Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

RON Receptor Tyrosine Kinase in Tumorigenic Stemness as a Therapeutic Target of Antibody-drug Conjugates for Eradication of Triple-negative Breast Cancer Stem Cells

Author(s): Sreedhar Reddy Suthe, Hang-Ping Yao, Tian-Hao Weng and Ming-Hai Wang*

Volume 23, Issue 2, 2023

Published on: 19 September, 2022

Page: [103 - 117] Pages: 15

DOI: 10.2174/1568009622666220825115528

Price: $65

Abstract

Background: Cancer stem-like cells in triple-negative breast cancer (TNBC-SLCs) are the tumorigenic core for malignancy. Aberrant expression of the RON receptor tyrosine kinase has implications in TNBC tumorigenesis and malignancy.

Objective: In this study, we identified the RON receptor as a pathogenic factor contributing to TNBC cell stemness and validated anti-RON antibody-drug conjugate Zt/g4-MMAE for eradication of RONexpressing TNBC-SLCs.

Methods: Immunofluorescence and Western blotting were used for analyzing cellular marker expression. TNBC-SLCs were isolated by magnetic-immunofluorescence cell-sorting techniques. Spheroids were generated using the ultralow adhesion culture methods. Levels of TNBC-SLC chemosensitivity were determined by MTS assays. TNBC-SLC mediated tumor growth was determined in athymic nude mice. The effectiveness of Zt/g4-induced RON internalization was measured by immunofluorescence analysis. Efficacies of Zt/g4-MMAE in killing TNBC-SLCs in vitro and in eradicating TNBC-SLCmediated tumors were determined in mouse models. All data were statistically analyzed using the GraphPad Prism 7 software.

Results: Increased RON expression existed in TNBC-SLCs with CD44+/CD24- phenotypes and ALDH activities and facilitated epithelial to mesenchymal transition. RON-positive TNBC-SLCs enhanced spheroid-formatting capability compared to RON-negative TNBC-SLCs, which were sensitive to small molecule kinase inhibitor BMS-777607. Increased RON expression also promoted TNBC-SLC chemoresistance and facilitated tumor growth at an accelerated rate. In vitro, Zt/g4-MMAE caused massive TNBC-SLC death with an average IC50 value of ~1.56 μg per/ml and impaired TNBC cell spheroid formation. In mice, Zt/g4-MMAE effectively inhibited and/or eradicated TNBC-SLC mediated tumors in a single agent regimen.

Conclusion: Sustained RON expression contributes to TNBC-SLC tumorigenesis. Zt/g4-MMAE is found to be effective in vivo in killing TNBC-SLC-mediated xenograft tumors. Our findings highlight the feasibility of Zt/g4-MMAE for the eradication of TNBC-SLCs in the future.

Keywords: Triple-negative breast cancer, cancer stem cell, RON receptor tyrosine kinase, antibody-drug conjugate, tumorigenic phenotypes, therapeutic efficacy.

Next »
Graphical Abstract

[1]
Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol., 2016, 13(11), 674-690.
[http://dx.doi.org/10.1038/nrclinonc.2016.66] [PMID: 27184417]
[2]
Garrido-Castro, A.C.; Lin, N.U.; Polyak, K. Insights into molecular classifications of triple-negative breast cancer: Improving patient selection for treatment. Cancer Discov., 2019, 9(2), 176-198.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1177] [PMID: 30679171]
[3]
Dittmer, J. Breast cancer stem cells: Features, key drivers and treatment options. Semin. Cancer Biol., 2018, 53, 59-74.
[http://dx.doi.org/10.1016/j.semcancer.2018.07.007] [PMID: 30059727]
[4]
Rangel, M.C.; Bertolette, D.; Castro, N.P.; Klauzinska, M.; Cuttitta, F.; Salomon, D.S. Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer. Breast Cancer Res. Treat., 2016, 156(2), 211-226.
[http://dx.doi.org/10.1007/s10549-016-3746-7] [PMID: 26968398]
[5]
Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3983-3988.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[6]
Shipitsin, M.; Polyak, K. The cancer stem cell hypothesis: In search of definitions, markers, and relevance. Lab. Invest., 2008, 88(5), 459-463.
[http://dx.doi.org/10.1038/labinvest.2008.14] [PMID: 18379567]
[7]
Ginestier, C.; Hur, M.H.; Charafe-Jauffret, E.; Monville, F.; Dutcher, J.; Brown, M.; Jacquemier, J.; Viens, P.; Kleer, C.G.; Liu, S.; Schott, A.; Hayes, D.; Birnbaum, D.; Wicha, M.S.; Dontu, G. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 2007, 1(5), 555-567.
[http://dx.doi.org/10.1016/j.stem.2007.08.014] [PMID: 18371393]
[8]
Baccelli, I.; Schneeweiss, A.; Riethdorf, S.; Stenzinger, A.; Schillert, A.; Vogel, V.; Klein, C.; Saini, M.; Bäuerle, T.; Wallwiener, M.; Holland-Letz, T.; Höfner, T.; Sprick, M.; Scharpff, M.; Marmé, F.; Sinn, H.P.; Pantel, K.; Weichert, W.; Trumpp, A. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat. Biotechnol., 2013, 31(6), 539-544.
[http://dx.doi.org/10.1038/nbt.2576] [PMID: 23609047]
[9]
Charafe-Jauffret, E.; Ginestier, C.; Iovino, F.; Tarpin, C.; Diebel, M.; Esterni, B.; Houvenaeghel, G.; Extra, J.M.; Bertucci, F.; Jacquemier, J.; Xerri, L.; Dontu, G.; Stassi, G.; Xiao, Y.; Barsky, S.H.; Birnbaum, D.; Viens, P.; Wicha, M.S. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin. Cancer Res., 2010, 16(1), 45-55.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1630] [PMID: 20028757]
[10]
Miyoshi, Y.; Shien, T.; Ogiya, A.; Ishida, N.; Yamazaki, K.; Horii, R.; Horimoto, Y.; Masuda, N.; Yasojima, H.; Inao, T.; Osako, T.; Takahashi, M.; Tomioka, N.; Endo, Y.; Hosoda, M.; Doihara, H.; Miyoshi, S.; Yamashita, H. Differences in expression of the cancer stem cell marker aldehyde dehydrogenase 1 among estrogen receptor-positive/human epidermal growth factor receptor type 2-negative breast cancer cases with early, late, and no recurrence. Breast Cancer Res., 2016, 18(1), 73.
[http://dx.doi.org/10.1186/s13058-016-0731-3] [PMID: 27368476]
[11]
Liu, S.; Cong, Y.; Wang, D.; Sun, Y.; Deng, L.; Liu, Y.; Martin-Trevino, R.; Shang, L.; McDermott, S.P.; Landis, M.D.; Hong, S.; Adams, A.; D’Angelo, R.; Ginestier, C.; Charafe-Jauffret, E.; Clouthier, S.G.; Birnbaum, D.; Wong, S.T.; Zhan, M.; Chang, J.C.; Wicha, M.S. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports, 2014, 2(1), 78-91.
[http://dx.doi.org/10.1016/j.stemcr.2013.11.009] [PMID: 24511467]
[12]
Ronsin, C.; Muscatelli, F.; Mattei, M.G.; Breathnach, R. A novel putative receptor protein tyrosine kinase of the met family. Oncogene, 1993, 8(5), 1195-1202.
[PMID: 8386824]
[13]
Yao, H.P.; Zhou, Y.Q.; Zhang, R.; Wang, M.H. MSP–RON signalling in cancer: Pathogenesis and therapeutic potential. Nat. Rev. Cancer, 2013, 13(7), 466-481.
[http://dx.doi.org/10.1038/nrc3545] [PMID: 23792360]
[14]
Suthe, S.R.; Yao, H.P.; Weng, T.H.; Hu, C.Y.; Feng, L.; Wu, Z.G.; Wang, M.H. RON receptor tyrosine kinase as a therapeutic target for eradication of triple-negative breast cancer: Efficacy of anti-RON ADC Zt/g4-MMAE. Mol. Cancer Ther., 2018, 17(12), 2654-2664.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0252] [PMID: 30275241]
[15]
Maggiora, P.; Marchio’, S.; Stella, M.C.; Giai, M.; Belfiore, A.; Bortoli, M.D.; Di Renzo, M.F.; Costantino, A.; Sismondi, P.; Comoglio, P.M. Overexpression of the RON gene in human breast carcinoma. Oncogene, 1998, 16(22), 2927-2933.
[http://dx.doi.org/10.1038/sj.onc.1201812] [PMID: 9671413]
[16]
Lee, W.Y.; Chen, H.H.W.; Chow, N.H.; Su, W.C.; Lin, P.W.; Guo, H.R. Prognostic significance of co-expression of RON and MET receptors in node-negative breast cancer patients. Clin. Cancer Res., 2005, 11(6), 2222-2228.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1761] [PMID: 15788670]
[17]
Wang, M-H.; Lee, W.; Luo, Y-L.; Weis, M.T.; Yao, H-P. Altered expression of the RON receptor tyrosine kinase in various epithelial cancers and its contribution to tumourigenic phenotypes in thyroid cancer cells. J. Pathol., 2007, 213(4), 402-411.
[http://dx.doi.org/10.1002/path.2245] [PMID: 17955509]
[18]
Yao, H.P.; Zhuang, C.M.; Zhou, Y.Q.; Zeng, J.Y.; Zhang, R.W.; Wang, M.H. Oncogenic variant RON160 expression in breast cancer and its potential as a therapeutic target by small molecule tyrosine kinase inhibitor. Curr. Cancer Drug Targets, 2013, 13(6), 686-697.
[http://dx.doi.org/10.2174/15680096113139990038] [PMID: 23597200]
[19]
Thangasamy, A.; Rogge, J.; Ammanamanchi, S. Regulation of RON tyrosine kinase-mediated invasion of breast cancer cells. J. Biol. Chem., 2008, 283(9), 5335-5343.
[http://dx.doi.org/10.1074/jbc.M706957200] [PMID: 18165235]
[20]
Wang, D.; Shen, Q.; Chen, Y.Q.; Wang, M.H. Collaborative activities of macrophage-stimulating protein and transforming growth factor-&β1 in induction of epithelial to mesenchymal transition: Roles of the RON receptor tyrosine kinase. Oncogene, 2004, 23(9), 1668-1680.
[http://dx.doi.org/10.1038/sj.onc.1207282] [PMID: 15001985]
[21]
Ma, Q.; Guin, S.; Padhye, S.S.; Zhou, Y.Q.; Zhang, R.W.; Wang, M.H. Ribosomal Protein S6 Kinase (RSK)-2 as a central effector molecule in RON receptor tyrosine kinase mediated epithelial to mesenchymal transition induced by macrophage-stimulating protein. Mol. Cancer, 2011, 10(1), 66.
[http://dx.doi.org/10.1186/1476-4598-10-66] [PMID: 21619683]
[22]
Ruiz-Torres, S.J.; Benight, N.M.; Karns, R.A.; Lower, E.E.; Guan, J.L.; Waltz, S.E. HGFL-mediated RON signaling supports breast cancer stem cell phenotypes via activation of non-canonical &β-catenin signaling. Oncotarget, 2017, 8(35), 58918-58933.
[http://dx.doi.org/10.18632/oncotarget.19441] [PMID: 28938607]
[23]
Feng, L.; Yao, H.P.; Wang, W.; Zhou, Y.Q.; Zhou, J.; Zhang, R.; Wang, M.H. Efficacy of anti-RON antibody Zt/g4-drug maytansinoid conjugation (Anti-RON ADC) as a novel therapeutics for targeted colorectal cancer therapy. Clin. Cancer Res., 2014, 20(23), 6045-6058.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0898] [PMID: 25294907]
[24]
Feng, L.; Yao, H.P.; Sharma, S.; Zhou, Y.Q.; Zhou, J.; Zhang, R.; Wang, M-H. Biological evaluation of antibody-maytansinoid conjugates as a strategy of RON targeted drug delivery for treatment of non-small cell lung cancer. J. Exp. Clin. Cancer Res., 2016, 35(1), 70.
[http://dx.doi.org/10.1186/s13046-016-0347-6] [PMID: 27102688]
[25]
Yao, H.P.; Feng, L.; Zhou, J.W.; Zhang, R.W.; Wang, M.H. Therapeutic evaluation of monoclonal antibody-maytansinoid conjugate as a model of RON-targeted drug delivery for pancreatic cancer treatment. Am. J. Cancer Res., 2016, 6(5), 937-956.
[PMID: 27293990]
[26]
Yao, H.P.; Feng, L.; Suthe, S.R.; Chen, L.H.; Weng, T.H.; Hu, C.Y.; Jun, E.S.; Wu, Z.G.; Wang, W.L.; Kim, S.C.; Tong, X.M.; Wang, M.H. Therapeutic efficacy, pharmacokinetic profiles, and toxicological activities of humanized antibody-drug conjugate Zt/g4-MMAE targeting RON receptor tyrosine kinase for cancer therapy. J. Immunother. Cancer, 2019, 7(1), 75.
[http://dx.doi.org/10.1186/s40425-019-0525-0] [PMID: 30871619]
[27]
Yao, H.P.; Feng, L.; Weng, T.H.; Hu, C.Y.; Suthe, S.R.; Mostofa, A.G.M.; Chen, L.H.; Wu, Z.G.; Wang, W.L.; Wang, M.H. Precinical efficacy of anti-RON antibody drig conjugate Zt/g4-MMAE for targeted therapy of pancreatic cancer overexpresing RON receptor tyrosine kinase. Mol. Pharm., 2018, 15(8), 3260-3271.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00298] [PMID: 29944378]
[28]
Schroeder, G.M.; An, Y.; Cai, Z.W.; Chen, X.T.; Clark, C.; Cornelius, L.A.M.; Dai, J.; Gullo-Brown, J.; Gupta, A.; Henley, B.; Hunt, J.T.; Jeyaseelan, R.; Kamath, A.; Kim, K.; Lippy, J.; Lombardo, L.J.; Manne, V.; Oppenheimer, S.; Sack, J.S.; Schmidt, R.J.; Shen, G.; Stefanski, K.; Tokarski, J.S.; Trainor, G.L.; Wautlet, B.S.; Wei, D.; Williams, D.K.; Zhang, Y.; Zhang, Y.; Fargnoli, J.; Borzilleri, R.M. Discovery of N -(4-(2-Amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a Selective and Orally Efficacious Inhibitor of the Met Kinase Superfamily. J. Med. Chem., 2009, 52(5), 1251-1254.
[http://dx.doi.org/10.1021/jm801586s] [PMID: 19260711]
[29]
Padhye, S.S.; Guin, S.; Yao, H.P.; Zhou, Y.Q.; Zhang, R.; Wang, M.H. Sustained expression of the RON receptor tyrosine kinase by pancreatic cancer stem cells as a potential targeting moiety for antibody-directed chemotherapeutics. Mol. Pharm., 2011, 8(6), 2310-2319.
[http://dx.doi.org/10.1021/mp200193u] [PMID: 22014215]
[30]
Diessner, J.; Bruttel, V.; Stein, R.G.; Horn, E.; Häusler, S F M.; Dietl, J.; Hönig, A.; Wischhusen, J. Targeting of preexisting and induced breast cancer stem cells with trastuzumab and trastuzumab emtansine (T-DM1). Cell Death Dis., 2014, 5(3)e1149
[http://dx.doi.org/10.1038/cddis.2014.115] [PMID: 24675467]
[31]
Kida, K.; Ishikawa, T.; Yamada, A.; Shimada, K.; Narui, K.; Sugae, S.; Shimizu, D.; Tanabe, M.; Sasaki, T.; Ichikawa, Y.; Endo, I. Effect of ALDH1 on prognosis and chemoresistance by breast cancer subtype. Breast Cancer Res. Treat., 2016, 156(2), 261-269.
[http://dx.doi.org/10.1007/s10549-016-3738-7] [PMID: 26975188]
[32]
Gómez-Miragaya, J.; Palafox, M.; Paré, L.; Yoldi, G.; Ferrer, I.; Vila, S.; Galván, P.; Pellegrini, P.; Pérez-Montoyo, H.; Igea, A.; Muñoz, P.; Esteller, M.; Nebreda, A.R.; Urruticoechea, A.; Morilla, I.; Pernas, S.; Climent, F.; Soler-Monso, M.T.; Petit, A.; Serra, V.; Prat, A.; González-Suárez, E. Resistance to taxanes in triple-negative breast cancer associates with the dynamics of a CD49f+ tumor-initiating population. Stem Cell Reports, 2017, 8(5), 1392-1407.
[http://dx.doi.org/10.1016/j.stemcr.2017.03.026] [PMID: 28457887]
[33]
Moreira, M.P.; da Conceição, B.L.; Cassali, G.D.; Silva, L.M. STAT3 as a promising chemoresistance biomarker associated with the CD44 +/high/CD24 -/low/ALDH + BCSCs-like subset of the Triple-Negative Breast Cancer (TNBC) cell line. Exp. Cell Res., 2018, 363(2), 283-290.
[http://dx.doi.org/10.1016/j.yexcr.2018.01.018] [PMID: 29352988]
[34]
Cazet, A.S.; Hui, M.N.; Elsworth, B.L.; Wu, S.Z.; Roden, D.; Chan, C.L.; Skhinas, J.N.; Collot, R.; Yang, J.; Harvey, K.; Johan, M.Z.; Cooper, C.; Nair, R.; Herrmann, D.; McFarland, A.; Deng, N.; Ruiz-Borrego, M.; Rojo, F.; Trigo, J.M.; Bezares, S.; Caballero, R.; Lim, E.; Timpson, P.; O’Toole, S.; Watkins, D.N.; Cox, T.R.; Samuel, M.S.; Martín, M.; Swarbrick, A. Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nat. Commun., 2018, 9(1), 2897.
[http://dx.doi.org/10.1038/s41467-018-05220-6] [PMID: 30042390]
[35]
Li, Y.; Zhang, T.; Korkaya, H.; Liu, S.; Lee, H.F.; Newman, B.; Yu, Y.; Clouthier, S.G.; Schwartz, S.J.; Wicha, M.S.; Sun, D. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin. Cancer Res., 2010, 16(9), 2580-2590.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2937] [PMID: 20388854]
[36]
McClaine, R.J.; Marshal, A.M.; Wagh, P.K.; Waltz, S.E. Ron receptor tyrosine kinase activation confers resistance to tamoxifen in breast cancer cell lines. Neoplasia, 2010, 12(8), 650-658.
[http://dx.doi.org/10.1593/neo.10476] [PMID: 20689759]
[37]
Pohl, S.Ö-G.; Brook, N.; Agostino, M.; Arfuso, F.; Kumar, A.P.; Dharmarajan, A. Wnt signaling in triple-negative breast cancer. Oncogenesis, 2017, 6(4)e310
[http://dx.doi.org/10.1038/oncsis.2017.14] [PMID: 28368389]
[38]
Kim, N.; Cho, S.B.; Park, Y.L.; Park, S.Y.; Myung, E.; Kim, S.H.; Yu, H.M.; Son, Y.A.; Myung, D.S.; Lee, W.S.; Joo, Y.E. Effect of Recepteur d’Origine Nantais expression on chemosensitivity and tumor cell behavior in colorectal cancer. Oncol. Rep., 2016, 35(6), 3331-3340.
[http://dx.doi.org/10.3892/or.2016.4721] [PMID: 27035413]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy