic age acceleration is not associated with age-related macular degeneration. Int. J. Mol. Sci., 2021, 22(24), 13457.
[http://dx.doi.org/10.3390/ijms222413457] [PMID: 34948253]
[42]
Ducasse, M.; Brown, M.A. Epigenetic aberrations and cancer. Mol. Cancer, 2006, 5, 60.
[http://dx.doi.org/10.1186/1476-4598-5-60] [PMID: 17092350]
[43]
Flavahan, W.A. Epigenetic plasticity, selection, and tumorigenesis. Biochem. Soc. Trans., 2020, 48(4), 1609-1621.
[http://dx.doi.org/10.1042/BST20191215] [PMID: 32794546]
[44]
Flavahan, WA; Gaskell, E; Bernstein, BE Epigenetic plasticity and the hallmarks of cancer. Science (80- ), 2017, 357.
[http://dx.doi.org/10.1126/science.aal2380]
[45]
Baylin, S.B.; Jones, P.A. Epigenetic determinants of cancer. Cold Spring Harb. Perspect. Biol., 2016, 8(9), a019505.
[http://dx.doi.org/10.1101/cshperspect.a019505] [PMID: 27194046]
[46]
Audia, J.E.; Campbell, R.M. Histone modifications and cancer. Cold Spring Harb. Perspect. Biol., 2016, 8(4), a019521.
[http://dx.doi.org/10.1101/cshperspect.a019521] [PMID: 27037415]
[47]
McCartney, D.L.; Min, J.L.; Richmond, R.C.; Lu, A.T.; Sobczyk, M.K.; Davies, G.; Broer, L.; Guo, X.; Jeong, A.; Jung, J.; Kasela, S.; Katrinli, S.; Kuo, P.L.; Matias-Garcia, P.R.; Mishra, P.P.; Nygaard, M.; Palviainen, T.; Patki, A.; Raffield, L.M.; Ratliff, S.M.; Richardson, T.G.; Robinson, O.; Soerensen, M.; Sun, D.; Tsai, P.C.; van der Zee, M.D.; Walker, R.M.; Wang, X.; Wang, Y.; Xia, R.; Xu, Z.; Yao, J.; Zhao, W.; Correa, A.; Boerwinkle, E.; Dugué, P.A.; Durda, P.; Elliott, H.R.; Gieger, C.; de Geus, E.J.C.; Harris, S.E.; Hemani, G.; Imboden, M.; Kähönen, M.; Kardia, S.L.R.; Kresovich, J.K.; Li, S.; Lunetta, K.L.; Mangino, M.; Mason, D.; McIntosh, A.M.; Mengel-From, J.; Moore, A.Z.; Murabito, J.M.; Ollikainen, M.; Pankow, J.S.; Pedersen, N.L.; Peters, A.; Polidoro, S.; Porteous, D.J.; Raitakari, O.; Rich, S.S.; Sandler, D.P.; Sillanpää, E.; Smith, A.K.; Southey, M.C.; Strauch, K.; Tiwari, H.; Tanaka, T.; Tillin, T.; Uitterlinden, A.G.; Van Den Berg, D.J.; van Dongen, J.; Wilson, J.G.; Wright, J.; Yet, I.; Arnett, D.; Bandinelli, S.; Bell, J.T.; Binder, A.M.; Boomsma, D.I.; Chen, W.; Christensen, K.; Conneely, K.N.; Elliott, P.; Ferrucci, L.; Fornage, M.; Hägg, S.; Hayward, C.; Irvin, M.; Kaprio, J.; Lawlor, D.A.; Lehtimäki, T.; Lohoff, F.W.; Milani, L.; Milne, R.L.; Probst-Hensch, N.; Reiner, A.P.; Ritz, B.; Rotter, J.I.; Smith, J.A.; Taylor, J.A.; van Meurs, J.B.J.; Vineis, P.; Waldenberger, M.; Deary, I.J.; Relton, C.L.; Horvath, S.; Marioni, R.E. Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biol., 2021, 22(1), 194.
[http://dx.doi.org/10.1186/s13059-021-02398-9] [PMID: 34187551]
[48]
Qu, Y.; Dang, S.; Hou, P. Gene methylation in gastric cancer. Clin. Chim. Acta, 2013, 424, 53-65.
[http://dx.doi.org/10.1016/j.cca.2013.05.002] [PMID: 23669186]
[49]
Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology, 2013, 38(1), 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[50]
Domcke, S.; Bardet, A.F.; Adrian Ginno, P.; Hartl, D.; Burger, L.; Schübeler, D. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature, 2015, 528(7583), 575-579.
[http://dx.doi.org/10.1038/nature16462] [PMID: 26675734]
[51]
Maurano, M.T.; Wang, H.; John, S.; Shafer, A.; Canfield, T.; Lee, K.; Stamatoyannopoulos, J.A. Role of DNA methylation in modulating transcription factor occupancy. Cell Rep., 2015, 12(7), 1184-1195.
[http://dx.doi.org/10.1016/j.celrep.2015.07.024] [PMID: 26257180]
[52]
Burgess, D.J. Human epigenetics: Showing your age. Nat. Rev. Genet., 2013, 14(1), 6.
[http://dx.doi.org/10.1038/nrg3391] [PMID: 23207909]
[53]
Lim, U.; Song, M.A. DNA methylation as a biomarker of aging in epidemiologic studies.In: Methods Mol. Biol; Humana Press Inc., 2018, Vol. 1856, pp. 219-231.
[http://dx.doi.org/10.1007/978-1-4939-8751-1_12]
[54]
Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.B.; Gao, Y.; Deconde, R.; Chen, M.; Rajapakse, I.; Friend, S.; Ideker, T.; Zhang, K. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell, 2013, 49(2), 359-367.
[http://dx.doi.org/10.1016/j.molcel.2012.10.016] [PMID: 23177740]
[55]
Jasiulionis, M.G. Abnormal epigenetic regulation of immune system during aging. Front. Immunol., 2018, 9, 197.
[http://dx.doi.org/10.3389/fimmu.2018.00197] [PMID: 29483913]
[56]
Issa, J.P. Aging and epigenetic drift: A vicious cycle. J. Clin. Invest., 2014, 124(1), 24-29.
[http://dx.doi.org/10.1172/JCI69735] [PMID: 24382386]
[57]
Topper, M.J.; Vaz, M.; Marrone, K.A.; Brahmer, J.R.; Baylin, S.B. The emerging role of epigenetic therapeutics in immuno-oncology. Nat. Rev. Clin. Oncol., 2020, 17(2), 75-90.
[http://dx.doi.org/10.1038/s41571-019-0266-5] [PMID: 31548600]
[58]
Issa, J.J.; Roboz, G.; Rizzieri, D.; Jabbour, E.; Stock, W.; O’Connell, C.; Yee, K.; Tibes, R.; Griffiths, E.A.; Walsh, K.; Daver, N.; Chung, W.; Naim, S.; Taverna, P.; Oganesian, A.; Hao, Y.; Lowder, J.N.; Azab, M.; Kantarjian, H. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: A multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol., 2015, 16(9), 1099-1110.
[http://dx.doi.org/10.1016/S1470-2045(15)00038-8] [PMID: 26296954]
[59]
Abbott, A. First hint that body’s ‘biological age’ can be reversed. Nature, 2019, 573(7773), 173.
[http://dx.doi.org/10.1038/d41586-019-02638-w] [PMID: 31506619]
[60]
Fahy, G.M.; Brooke, R.T.; Watson, J.P.; Good, Z.; Vasanawala, S.S.; Maecker, H.; Leipold, M.D.; Lin, D.T.S.; Kobor, M.S.; Horvath, S. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell, 2019, 18(6), e13028.
[http://dx.doi.org/10.1111/acel.13028] [PMID: 31496122]
[61]
Mendelsohn, A.R.; Larrick, J.W. Epigenetic drift is a determinant of mammalian lifespan. Rejuvenation Res., 2017, 20(5), 430-436.
[http://dx.doi.org/10.1089/rej.2017.2024] [PMID: 28942711]
[62]
Maegawa, S.; Lu, Y.; Tahara, T.; Lee, J.T.; Madzo, J.; Liang, S.; Jelinek, J.; Colman, R.J.; Issa, J.J. Caloric restriction delays age-related methylation drift. Nat. Commun., 2017, 8(1), 539.
[http://dx.doi.org/10.1038/s41467-017-00607-3] [PMID: 28912502]
[63]
Pallauf, K.; Giller, K.; Huebbe, P.; Rimbach, G. Nutrition and healthy ageing: Calorie restriction or polyphenol-rich “MediterrAsian” diet? Oxid. Med. Cell. Longev., 2013, 2013, 707421.
[http://dx.doi.org/10.1155/2013/707421] [PMID: 24069505]
[64]
Petrella, C.; Carito, V.; Carere, C.; Ferraguti, G.; Ciafrè, S.; Natella, F.; Bello, C.; Greco, A.; Ralli, M.; Mancinelli, R.; Messina, M.P.; Fiore, M.; Ceccanti, M. Oxidative stress inhibition by resveratrol in alcohol-dependent mice. Nutrition, 2020, 79-80, 110783.
[http://dx.doi.org/10.1016/j.nut.2020.110783] [PMID: 32569950]
[65]
Carmona, J.J.; Michan, S. Biology of healthy aging and longevity. Rev. Invest. Clin., 2016, 68(1), 7-16.
[PMID: 27028172]
[66]
Testa, G.; Biasi, F.; Poli, G.; Chiarpotto, E. Calorie restriction and dietary restriction mimetics: A strategy for improving healthy aging and longevity. Curr. Pharm. Des., 2014, 20(18), 2950-2977.
[http://dx.doi.org/10.2174/13816128113196660699] [PMID: 24079773]
[67]
Pyo, I.S.; Yun, S.; Yoon, Y.E.; Choi, J.W.; Lee, S.J. Mechanisms of aging and the preventive effects of resveratrol on age-related diseases. Molecules, 2020, 25(20), E4649.
[http://dx.doi.org/10.3390/molecules25204649] [PMID: 33053864]
[68]
Fiore, M.; Messina, M.P.; Petrella, C.; D’Angelo, A.; Greco, A.; Ralli, M. Antioxidant properties of plant polyphenols in the counteraction of alcohol-abuse induced damage: Impact on the Mediterranean diet. J. Funct. Foods, 2020, 71, 104012.
[http://dx.doi.org/10.1016/j.jff.2020.104012]
[69]
Petrella, C.; Di Certo, M.G.; Gabanella, F.; Barbato, C.; Ceci, F.M.; Greco, A.; Ralli, M.; Polimeni, A.; Angeloni, A.; Severini, C.; Vitali, M.; Ferraguti, G.; Ceccanti, M.; Lucarelli, M.; Severi, C.; Fiore, M. Mediterranean diet, brain and muscle: Olive polyphenols and resveratrol protection in neurodegenerative and neuromuscular disorders. Curr. Med. Chem., 2021, 28(37), 7595-7613.
[http://dx.doi.org/10.2174/0929867328666210504113445] [PMID: 33949928]
[70]
Carito, V.; Ceccanti, M.; Tarani, L.; Ferraguti, G.; Chaldakov, G.N.; Fiore, M. Neurotrophins’ modulation by olive polyphenols. Curr. Med. Chem., 2016, 23(28), 3189-3197.
[http://dx.doi.org/10.2174/0929867323666160627104022] [PMID: 27356540]
[71]
Carito, V.; Ciafrè, S.; Tarani, L.; Ceccanti, M.; Natella, F.; Iannitelli, A.; Tirassa, P.; Chaldakov, G.N.; Ceccanti, M.; Boccardo, C.; Fiore, M. TNF-α and IL-10 modulation induced by polyphenols extracted by olive pomace in a mouse model of paw inflammation. Ann. Ist. Super. Sanita, 2015, 51(4), 382-386.
[http://dx.doi.org/10.4415/ANN-15-04-21] [PMID: 26783228]
[72]
Fiore, M.; Amendola, T.; Triaca, V.; Alleva, E.; Aloe, L. Fighting in the aged male mouse increases the expression of TrkA and TrkB in the subventricular zone and in the hippocampus. Behav. Brain Res., 2005, 157(2), 351-362.
[http://dx.doi.org/10.1016/j.bbr.2004.08.024] [PMID: 15639186]
[73]
Ghanemi, A.; Yoshioka, M.; St-Amand, J. Ageing and obesity shared patterns: From molecular pathogenesis to epigenetics. Diseases, 2021, 9(4), 87.
[http://dx.doi.org/10.3390/diseases9040087] [PMID: 34940025]
[74]
Li, Y.; Daniel, M.; Tollefsbol, T.O. Epigenetic regulation of caloric restriction in aging. BMC Med., 2011, 9, 98.
[http://dx.doi.org/10.1186/1741-7015-9-98] [PMID: 21867551]
[75]
Harvanek, Z.M.; Fogelman, N.; Xu, K.; Sinha, R. Psychological and biological resilience modulates the effects of stress on epigenetic aging. Transl. Psychiatry, 2021, 11(1), 601.
[http://dx.doi.org/10.1038/s41398-021-01735-7] [PMID: 34839356]
[76]
Wu, W.; He, J.N.; Lan, M.; Zhang, P.; Chu, W.K. Transcription-replication collisions and chromosome fragility. Front. Genet., 2021, 12, 804547.
[http://dx.doi.org/10.3389/fgene.2021.804547] [PMID: 34956339]
[77]
Kwapisz, M.; Morillon, A. Subtelomeric Transcription and its Regulation. J. Mol. Biol., 2020, 432(15), 4199-4219.
[http://dx.doi.org/10.1016/j.jmb.2020.01.026] [PMID: 32035903]
[78]
Aguilera, A.; García-Muse, T. R loops: From transcription byproducts to threats to genome stability. Mol. Cell, 2012, 46(2), 115-124.
[http://dx.doi.org/10.1016/j.molcel.2012.04.009] [PMID: 22541554]
[79]
Coulon, S.; Vaurs, M. Telomeric transcription and telomere rearrangements in quiescent cells. J. Mol. Biol., 2020, 432(15), 4220-4231.
[http://dx.doi.org/10.1016/j.jmb.2020.01.034] [PMID: 32061930]
[80]
Arora, R.; Lee, Y.; Wischnewski, H.; Brun, C.M.; Schwarz, T.; Azzalin, C.M. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat. Commun., 2014, 5, 5220.
[http://dx.doi.org/10.1038/ncomms6220] [PMID: 25330849]
[81]
Chianese, R.; Coccurello, R.; Viggiano, A.; Scafuro, M.; Fiore, M.; Coppola, G.; Operto, F.F.; Fasano, S.; Laye, S.; Pierantoni, R.; Meccariello, R. Impact of Dietary Fats on Brain Functions. Curr. Neuropharmacol., 2018, 16(7), 1059-1085.
[http://dx.doi.org/10.2174/1570159X15666171017102547] [PMID: 29046155]
[82]
Ferraguti, G.; Terracina, S.; Petrella, C.; Greco, A.; Minni, A.; Lucarelli, M.; Agostinelli, E.; Ralli, M.; de Vincentiis, M.; Raponi, G.; Polimeni, A.; Ceccanti, M.; Caronti, B.; Di Certo, M.G.; Barbato, C.; Mattia, A.; Tarani, L.; Fiore, M. Alcohol and head and neck cancer: Updates on the role of oxidative stress, genetic, epigenetics, oral microbiota, antioxidants, and alkylating agents. Antioxidants, 2022, 11(1), 145.
[http://dx.doi.org/10.3390/antiox11010145] [PMID: 35052649]
[83]
Fan, H-C.; Chang, F-W.; Tsai, J-D.; Lin, K-M.; Chen, C-M.; Lin, S-Z.; Liu, C.A.; Harn, H.J. Telomeres and Cancer. Life (Basel), 2021, 11(12), 1405.
[http://dx.doi.org/10.3390/life11121405] [PMID: 34947936]
[84]
Krupp, G.; Bonatz, G.; Parwaresch, R. Telomerase, immortality and cancer. Biotechnol. Annu. Rev. (Amst), 2000, 6, 103-140.
[http://dx.doi.org/10.1016/S1387-2656(00)06020-8] [PMID: 11193292]
[85]
Libertini, G.; Ferrara, N.; Rengo, G.; Corbi, G. Elimination of senescent cells: Prospects according to the subtelomere-telomere theory. Biochemistry (Mosc.), 2018, 83(12), 1477-1488.
[http://dx.doi.org/10.1134/S0006297918120064] [PMID: 30878023]
[86]
Fouquerel, E.; Parikh, D.; Opresko, P. DNA damage processing at telomeres: The ends justify the means. DNA Repair (Amst.), 2016, 44, 159-168.
[http://dx.doi.org/10.1016/j.dnarep.2016.05.022] [PMID: 27233113]
[87]
Cicconi, A.; Chang, S. Shelterin and the replisome: At the intersection of telomere repair and replication. Curr. Opin. Genet. Dev., 2020, 60, 77-84.
[http://dx.doi.org/10.1016/j.gde.2020.02.016] [PMID: 32171974]
[88]
Tacconi, E.M.C.; Tarsounas, M. How homologous recombination maintains telomere integrity. Chromosoma, 2015, 124(2), 119-130.
[http://dx.doi.org/10.1007/s00412-014-0497-2] [PMID: 25430998]
[89]
Libertini, G.; Shubernetskaya, O.; Corbi, G.; Ferrara, N. Is evidence supporting the subtelomere-telomere theory of aging? Biochemistry (Mosc.), 2021, 86(12), 1526-1539.
[http://dx.doi.org/10.1134/S0006297921120026] [PMID: 34937532]
[90]
Shay, J.W. Role of telomeres and telomerase in aging and cancer. Cancer Discov., 2016, 6(6), 584-593.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0062] [PMID: 27029895]
[91]
Smith-Sonneborn, J. Telomerase biology associations offer keys to cancer and aging therapeutics. Curr. Aging Sci., 2020, 13(1), 11-21.
[http://dx.doi.org/10.2174/1874609812666190620124324] [PMID: 31544708]
[92]
Darvishi, F.Z.; Saadat, M. Morphine may have a role in telomere shortening. Psychiatr. Genet., 2022, 32, 87-89.
[http://dx.doi.org/10.1097/YPG.0000000000000311] [PMID: 34955515]
[93]
Xie, Y.; Lou, D.; Zhang, D. Melatonin alleviates age-associated endothelial injury of atherosclerosis via regulating telomere function. J. Inflamm. Res., 2021, 14, 6799-6812.
[http://dx.doi.org/10.2147/JIR.S329020] [PMID: 34924765]
[94]
Epiney, D.G.; Salameh, C.; Cassidy, D.; Zhou, L.T.; Kruithof, J. Milutinović R.; Andreani, T.S.; Schirmer, A.E.; Bolterstein, E. Characterization of stress responses in a drosophila model of werner syndrome. Biomolecules, 2021, 11(12), 1868.
[http://dx.doi.org/10.3390/biom11121868] [PMID: 34944512]
[95]
Oshima, J.; Sidorova, J.M.; Monnat, R.J. Jr Werner syndrome: Clinical features, pathogenesis and potential therapeutic interventions. Ageing Res. Rev., 2017, 33, 105-114.
[http://dx.doi.org/10.1016/j.arr.2016.03.002] [PMID: 26993153]
[96]
Lebel, M.; Monnat, R.J. Jr Werner syndrome (WRN) gene variants and their association with altered function and age-associated diseases. Ageing Res. Rev., 2018, 41, 82-97.
[http://dx.doi.org/10.1016/j.arr.2017.11.003] [PMID: 29146545]
[97]
Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet, 2017, 390(10103), 1685-1699.
[http://dx.doi.org/10.1016/S0140-6736(17)30933-9] [PMID: 28413064]
[98]
Shen, C.Y.; Lu, C.H.; Wu, C.H.; Li, K.J.; Kuo, Y.M.; Hsieh, S.C.; Yu, C.L. Molecular basis of accelerated aging with immune dysfunc-tion-mediated inflammation (Inflamm-aging) in patients with systemic sclerosis. Cells, 2021, 10(12), 3402.
[http://dx.doi.org/10.3390/cells10123402] [PMID: 34943909]
[99]
Furue, M.; Mitoma, C.; Mitoma, H.; Tsuji, G.; Chiba, T.; Nakahara, T.; Uchi, H.; Kadono, T. Pathogenesis of systemic sclerosis-current concept and emerging treatments. Immunol. Res., 2017, 65(4), 790-797.
[http://dx.doi.org/10.1007/s12026-017-8926-y] [PMID: 28488090]
[100]
Zuo, X.; Zhang, L.; Luo, H.; Li, Y.; Zhu, H. Systematic approach to understanding the pathogenesis of systemic sclerosis. Clin. Genet., 2017, 92(4), 365-371.
[http://dx.doi.org/10.1111/cge.12946] [PMID: 27918067]
[101]
Tarani, L.; Carito, V.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Messina, M.P.; Rasio, D.; De Luca, E.; Putotto, C.; Versacci, P.; Ceccanti, M.; Fiore, M. Neuroinflammatory markers in the serum of prepubertal children with down syndrome. J. Immunol. Res., 2020, 2020, 6937154.
[http://dx.doi.org/10.1155/2020/6937154] [PMID: 32280719]
[102]
Fiore, M.; Petrella, C.; Coriale, G.; Rosso, P.; Fico, E.; Ralli, M.; Greco, A.; De Vincentiis, M.; Minni, A.; Polimeni, A.; Vitali, M.; Messina, M.P.; Ferraguti, G.; Tarani, F.; de Persis, S.; Ceccanti, M.; Tarani, L. Markers of neuroinflammation in the serum of prepubertal children with fetal alcohol spectrum disorders. CNS Neurol. Disord. Drug Targets, 2022, 21(9), 854-868.
[http://dx.doi.org/10.2174/1871527320666211201154839] [PMID: 34852752]
[103]
Fiore, M.; Tarani, L.; Radicioni, A.; Spaziani, M.; Ferraguti, G.; Putotto, C. Serum prokineticin-2 in prepubertal and adult klinefelter individuals. Can. J. Physiol. Pharmacol., 2022, 100(2), 151-157.
[http://dx.doi.org/10.1139/cjpp-2021-0457] [PMID: 34614364]
[104]
Kapetanou, M.; Athanasopoulou, S.; Gonos, E.S. Transcriptional regulatory networks of the proteasome in mammalian systems. IUBMB Life, 2022, 74(1), 41-52.
[http://dx.doi.org/10.1002/iub.2586] [PMID: 34958522]
[105]
Basler, M.; Groettrup, M. On the role of the immunoproteasome in protein homeostasis. Cells, 2021, 10(11), 3216.
[http://dx.doi.org/10.3390/cells10113216] [PMID: 34831438]
[106]
Upadhyay, A. Natural compounds in the regulation of proteostatic pathways: An invincible artillery against stress, ageing, and diseases. Acta Pharm. Sin. B, 2021, 11(10), 2995-3014.
[http://dx.doi.org/10.1016/j.apsb.2021.01.006] [PMID: 34729300]
[107]
Di Sanzo, S.; Spengler, K.; Leheis, A.; Kirkpatrick, J.M.; Rändler, T.L.; Baldensperger, T.; Dau, T.; Henning, C.; Parca, L.; Marx, C.; Wang, Z.Q.; Glomb, M.A.; Ori, A.; Heller, R. Mapping protein carboxymethylation sites provides insights into their role in proteostasis and cell proliferation. Nat. Commun., 2021, 12(1), 6743.
[http://dx.doi.org/10.1038/s41467-021-26982-6] [PMID: 34795246]
[108]
Manola, M.S.; Gumeni, S.; Trougakos, I.P. Differential dose-and tissue-dependent effects of foxo on aging, metabolic and proteostatic pathways. Cells, 2021, 10(12), 3577.
[http://dx.doi.org/10.3390/cells10123577] [PMID: 34944088]
[109]
Tower, J. Heat shock proteins and Drosophila aging. Exp. Gerontol., 2011, 46(5), 355-362.
[http://dx.doi.org/10.1016/j.exger.2010.09.002] [PMID: 20840862]
[110]
Morrow, G.; Tanguay, R.M. Heat shock proteins and aging in Drosophila melanogaster. Semin. Cell Dev. Biol., 2003, 14(5), 291-299.
[http://dx.doi.org/10.1016/j.semcdb.2003.09.023] [PMID: 14986859]
[111]
Lang, B.J.; Prince, T.L.; Okusha, Y.; Bunch, H.; Calderwood, S.K. Heat shock proteins in cell signaling and cancer. Biochim. Biophys. Acta Mol. Cell Res., 2022, 1869(3), 119187.
[http://dx.doi.org/10.1016/j.bbamcr.2021.119187] [PMID: 34906617]
[112]
Lacey, T.; Lacey, H. Linking hsp90's role as an evolutionary capacitator to the development of cancer. Cancer Treat. Res. Commun., 2021, 28, 100400.
[http://dx.doi.org/10.1016/j.ctarc.2021.100400] [PMID: 34023771]
[113]
Boliukh, I. Rombel-Bryzek, A.; Żuk, O.; Radecka, B. The role of heat shock proteins in neoplastic processes and the research on their importance in the diagnosis and treatment of cancer. Contemp. Oncol. (Pozn.), 2021, 25(2), 73-79.
[http://dx.doi.org/10.5114/wo.2021.106006] [PMID: 34667432]
[114]
Szczuka, I.; Wierzbicki, J.; Serek, P. Szczęśniak-Sięga, B.M.; Krzystek-Korpacka, M. Heat shock proteins hspa1 and hsp90aa1 are upregulated in colorectal polyps and can be targeted in cancer cells by anti-inflammatory oxicams with arylpiperazine pharmacophore and benzoyl moiety substitutions at thiazine ring. Biomolecules, 2021, 11(11), 1588.
[http://dx.doi.org/10.3390/biom11111588] [PMID: 34827586]
[115]
Gráf, L.; Barabás, L.; Madaras, B.; Garam, N.; Maláti, É.; Horváth, L.; Prohászka, Z.; Horváth, Z.; Kocsis, J. High serum Hsp70 level predicts poor survival in colorectal cancer: Results obtained in an independent validation cohort. Cancer Biomark., 2018, 23(4), 539-547.
[http://dx.doi.org/10.3233/CBM-181683] [PMID: 30452400]
[116]
Balázs, M.; Zsolt, H.; László, G.; Gabriella, G.; Lilla, T.; Gyula, O.; Balázs, D.; Éva, M.; Zoltán, B.; Zoltán, P.; Judit, K. Serum heat shock protein 70, as a potential biomarker for small cell lung cancer. Pathol. Oncol. Res., 2017, 23(2), 377-383.
[http://dx.doi.org/10.1007/s12253-016-0118-x] [PMID: 27704355]
[117]
Ni, J.; Gao, J.; Li, Q. Ribosome ADP‐ribosylation: A mechanism for maintaining protein homeostasis in cancers. Cell Biol. Int., 2022, 46(3), 333-335.
[http://dx.doi.org/10.1002/cbin.11745] [PMID: 34897867]
[118]
Challa, S.; Khulpateea, B.R.; Nandu, T.; Camacho, C.V.; Ryu, K.W.; Chen, H.; Peng, Y.; Lea, J.S.; Kraus, W.L. Ribosome ADP-ribosylation inhibits translation and maintains proteostasis in cancers. Cell, 2021, 184(17), 4531-4546.e26.
[http://dx.doi.org/10.1016/j.cell.2021.07.005] [PMID: 34314702]
[119]
Ren, J.; Zhang, Y. Targeting autophagy in aging and aging-related cardiovascular diseases. Trends Pharmacol. Sci., 2018, 39(12), 1064-1076.
[http://dx.doi.org/10.1016/j.tips.2018.10.005] [PMID: 30458935]
[120]
Tan, C.C.; Yu, J.T.; Tan, M.S.; Jiang, T.; Zhu, X.C.; Tan, L. Autophagy in aging and neurodegenerative diseases: Implications for pathogenesis and therapy. Neurobiol. Aging, 2014, 35(5), 941-957.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.019] [PMID: 24360503]
[121]
Fîlfan, M.; Sandu, R.E. Zăvăleanu, A.D.; GreşiŢă A.; Glăvan, D.G.; Olaru, D.G.; Popa-Wagner, A. Autophagy in aging and disease. Rom. J. Morphol. Embryol., 2017, 58(1), 27-31.
[PMID: 28523294]
[122]
Caballero, B.; Coto-Montes, A. An insight into the role of autophagy in cell responses in the aging and neurodegenerative brain. Histol. Histopathol., 2012, 27(3), 263-275.
[http://dx.doi.org/10.14670/HH-27.263] [PMID: 22237704]
[123]
Saha, S.; Panigrahi, D.P.; Patil, S.; Bhutia, S.K. Autophagy in health and disease: A comprehensive review. Biomed. Pharmacother., 2018, 104, 485-495.
[http://dx.doi.org/10.1016/j.biopha.2018.05.007] [PMID: 29800913]
[124]
Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S.; Signori, E.; Honoki, K.; Georgakilas, A.G.; Amin, A.; Helferich, W.G.; Boosani, C.S.; Guha, G.; Ciriolo, M.R.; Chen, S.; Mohammed, S.I.; Azmi, A.S.; Keith, W.N.; Bilsland, A.; Bhakta, D.; Halicka, D.; Fujii, H.; Aquilano, K.; Ashraf, S.S.; Nowsheen, S.; Yang, X.; Choi, B.K.; Kwon, B.S. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol., 2015, 35(Suppl.), S185-S198.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.004] [PMID: 25818339]
[125]
Rajendran, P.; Alzahrani, A.M.; Hanieh, H.N.; Kumar, S.A.; Ben Ammar, R.; Rengarajan, T.; Alhoot, M.A. Autophagy and senescence: A new insight in selected human diseases. J. Cell. Physiol., 2019, 234(12), 21485-21492.
[http://dx.doi.org/10.1002/jcp.28895] [PMID: 31144309]
[126]
Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy is pro-senescence when seen in close-up, but anti-senescence in long-shot. Mol. Cells, 2017, 40(9), 607-612.
[http://dx.doi.org/10.14348/molcells.2017.0151] [PMID: 28927262]
[127]
Gewirtz, D.A. Autophagy and senescence: A partnership in search of definition. Autophagy, 2013, 9(5), 808-812.
[http://dx.doi.org/10.4161/auto.23922] [PMID: 23422284]
[128]
Brassart-Pasco, S.; Brézillon, S.; Brassart, B.; Ramont, L.; Oudart, J.B.; Monboisse, J.C. Tumor microenvironment: Extracellular matrix alterations influence tumor progression. Front. Oncol., 2020, 10, 397.
[http://dx.doi.org/10.3389/fonc.2020.00397] [PMID: 32351878]
[129]
Henke, E.; Nandigama, R.; Ergün, S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front. Mol. Biosci., 2020, 6, 160.
[http://dx.doi.org/10.3389/fmolb.2019.00160] [PMID: 32118030]
[130]
Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis, 2010, 31(1), 27-36.
[http://dx.doi.org/10.1093/carcin/bgp220] [PMID: 19752007]
[131]
Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation, 2011, 123(19), 2145-2156.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.956839] [PMID: 21576679]
[132]
Kanwal, R.; Gupta, S. Epigenetic modifications in cancer. Clin. Genet., 2012, 81(4), 303-311.
[http://dx.doi.org/10.1111/j.1399-0004.2011.01809.x] [PMID: 22082348]
[133]
Cheng, Y.; He, C.; Wang, M.; Ma, X.; Mo, F.; Yang, S.; Han, J.; Wei, X. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduct. Target. Ther., 2019, 4, 62.
[http://dx.doi.org/10.1038/s41392-019-0095-0] [PMID: 31871779]
[134]
Hayashi, T.; Konishi, I. Correlation of anti-tumour drug resistance with epigenetic regulation. Br. J. Cancer, 2021, 124(4), 681-682.
[http://dx.doi.org/10.1038/s41416-020-01183-y] [PMID: 33268818]
[135]
Peixoto, P.; Etcheverry, A.; Aubry, M.; Missey, A.; Lachat, C.; Perrard, J.; Hendrick, E.; Delage-Mourroux, R.; Mosser, J.; Borg, C.; Feugeas, J.P.; Herfs, M.; Boyer-Guittaut, M.; Hervouet, E. EMT is associated with an epigenetic signature of ECM remodeling genes. Cell Death Dis., 2019, 10(3), 205.
[http://dx.doi.org/10.1038/s41419-019-1397-4] [PMID: 30814494]
[136]
Gupta, R. Epigenetic regulation and targeting of ECM for cancer therapy. Am. J. Physiol. Cell Physiol., 2022, 322(4), C762-C768.
[http://dx.doi.org/10.1152/ajpcell.00022.2022] [PMID: 35235427]
[137]
Gabanella, F.; Barbato, C.; Fiore, M.; Petrella, C.; de Vincentiis, M.; Greco, A.; Minni, A.; Corbi, N.; Passananti, C.; Di Certo, M.G. Fine-Tuning of mTOR mRNA and Nucleolin Complexes by SMN. Cells, 2021, 10(11), 3015.
[http://dx.doi.org/10.3390/cells10113015] [PMID: 34831238]
[138]
Triaca, V.; Carito, V.; Fico, E.; Rosso, P.; Fiore, M.; Ralli, M.; Lambiase, A.; Greco, A.; Tirassa, P. Cancer stem cells-driven tumor growth and immune escape: The Janus face of neurotrophins. Aging (Albany NY), 2019, 11(23), 11770-11792.
[http://dx.doi.org/10.18632/aging.102499] [PMID: 31812953]
[139]
Marks, D.L.; Olson, R.L.; Fernandez-Zapico, M.E. Epigenetic control of the tumor microenvironment. Epigenomics, 2016, 8(12), 1671-1687.
[http://dx.doi.org/10.2217/epi-2016-0110] [PMID: 27700179]
[140]
McLay, R.N.; Freeman, S.M.; Harlan, R.E.; Ide, C.F.; Kastin, A.J.; Zadina, J.E. Aging in the hippocampus: Interrelated actions of neurotrophins and glucocorticoids. Neurosci. Biobehav. Rev., 1997, 21(5), 615-629.
[http://dx.doi.org/10.1016/S0149-7634(96)00046-2] [PMID: 9353795]
[141]
Mohammed, A.H.; Henriksson, B.G.; Söderström, S.; Ebendal, T.; Olsson, T.; Seckl, J.R. Environmental influences on the central nervous system and their implications for the aging rat. Behav. Brain Res., 1993, 57(2), 183-191.
[http://dx.doi.org/10.1016/0166-4328(93)90134-C] [PMID: 8117423]
[142]
Aloe, L.; Manni, L.; Properzi, F.; De Santis, S.; Fiore, M. Evidence that nerve growth factor promotes the recovery of peripheral neuropathy induced in mice by cisplatin: behavioral, structural and biochemical analysis. Auton. Neurosci., 2000, 86(1-2), 84-93.
[http://dx.doi.org/10.1016/S1566-0702(00)00247-2] [PMID: 11269929]
[143]
Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Tirassa, P.; Iannitelli, A.; Ralli, M.; Vitali, M.; Ceccanti, M.; Chaldakov, G.N.; Versacci, P.; Fiore, M. Nerve growth factor, stress and diseases. Curr. Med. Chem., 2021, 28(15), 2943-2959.
[http://dx.doi.org/10.2174/0929867327999200818111654] [PMID: 32811396]
[144]
De Santis, S.; Pace, A.; Bove, L.; Cognetti, F.; Properzi, F.; Fiore, M.; Triaca, V.; Savarese, A.; Simone, M.D.; Jandolo, B.; Manzione, L.; Aloe, L. Patients treated with antitumor drugs displaying neurological deficits are characterized by a low circulating level of nerve growth factor. Clin. Cancer Res., 2000, 6(1), 90-95.
[PMID: 10656436]
[145]
Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Iannitelli, A.; Carito, V.; Tirassa, P.; Chaldakov, G.N.; Messina, M.P.; Ceccanti, M.; Fiore, M. Nerve growth factor in alcohol use disorders. Curr. Neuropharmacol., 2021, 19(1), 45-60.
[http://dx.doi.org/10.2174/1570159X18666200429003239] [PMID: 32348226]
[146]
Carito, V.; Ceccanti, M.; Ferraguti, G.; Coccurello, R.; Ciafrè, S.; Tirassa, P.; Fiore, M. NGF and BDNF alterations by prenatal alcohol exposure. Curr. Neuropharmacol., 2019, 17(4), 308-317.
[http://dx.doi.org/10.2174/1570159X15666170825101308] [PMID: 28847297]
[147]
Ceccanti, M.; Mancinelli, R.; Tirassa, P.; Laviola, G.; Rossi, S.; Romeo, M.; Fiore, M. Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. Neurobiol. Aging, 2012, 33(2), 359-367.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.005] [PMID: 20382450]
[148]
Melincovici, C.S. Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol., 2018, 59(2), 455-467.
[PMID: 30173249]
[149]
Siveen, K.S.; Prabhu, K.; Krishnankutty, R.; Kuttikrishnan, S.; Tsakou, M.; Alali, F.Q.; Dermime, S.; Mohammad, R.M.; Uddin, S. Vascular Endothelial Growth Factor (VEGF) signaling in tumour vascularization: Potential and challenges. Curr. Vasc. Pharmacol., 2017, 15(4), 339-351.
[http://dx.doi.org/10.2174/1570161115666170105124038] [PMID: 28056756]
[150]
Al-Zamil, W.M.; Yassin, S.A. Recent developments in age-related macular degeneration: A review. Clin. Interv. Aging, 2017, 12, 1313-1330.
[http://dx.doi.org/10.2147/CIA.S143508] [PMID: 28860733]
[151]
Mahoney, E.R.; Dumitrescu, L.; Moore, A.M.; Cambronero, F.E.; De Jager, P.L.; Koran, M.E.I.; Petyuk, V.A.; Robinson, R.A.S.; Goyal, S.; Schneider, J.A.; Bennett, D.A.; Jefferson, A.L.; Hohman, T.J. Brain expression of the vascular endothelial growth factor gene family in cognitive aging and alzheimer’s disease. Mol. Psychiatry, 2021, 26(3), 888-896.
[http://dx.doi.org/10.1038/s41380-019-0458-5] [PMID: 31332262]
[152]
Oca, A.I.; Pérez-Sala, Á.; Pariente, A.; Ochoa, R.; Velilla, S.; Peláez, R.; Larráyoz, I.M. Predictive biomarkers of age-related macular degeneration response to Anti-VEGF treatment. J. Pers. Med., 2021, 11(12), 1329.
[http://dx.doi.org/10.3390/jpm11121329] [PMID: 34945801]
[153]
Ralli, M.; Botticelli, A.; Visconti, I.C.; Angeletti, D.; Fiore, M.; Marchetti, P.; Lambiase, A.; de Vincentiis, M.; Greco, A. Immunotherapy in the treatment of metastatic melanoma: Current knowledge and future directions. J. Immunol. Res., 2020, 2020, 9235638.
[http://dx.doi.org/10.1155/2020/9235638] [PMID: 32671117]
[154]
Zinger, A.; Cho, W.C.; Ben-Yehuda, A. Cancer and aging - the inflammatory connection. Aging Dis., 2017, 8(5), 611-627.
[http://dx.doi.org/10.14336/AD.2016.1230] [PMID: 28966805]
[155]
Mitchell, W.A.; Meng, I.; Nicholson, S.A.; Aspinall, R. Thymic output, ageing and zinc. Biogerontology, 2006, 7(5-6), 461-470.
[http://dx.doi.org/10.1007/s10522-006-9061-7] [PMID: 16964524]
[156]
Dowling, M.R.; Hodgkin, P.D. Why does the thymus involute? A selection-based hypothesis. Trends Immunol., 2009, 30(7), 295-300.
[http://dx.doi.org/10.1016/j.it.2009.04.006] [PMID: 19540805]
[157]
Shanley, D.P.; Aw, D.; Manley, N.R.; Palmer, D.B. An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol., 2009, 30(7), 374-381.
[http://dx.doi.org/10.1016/j.it.2009.05.001] [PMID: 19541538]
[158]
Su, X.; Zhang, H.; Lei, F.; Wang, R.; Lin, T.; Liao, L. Epigenetic therapy attenuates oxidative stress in BMSCs during ageing. J. Cell. Mol. Med., 2022, 26, 375-384.
[http://dx.doi.org/10.1111/jcmm.17089] [PMID: 34874118]
[159]
Moro, L. Mitochondrial dysfunction in aging and cancer. J. Clin. Med., 2019, 8(11), E1983.
[http://dx.doi.org/10.3390/jcm8111983] [PMID: 31731601]
[160]
Weinberg, F.; Ramnath, N.; Nagrath, D. Reactive oxygen species in the tumor microenvironment: An overview. Cancers (Basel), 2019, 11(8), E1191.
[http://dx.doi.org/10.3390/cancers11081191] [PMID: 31426364]
[161]
Genovese, I.; Carinci, M.; Modesti, L.; Aguiari, G.; Pinton, P.; Giorgi, C. Mitochondria: Insights into crucial features to overcome cancer chemoresistance. Int. J. Mol. Sci., 2021, 22(9), 4770.
[http://dx.doi.org/10.3390/ijms22094770] [PMID: 33946271]
[162]
Martinez-Outschoorn, U.E.; Lin, Z.; Trimmer, C.; Flomenberg, N.; Wang, C.; Pavlides, S.; Pestell, R.G.; Howell, A.; Sotgia, F.; Lisanti, M.P. Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle, 2011, 10(15), 2504-2520.
[http://dx.doi.org/10.4161/cc.10.15.16585] [PMID: 21778829]
[163]
Parsons, T.J.; Muniec, D.S.; Sullivan, K.; Woodyatt, N.; Alliston-Greiner, R.; Wilson, M.R.; Berry, D.L.; Holland, K.A.; Weedn, V.W.; Gill, P.; Holland, M.M. A high observed substitution rate in the human mitochondrial DNA control region. Nat. Genet., 1997, 15(4), 363-368.
[http://dx.doi.org/10.1038/ng0497-363] [PMID: 9090380]
[164]
Malyarchuk, B.A.; Rogozin, I.B.; Berikov, V.B.; Derenko, M.V. Analysis of phylogenetically reconstructed mutational spectra in human mitochondrial DNA control region. Hum. Genet., 2002, 111(1), 46-53.
[http://dx.doi.org/10.1007/s00439-002-0740-4] [PMID: 12136235]
[165]
Vatner, S.F.; Zhang, J.; Oydanich, M.; Berkman, T.; Naftalovich, R.; Vatner, D.E. Healthful aging mediated by inhibition of oxidative stress. Ageing Res. Rev., 2020, 64, 101194.
[http://dx.doi.org/10.1016/j.arr.2020.101194] [PMID: 33091597]
[166]
Lee, H.C.; Wei, Y.H. Mitochondria and aging. Adv. Exp. Med. Biol., 2012, 942, 311-327.
[http://dx.doi.org/10.1007/978-94-007-2869-1_14] [PMID: 22399429]
[167]
Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.A.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[168]
Ungvari, Z.; Tarantini, S.; Donato, A.J.; Galvan, V.; Csiszar, A. Mechanisms of vascular aging. Circ. Res., 2018, 123(7), 849-867.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311378] [PMID: 30355080]
[169]
Miller, RA The anti-aging sweepstakes: Catalase runs for the ROSes. Science (80- ), 2005, 308, 1875-6.
[http://dx.doi.org/10.1126/science.1114393]
[170]
Giorgi, C.; Marchi, S.; Simoes, I.C.M.; Ren, Z.; Morciano, G.; Perrone, M.; Patalas-Krawczyk, P.; Borchard, S. Jędrak, P.; Pierzynowska, K.; Szymański, J.; Wang, D.Q.; Portincasa, P.; Węgrzyn, G.; Zischka, H.; Dobrzyn, P.; Bonora, M.; Duszynski, J.; Rimessi, A.; Karkucinska-Wieckowska, A.; Dobrzyn, A.; Szabadkai, G.; Zavan, B.; Oliveira, P.J.; Sardao, V.A.; Pinton, P.; Wieckowski, M.R. Mitochondria and reactive oxygen species in aging and age-related diseases. Int. Rev. Cell Mol. Biol., 2018, 340, 209-344.
[http://dx.doi.org/10.1016/bs.ircmb.2018.05.006] [PMID: 30072092]
[171]
Connolly, N.M.C.; Theurey, P.; Adam-Vizi, V.; Bazan, N.G.; Bernardi, P.; Bolaños, J.P.; Culmsee, C.; Dawson, V.L.; Deshmukh, M.; Duchen, M.R.; Düssmann, H.; Fiskum, G.; Galindo, M.F.; Hardingham, G.E.; Hardwick, J.M.; Jekabsons, M.B.; Jonas, E.A.; Jordán, J.; Lipton, S.A.; Manfredi, G.; Mattson, M.P.; McLaughlin, B.; Methner, A.; Murphy, A.N.; Murphy, M.P.; Nicholls, D.G.; Polster, B.M.; Pozzan, T.; Rizzuto, R.; Satrústegui, J.; Slack, R.S.; Swanson, R.A.; Swerdlow, R.H.; Will, Y.; Ying, Z.; Joselin, A.; Gioran, A.; Moreira Pinho, C.; Watters, O.; Salvucci, M.; Llorente-Folch, I.; Park, D.S.; Bano, D.; Ankarcrona, M.; Pizzo, P.; Prehn, J.H.M. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ., 2018, 25(3), 542-572.
[http://dx.doi.org/10.1038/s41418-017-0020-4] [PMID: 29229998]
[172]
Franco-Iborra, S.; Vila, M.; Perier, C. Mitochondrial quality control in neurodegenerative diseases: Focus on Parkinson’s disease and Huntington’s disease. Front. Neurosci., 2018, 12, 342.
[http://dx.doi.org/10.3389/fnins.2018.00342] [PMID: 29875626]
[173]
Schriner, SE; Linford, NJ; Martin, GM; Treuting, P; Ogburn, CE; Emond, M Medecine: Extension of murine life span by overexpression of catalase targeted to mitochondria. Science (80), 2005, 308, 1909-11.
[http://dx.doi.org/10.1126/science.1106653]
[174]
Linford, N.J.; Schriner, S.E.; Rabinovitch, P.S. Oxidative damage and aging: Spotlight on mitochondria. Cancer Res., 2006, 66(5), 2497-2499.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3163] [PMID: 16510562]
[175]
Harman, D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol., 1956, 11(3), 298-300.
[http://dx.doi.org/10.1093/geronj/11.3.298] [PMID: 13332224]
[176]
Andziak, B.; Buffenstein, R. Disparate patterns of age-related changes in lipid peroxidation in long-lived naked mole-rats and shorter-lived mice. Aging Cell, 2006, 5(6), 525-532.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00246.x] [PMID: 17129214]
[177]
Andziak, B.; O’Connor, T.P.; Qi, W.; DeWaal, E.M.; Pierce, A.; Chaudhuri, A.R.; Van Remmen, H.; Buffenstein, R. High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell, 2006, 5(6), 463-471.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00237.x] [PMID: 17054663]
[178]
Alptekin, A.; Ye, B.; Ding, H.F. Transcriptional regulation of stem cell and cancer stem cell metabolism. Curr. Stem Cell Rep., 2017, 3(1), 19-27.
[http://dx.doi.org/10.1007/s40778-017-0071-y] [PMID: 28920013]
[179]
Guha, M.; Srinivasan, S.; Ruthel, G.; Kashina, A.K.; Carstens, R.P.; Mendoza, A.; Khanna, C.; Van Winkle, T.; Avadhani, N.G. Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells. Oncogene, 2014, 33(45), 5238-5250.
[http://dx.doi.org/10.1038/onc.2013.467] [PMID: 24186204]
[180]
Lin, C.S.; Lee, H.T.; Lee, S.Y.; Shen, Y.A.; Wang, L.S.; Chen, Y.J.; Wei, Y.H. High mitochondrial DNA copy number and bioenergetic function are associated with tumor invasion of esophageal squamous cell carcinoma cell lines. Int. J. Mol. Sci., 2012, 13(9), 11228-11246.
[http://dx.doi.org/10.3390/ijms130911228] [PMID: 23109849]
[181]
Giamogante, F.; Poggio, E.; Barazzuol, L.; Covallero, A.; Calì, T. Apoptotic signals at the endoplasmic reticulum-mitochondria interface. Adv. Protein Chem. Struct. Biol., 2021, 126, 307-343.
[http://dx.doi.org/10.1016/bs.apcsb.2021.02.007]
[182]
Genovese, I.; Vezzani, B.; Danese, A.; Modesti, L.; Vitto, V.A.M.; Corazzi, V.; Pelucchi, S.; Pinton, P.; Giorgi, C. Mitochondria as the decision makers for cancer cell fate: from signaling pathways to therapeutic strategies. Cell Calcium, 2020, 92, 102308.
[http://dx.doi.org/10.1016/j.ceca.2020.102308] [PMID: 33096320]
[183]
van Vliet, A.R.; Verfaillie, T.; Agostinis, P. New functions of mitochondria associated membranes in cellular signaling. Biochim. Biophys. Acta, 2014, 1843(10), 2253-2262.
[http://dx.doi.org/10.1016/j.bbamcr.2014.03.009] [PMID: 24642268]
[184]
Mani, S.; Swargiary, G.; Singh, K.K. Natural agents targeting mitochondria in cancer. Int. J. Mol. Sci., 2020, 21(19), 1-30.
[http://dx.doi.org/10.3390/ijms21196992] [PMID: 32977472]
[185]
Pustylnikov, S.; Costabile, F.; Beghi, S.; Facciabene, A. Targeting mitochondria in cancer: Current concepts and immunotherapy approaches. Transl. Res., 2018, 202, 35-51.
[http://dx.doi.org/10.1016/j.trsl.2018.07.013] [PMID: 30144423]
[186]
Missiroli, S.; Perrone, M.; Genovese, I.; Pinton, P.; Giorgi, C. Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours. EBioMedicine, 2020, 59, 102943.
[http://dx.doi.org/10.1016/j.ebiom.2020.102943] [PMID: 32818805]
[187]
Choudhury, A.R.; Singh, K.K. Mitochondrial determinants of cancer health disparities. Semin. Cancer Biol., 2017, 47, 125-146.
[http://dx.doi.org/10.1016/j.semcancer.2017.05.001] [PMID: 28487205]
[188]
Srinivasainagendra, V.; Sandel, M.W.; Singh, B.; Sundaresan, A.; Mooga, V.P.; Bajpai, P.; Tiwari, H.K.; Singh, K.K. Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma. Genome Med., 2017, 9(1), 31.
[http://dx.doi.org/10.1186/s13073-017-0420-6] [PMID: 28356157]
[189]
Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res., 2010, 44(5), 479-496.
[http://dx.doi.org/10.3109/10715761003667554] [PMID: 20370557]
[190]
Saha, S.K.; Lee, S.B.; Won, J.; Choi, H.Y.; Kim, K.; Yang, G.M.; Dayem, A.A.; Cho, S.G. Correlation between oxidative stress, nutrition, and cancer initiation. Int. J. Mol. Sci., 2017, 18(7), E1544.
[http://dx.doi.org/10.3390/ijms18071544] [PMID: 28714931]
[191]
Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med., 2020, 52(2), 192-203.
[http://dx.doi.org/10.1038/s12276-020-0384-2] [PMID: 32060354]
[192]
Chaldakov, G.N.; Fiore, M.; Tonchev, A.B.; Aloe, L. Neuroadipology: A novel component of neuroendocrinology. Cell Biol. Int., 2010, 34(10), 1051-1053.
[http://dx.doi.org/10.1042/CBI20100509] [PMID: 20825365]
[193]
North, B.J.; Sinclair, D.A. The intersection between aging and cardiovascular disease. Circ. Res., 2012, 110(8), 1097-1108.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.246876] [PMID: 22499900]
[194]
Tore, F.; Tonchev, A.; Fiore, M.; Tuncel, N.; Atanassova, P.; Aloe, L. From adipose tissue protein secretion to adipopharmacology of disease. Immunol. Endocr. Metab. Agents Med. Chem., 2007, 7, 149-155.
[http://dx.doi.org/10.2174/187152207780363712]
[195]
Lakatta, E.G.; Levy, D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease. Circulation, 2003, 107(1), 139-146.
[http://dx.doi.org/10.1161/01.CIR.0000048892.83521.58] [PMID: 12515756]
[196]
Ralli, M.; Grasso, M.; Gilardi, A.; Ceccanti, M.; Messina, M.P.; Tirassa, P.; Fiore, M.; Altissimi, G.A.; Salzano, F.; De Vincentiis, M.; Greco, A. The role of cytokines in head and neck squamous cell carcinoma: A review. Clin. Ter., 2020, 171(3), e268-e274.
[http://dx.doi.org/10.7417/CT.2020.2225] [PMID: 32323717]
[197]
Sinclair, D.A. Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev., 2005, 126(9), 987-1002.
[http://dx.doi.org/10.1016/j.mad.2005.03.019] [PMID: 15893363]
[198]
Sperka, T.; Wang, J.; Rudolph, K.L. DNA damage checkpoints in stem cells, ageing and cancer. Nat. Rev. Mol. Cell Biol., 2012, 13(9), 579-590.
[http://dx.doi.org/10.1038/nrm3420] [PMID: 22914294]
[199]
Cardoso, A.L.; Fernandes, A.; Aguilar-Pimentel, J.A.; de Angelis, M.H.; Guedes, J.R.; Brito, M.A.; Ortolano, S.; Pani, G.; Athanasopoulou, S.; Gonos, E.S.; Schosserer, M.; Grillari, J.; Peterson, P.; Tuna, B.G.; Dogan, S.; Meyer, A.; van Os, R.; Trendelenburg, A.U. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res. Rev., 2018, 47, 214-277.
[http://dx.doi.org/10.1016/j.arr.2018.07.004] [PMID: 30071357]
[200]
Yu, Y.; Mao, L.; Cheng, Z.; Zhu, X.; Cui, J.; Fu, X.; Cheng, J.; Zhou, Y.; Qiu, A.; Dong, Y.; Zhuang, X.; Lu, Y.; Lian, Y.; Tian, T.; Wu, S.; Chu, M. A novel regQTL-SNP and the risk of lung cancer: A multi-dimensional study. Arch. Toxicol., 2021, 95(12), 3815-3827.
[http://dx.doi.org/10.1007/s00204-021-03170-5] [PMID: 34596730]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy