Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Exploring the Molecular Aspects of Glycosylation in MOG Antibody Disease (MOGAD)

Author(s): Gayathri Sharma, Smrithi Gopinath and Ramya Lakshmi Narasimhan*

Volume 23, Issue 6, 2022

Published on: 03 September, 2022

Page: [384 - 394] Pages: 11

DOI: 10.2174/1389203723666220815110509

Price: $65

Abstract

Myelin Oligodendrocyte Glycoprotein-antibody disease (MOGAD) is an immune-mediated disorder that mainly targets the central nervous system of the patient. The pattern of inflammation caused by MOGAD mainly targets the brain stem, spinal cord, and optic nerve, and the symptoms vary from person to person. Its clinical features often overlap with Multiple Sclerosis (MS) and Neuromyelitis Optica Spectrum Disorder (NMOSD) which makes the accurate diagnosis of this rare neurodegenerative disease quite difficult. Hence, this review was attempted not only to understand MOGAD but also to comprehend the differences between MOGAD and MS with the help of a brief overview of the similarities and contrasting features. Here we highlight the mechanism and importance of MOG in myelination and demyelination. Glycosylation has a serious impact on the myelination of neurons as N-glycan helps in the proper folding of MOG. On transforming into an autoantigen, MOG can activate the classical complement pathway by triggering the activation of proteins associated with the complement cascade. Patients with persistently positive antibodies to MOG are at risk for recurrent episodes of MOGAD. In the current scenario, there is an urgent need to develop therapeutic interventions that induce remyelination. Remyelination in terms of MOG glycosylation is hypothesized as a possible strategy to treat patients diagnosed with MOGAD. On the whole, the article aims to provide a clear insight into the disease and the structural aspects associated with it.

Keywords: MOG, MOGAD, demyelination, N-glycosylation, autoantigen, remyelination.

Graphical Abstract

[1]
Williamson, J.M.; Lyons, D.A. Myelin dynamics throughout life: An ever-changing landscape? Front. Cell. Neurosci., 2018, 424, 1-8.
[2]
Back, S.A.; Miller, S.P. Brain injury in premature neonates: A primary cerebral dysmaturation disorder? Ann. Neurol., 2014, 75(4), 469-486.
[http://dx.doi.org/10.1002/ana.24132] [PMID: 24615937]
[3]
Singh, D.K.; Ling, E.A.; Kaur, C. Hypoxia and myelination deficits in the developing brain. Int. J. Dev. Neurosci., 2018, 70, 3-11.
[http://dx.doi.org/10.1016/j.ijdevneu.2018.06.012] [PMID: 29964158]
[4]
Roth, M.P.; Malfroy, L.; Offer, C.; Sevin, J.; Enault, G.; Borot, N.; Pontarotti, P.; Coppin, H. The human myelin oligodendrocyte glycoprotein (MOG) gene: Complete nucleotide sequence and structural characterization. Genomics, 1995, 28(2), 241-250.
[http://dx.doi.org/10.1006/geno.1995.1137] [PMID: 8530032]
[5]
Höftberger, R.; Guo, Y.; Flanagan, E.P.; Lopez-Chiriboga, A.S.; Endmayr, V.; Hochmeister, S.; Joldic, D.; Pittock, S.J.; Tillema, J.M.; Gorman, M.; Lassmann, H.; Lucchinetti, C.F. The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol., 2020, 139(5), 875-892.
[http://dx.doi.org/10.1007/s00401-020-02132-y] [PMID: 32048003]
[6]
Johns, T.G.; Bernard, C.C. The structure and function of myelin oligodendrocyte glycoprotein. J. Neurochem., 1999, 72(1), 1-9.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0720001.x] [PMID: 9886048]
[7]
Breithaupt, C.; Schubart, A.; Zander, H.; Skerra, A.; Huber, R.; Linington, C.; Jacob, U. Structural insights into the antigenicity of myelin oligodendrocyte glycoprotein. Proc. Natl. Acad. Sci. USA, 2003, 100(16), 9446-9451.
[http://dx.doi.org/10.1073/pnas.1133443100] [PMID: 12874380]
[8]
Reindl, M.; Waters, P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat. Rev. Neurol., 2019, 15(2), 89-102.
[http://dx.doi.org/10.1038/s41582-018-0112-x] [PMID: 30559466]
[9]
Delarasse, C.; Smith, P.; Baker, D.; Amor, S. Novel pathogenic epitopes of myelin oligodendrocyte glycoprotein induce experimental autoimmune encephalomyelitis in C57BL/6 mice. Immunology, 2013, 140(4), 456-464.
[http://dx.doi.org/10.1111/imm.12155] [PMID: 23876060]
[10]
Hilton, A.A.; Slavin, A.J.; Hilton, D.J.; Bernard, C.C. Characterization of cDNA and genomic clones encoding human myelin oligodendrocyte glycoprotein. J. Neurochem., 1995, 65(1), 309-318.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65010309.x] [PMID: 7790876]
[11]
Kroepfl, J.F.; Viise, L.R.; Charron, A.J.; Linington, C.; Gardinier, M.V. Investigation of myelin/oligodendrocyte glycoprotein membrane topology. J. Neurochem., 1996, 67(5), 2219-2222.
[http://dx.doi.org/10.1046/j.1471-4159.1996.67052219.x] [PMID: 8863536]
[12]
Tea, F.; Lopez, J.A.; Ramanathan, S.; Merheb, V.; Lee, F.X.Z.; Zou, A.; Pilli, D.; Patrick, E.; van der Walt, A.; Monif, M.; Tantsis, E.M.; Yiu, E.M.; Vucic, S.; Henderson, A.P.D.; Fok, A.; Fraser, C.L.; Lechner-Scott, J.; Reddel, S.W.; Broadley, S.; Barnett, M.H.; Brown, D.A.; Lunemann, J.D.; Dale, R.C.; Brilot, F. Characterization of the human myelin oligodendrocyte glycoprotein antibody response in demyelination. Acta Neuropathol. Commun., 2019, 7(1), 145.
[http://dx.doi.org/10.1186/s40478-019-0786-3] [PMID: 31481127]
[13]
Cobo-Calvo, Á.; Ruiz, A.; D’Indy, H.; Poulat, A.L.; Carneiro, M.; Philippe, N.; Durand-Dubief, F.; Deiva, K.; Vukusic, S.; Desportes, V.; Marignier, R. MOG antibody-related disorders: Common features and uncommon presentations. J. Neurol., 2017, 264(9), 1945-1955.
[http://dx.doi.org/10.1007/s00415-017-8583-z] [PMID: 28770374]
[14]
Fan, S.; Xu, Y.; Ren, H.; Guan, H.; Feng, F.; Gao, X.; Ding, D.; Fang, F.; Shan, G.; Guan, T.; Zhang, Y.; Dai, Y.; Yao, M.; Peng, B.; Zhu, Y.; Cui, L. Comparison of myelin oligodendrocyte glycoprotein (MOG)-antibody disease and AQP4-IgG-positive neuromyelitis optica spectrum disorder (NMOSD) when they co-exist with anti-NMDA (N-methyl-D-aspartate) receptor encephalitis. Mult. Scler. Relat. Disord., 2018, 20, 144-152.
[http://dx.doi.org/10.1016/j.msard.2018.01.007] [PMID: 29414288]
[15]
Dale, R.C.; Tantsis, E.M.; Merheb, V.; Kumaran, R.Y.; Sinmaz, N.; Pathmanandavel, K.; Ramanathan, S.; Booth, D.R.; Wienholt, L.A.; Prelog, K.; Clark, D.R.; Guillemin, G.J.; Lim, C.K.; Mathey, E.K.; Brilot, F. Antibodies to MOG have a demyelination phenotype and affect oligodendrocyte cytoskeleton. Neurol. Neuroimmunol. Neuroinflamm., 2014, 1(1), e12.
[http://dx.doi.org/10.1212/NXI.0000000000000012] [PMID: 25340056]
[16]
Kinney, H.C.; Volpe, J.J. Myelination events.Volpe’s neurology of the newborn, 6th ed; Elsevier, 2018, pp. 176-188.
[http://dx.doi.org/10.1016/B978-0-323-42876-7.00008-9]
[17]
Back, S.A.; Luo, N.L.; Borenstein, N.S.; Levine, J.M.; Volpe, J.J.; Kinney, H.C. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J. Neurosci., 2001, 21(4), 1302-1312.
[http://dx.doi.org/10.1523/JNEUROSCI.21-04-01302.2001] [PMID: 11160401]
[18]
Peschl, P.; Bradl, M.; Höftberger, R.; Berger, T.; Reindl, M. Myelin oligodendrocyte glycoprotein: Deciphering a target in inflammatory demyelinating diseases. Front. Immunol., 2017, 529, 1-15.
[http://dx.doi.org/10.3389/fimmu.2017.00529]
[19]
Marignier, R.; Hacohen, Y.; Cobo-Calvo, A.; Pröbstel, A.K.; Aktas, O.; Alexopoulos, H.; Amato, M.P.; Asgari, N.; Banwell, B.; Bennett, J.; Brilot, F.; Capobianco, M.; Chitnis, T.; Ciccarelli, O.; Deiva, K.; De Sèze, J.; Fujihara, K.; Jacob, A.; Kim, H.J.; Kleiter, I.; Lassmann, H.; Leite, M.I.; Linington, C.; Meinl, E.; Palace, J.; Paul, F.; Petzold, A.; Pittock, S.; Reindl, M.; Sato, D.K.; Selmaj, K.; Siva, A.; Stankoff, B.; Tintore, M.; Traboulsee, A.; Waters, P.; Waubant, E.; Weinshenker, B.; Derfuss, T.; Vukusic, S.; Hemmer, B. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol., 2021, 20(9), 762-772.
[http://dx.doi.org/10.1016/S1474-4422(21)00218-0] [PMID: 34418402]
[20]
Burger, D.; Perruisseau, G.; Simon, M.; Steck, A.J. Comparison of the N-linked oligosaccharide structures of the two major human myelin glycoproteins MAG and P0: Assessment of the structures bearing the epitope for HNK-1 and human monoclonal immunoglobulin M found in demyelinating neuropathy. J. Neurochem., 1992, 58(3), 854-861.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb09335.x] [PMID: 1371150]
[21]
Lee, D.H.; Linker, R.A. The role of myelin oligodendrocyte glycoprotein in autoimmune demyelination: A target for multiple sclerosis therapy? Expert Opin. Ther. Targets, 2012, 16(5), 451-462.
[http://dx.doi.org/10.1517/14728222.2012.677438] [PMID: 22494461]
[22]
Jayananth, P.; Madhumitha, R.; Ramya, L. Imperative role of glycosylation in human MOG-HLA interaction: Molecular insights of MOG-Ab associated demyelination. J. Biomol. Struct. Dyn., 2022, 40(15), 7027-7037.
[http://dx.doi.org/10.1080/07391102.2021.1893816] [PMID: 33663341]
[23]
Zhou, D.; Srivastava, R.; Nessler, S.; Grummel, V.; Sommer, N.; Brück, W.; Hartung, H.P.; Stadelmann, C.; Hemmer, B. Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis. Proc. Natl. Acad. Sci. USA, 2006, 103(50), 19057-19062.
[http://dx.doi.org/10.1073/pnas.0607242103] [PMID: 17142321]
[24]
McLaughlin, K.A.; Chitnis, T.; Newcombe, J.; Franz, B.; Kennedy, J.; McArdel, S.; Kuhle, J.; Kappos, L.; Rostasy, K.; Pohl, D.; Gagne, D.; Ness, J.M.; Tenembaum, S.; O’Connor, K.C.; Viglietta, V.; Wong, S.J.; Tavakoli, N.P.; de Seze, J.; Idrissova, Z.; Khoury, S.J.; Bar-Or, A.; Hafler, D.A.; Banwell, B.; Wucherpfennig, K.W. Age-dependent B cell autoimmunity to a myelin surface antigen in pediatric multiple sclerosis. J. Immunol., 2009, 183(6), 4067-4076.
[http://dx.doi.org/10.4049/jimmunol.0801888] [PMID: 19687098]
[25]
von Büdingen, H.C.; Mei, F.; Greenfield, A.; Jahn, S.; Shen, Y.A.; Reid, H.H.; McKemy, D.D.; Chan, J.R. The myelin oligodendrocyte glycoprotein directly binds nerve growth factor to modulate central axon circuitry. J. Cell Biol., 2015, 210(6), 891-898.
[http://dx.doi.org/10.1083/jcb.201504106] [PMID: 26347141]
[26]
Cong, H.; Jiang, Y.; Tien, P. Identification of the myelin oligodendrocyte glycoprotein as a cellular receptor for rubella virus. J. Virol., 2011, 85(21), 11038-11047.
[http://dx.doi.org/10.1128/JVI.05398-11] [PMID: 21880773]
[27]
Reindl, M.; Di Pauli, F.; Rostásy, K.; Berger, T. The spectrum of MOG autoantibody-associated demyelinating diseases. Nat. Rev. Neurol., 2013, 9(8), 455-461.
[http://dx.doi.org/10.1038/nrneurol.2013.118] [PMID: 23797245]
[28]
Pauli, F.; Berger, T. Myelin oligodendrocyte glycoprotein antibody-associated disorders: Toward a new spectrum of inflammatory demyelinating CNS disorders? Front. Immunol., 2018, 9, 2763.
[29]
Wu, D.; Struwe, W.B.; Harvey, D.J.; Ferguson, M.A.J.; Robinson, C.V. N-glycan microheterogeneity regulates interactions of plasma proteins. Proc. Natl. Acad. Sci. USA, 2018, 115(35), 8763-8768.
[http://dx.doi.org/10.1073/pnas.1807439115] [PMID: 30111543]
[30]
Bruno, A.; Scrima, M.; Novellino, E.; D’Errico, G.; D’Ursi, A.M.; Limongelli, V. The glycan role in the glycopeptide immunogenicity revealed by atomistic simulations and spectroscopic experiments on the multiple sclerosis biomarker CSF114(Glc). Sci. Rep., 2015, 5(1), 9200.
[http://dx.doi.org/10.1038/srep09200] [PMID: 25776265]
[31]
Clements, C.S.; Reid, H.H.; Beddoe, T.; Tynan, F.E.; Perugini, M.A.; Johns, T.G.; Bernard, C.C.; Rossjohn, J. The crystal structure of myelin oligodendrocyte glycoprotein, a key autoantigen in multiple sclerosis. Proc. Natl. Acad. Sci. USA, 2003, 100(19), 11059-11064.
[http://dx.doi.org/10.1073/pnas.1833158100] [PMID: 12960396]
[32]
Mayer, M.C.; Breithaupt, C.; Reindl, M.; Schanda, K.; Rostásy, K.; Berger, T.; Dale, R.C.; Brilot, F.; Olsson, T.; Jenne, D.; Pröbstel, A.K.; Dornmair, K.; Wekerle, H.; Hohlfeld, R.; Banwell, B.; Bar-Or, A.; Meinl, E. Distinction and temporal stability of conformational epitopes on myelin oligodendrocyte glycoprotein recognized by patients with different inflammatory central nervous system diseases. J. Immunol., 2013, 191(7), 3594-3604.
[http://dx.doi.org/10.4049/jimmunol.1301296] [PMID: 24014878]
[33]
Sedzik, J.; Jastrzebski, J.P.; Grandis, M. Glycans of myelin proteins. J. Neurosci. Res., 2015, 93(1), 1-18.
[http://dx.doi.org/10.1002/jnr.23462] [PMID: 25213400]
[34]
Mathews, R.; Ramya, L. A comparative study for the intermediate states of myelin oligodendrocyte glycoprotein in the absence and presence of glycan–A computational approach. J. Mol. Graphics Model., 2020, 96(1-8), 107517.
[http://dx.doi.org/10.1016/j.jmgm.2019.107517]
[35]
Jayaprakash, N.G.; Surolia, A. Role of glycosylation in nucleating protein folding and stability. Biochem. J., 2017, 474(14), 2333-2347.
[http://dx.doi.org/10.1042/BCJ20170111] [PMID: 28673927]
[36]
Ramya, L. Role of N-glycan in the structural changes of myelin oligodendrocyte glycoprotein and its complex with an antibody. J. Biomol. Struct. Dyn., 2020, 38(6), 1649-1658.
[PMID: 31057084]
[37]
Fernandez, I; Macrini, C; Krumbholz, M; Hensbergen, PJ; Hipgrave Ederveen, AL; Winklmeier, S; Vural, A; Kurne, A; Jenne, D; Kamp, F; Gerdes, LA The glycosylation site of myelin oligodendrocyte glycoprotein affects autoantibody recognition in a large proportion of patients. Front. Immunol., 2019, 10(1-10), 1189.
[http://dx.doi.org/10.3389/fimmu.2019.01189]
[38]
García-Vallejo, J.J.; Ilarregui, J.M.; Kalay, H.; Chamorro, S.; Koning, N.; Unger, W.W.; Ambrosini, M.; Montserrat, V.; Fernandes, R.J.; Bruijns, S.C.; van Weering, J.R.; Paauw, N.J.; O’Toole, T.; van Horssen, J.; van der Valk, P.; Nazmi, K.; Bolscher, J.G.; Bajramovic, J.; Dijkstra, C.D.; ’t Hart, B.A.; van Kooyk, Y. CNS myelin induces regulatory functions of DC-SIGN-expressing, antigen-presenting cells via cognate interaction with MOG. J. Exp. Med., 2014, 211(7), 1465-1483.
[http://dx.doi.org/10.1084/jem.20122192] [PMID: 24935259]
[39]
Androutsou, M.E.; Tapeinou, A.; Vlamis-Gardikas, A.; Tselios, T. Myelin oligodendrocyte glycoprotein and multiple sclerosis. Med. Chem., 2018, 14(2), 120-128.
[http://dx.doi.org/10.2174/1573406413666170906123204] [PMID: 28875859]
[40]
Pacini, G.; Ieronymaki, M.; Nuti, F.; Sabatino, G.; Larregola, M.; Aharoni, R.; Papini, A.M.; Rovero, P. Epitope mapping of anti-myelin oligodendrocyte glycoprotein (MOG) antibodies in a mouse model of multiple sclerosis: Microwave-assisted synthesis of the peptide antigens and ELISA screening. J. Pept. Sci., 2016, 22(1), 52-58.
[http://dx.doi.org/10.1002/psc.2839] [PMID: 26663200]
[41]
Koukoulitsa, C.; Chontzopoulou, E.; Kiriakidi, S.; Tzakos, A.G.; Mavromoustakos, T. A journey to the conformational analysis of T-cell epitope peptides involved in multiple sclerosis. Brain Sci., 2020, 10(6), 356.
[42]
Yannakakis, M.P.; Tzoupis, H.; Michailidou, E.; Mantzourani, E.; Simal, C.; Tselios, T. Molecular dynamics at the receptor level of immunodominant myelin oligodendrocyte glycoprotein 35-55 epitope implicated in multiple sclerosis. J. Mol. Graph. Model., 2016, 68, 78-86.
[http://dx.doi.org/10.1016/j.jmgm.2016.06.005] [PMID: 27388119]
[43]
Jégou, J.F.; Chan, P.; Schouft, M.T.; Griffiths, M.R.; Neal, J.W.; Gasque, P.; Vaudry, H.; Fontaine, M. C3d binding to the myelin oligodendrocyte glycoprotein results in an exacerbated experimental autoimmune encephalomyelitis. J. Immunol., 2007, 178(5), 3323-3331.
[http://dx.doi.org/10.4049/jimmunol.178.5.3323] [PMID: 17312184]
[44]
Ambrosius, W.; Michalak, S.; Kozubski, W.; Kalinowska, A. Myelin oligodendrocyte glycoprotein antibody-associated disease: Current insights into the disease pathophysiology, diagnosis and management. Int. J. Mol. Sci., 2020, 22(1), 1-16.
[http://dx.doi.org/10.3390/ijms22010100] [PMID: 33374173]
[45]
Spadaro, M.; Winklmeier, S.; Beltrán, E.; Macrini, C.; Höftberger, R.; Schuh, E.; Thaler, F.S.; Gerdes, L.A.; Laurent, S.; Gerhards, R.; Brändle, S.; Dornmair, K.; Breithaupt, C.; Krumbholz, M.; Moser, M.; Krishnamoorthy, G.; Kamp, F.; Jenne, D.; Hohlfeld, R.; Kümpfel, T.; Lassmann, H.; Kawakami, N.; Meinl, E. Pathogenicity of human antibodies against myelin oligodendrocyte glycoprotein. Ann. Neurol., 2018, 84(2), 315-328.
[http://dx.doi.org/10.1002/ana.25291] [PMID: 30014603]
[46]
Lassmann, H. The changing concepts in the neuropathology of acquired demyelinating central nervous system disorders. Curr. Opin. Neurol., 2019, 32(3), 313-319.
[http://dx.doi.org/10.1097/WCO.0000000000000685] [PMID: 30893100]
[47]
Scolding, N.J.; Frith, S.; Linington, C.; Morgan, B.P.; Campbell, A.K.; Compston, D.A. Myelin-oligodendrocyte glycoprotein (MOG) is a surface marker of oligodendrocyte maturation. J. Neuroimmunol., 1989, 22(3), 169-176.
[http://dx.doi.org/10.1016/0165-5728(89)90014-3] [PMID: 2649509]
[48]
Jarius, S.; Paul, F.; Aktas, O.; Asgari, N.; Dale, R.C.; De Seze, J.; Franciotta, D.; Fujihara, K.; Jacob, A.; Kim, H.J.; Kleiter, I. MOG encephalomyelitis: International recommendations on diagnosis and antibody testing. J. Neuroinflammation, 2018, 15(1), 134.
[http://dx.doi.org/10.1186/s12974-018-1144-2]
[49]
Calabresi, P.A. Diagnosis and management of multiple sclerosis. Am. Fam. Physician, 2004, 70(10), 1935-1944.
[PMID: 15571060]
[50]
Goldenberg, M.M. Multiple sclerosis review. P&T, 2012, 37(3), 175-184.
[PMID: 22605909]
[51]
Keough, M.B.; Yong, V.W. Remyelination therapy for multiple sclerosis. Neurotherapeutics, 2013, 10(1), 44-54.
[http://dx.doi.org/10.1007/s13311-012-0152-7] [PMID: 23070731]
[52]
McDonald, W.I.; Compston, A.; Edan, G.; Goodkin, D.; Hartung, H.P.; Lublin, F.D.; McFarland, H.F.; Paty, D.W.; Polman, C.H.; Reingold, S.C.; Sandberg-Wollheim, M.; Sibley, W.; Thompson, A.; van den Noort, S.; Weinshenker, B.Y.; Wolinsky, J.S. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol., 2001, 50(1), 121-127.
[http://dx.doi.org/10.1002/ana.1032] [PMID: 11456302]
[53]
Brunton, L.L.; Hilal-Dandan, R.; Knollmann, B.C. As Bases Farmacológicas da Terapêutica de Goodman e Gilman-13; Artmed Editora, 2018.
[54]
Hauser, S.L.; Goodin, D.S. Multiple sclerosis and other demyelinating diseases.Harrison’s Principles of Internal Medicine, 19e; Kasper, D; Fauci, A; Hauser, S; Longo, D; Jameson, J; Loscalzo, J., Ed.; McGraw Hill, 2014.
[55]
Gaertner, S.; de Graaf, K.L.; Greve, B.; Weissert, R. Antibodies against glycosylated native MOG are elevated in patients with multiple sclerosis. Neurology, 2004, 63(12), 2381-2383.
[http://dx.doi.org/10.1212/01.WNL.0000147259.34163.33] [PMID: 15623705]
[56]
Grigorian, A.; Mkhikian, H.; Li, C.F.; Newton, B.L.; Zhou, R.W.; Demetriou, M. Pathogenesis of multiple sclerosis via environmental and genetic dysregulation of N-glycosylation. Semin. Immunopathol., 2012, 34(3), 415-424.
[57]
Böhm, S.; Schwab, I.; Lux, A.; Nimmerjahn, F. The role of sialic acid as a modulator of the anti-inflammatory activity of IgG. Semin. Immunopathol., 2012, 34(3), 443-453.
[http://dx.doi.org/10.1007/s00281-012-0308-x]
[58]
Sakae, Y.; Satoh, T.; Yagi, H.; Yanaka, S.; Yamaguchi, T.; Isoda, Y.; Iida, S.; Okamoto, Y.; Kato, K. Conformational effects of N-glycan core fucosylation of immunoglobulin G Fc region on its interaction with Fcγ receptor IIIa. Sci. Rep., 2017, 7(1), 13780.
[59]
Shields, R.L.; Lai, J.; Keck, R.; O’Connell, L.Y.; Hong, K.; Meng, Y.G.; Weikert, S.H.; Presta, L.G. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem., 2002, 277(30), 26733-26740.
[http://dx.doi.org/10.1074/jbc.M202069200] [PMID: 11986321]
[60]
Shinkawa, T.; Nakamura, K.; Yamane, N.; Shoji-Hosaka, E.; Kanda, Y.; Sakurada, M.; Uchida, K.; Anazawa, H.; Satoh, M.; Yamasaki, M.; Hanai, N.; Shitara, K. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem., 2003, 278(5), 3466-3473.
[http://dx.doi.org/10.1074/jbc.M210665200] [PMID: 12427744]
[61]
Cvetko, A.; Kifer, D.; Gornik, O. Klarić L; Visser, E; Lauc, G; Wilson, JF; Štambuk, T Glycosylation alterations in multiple sclerosis show increased proinflammatory potential. Biomedicines, 2020, 8(10), 410.
[http://dx.doi.org/10.3390/biomedicines8100410]
[62]
Sechi, E.; Krecke, K.N.; Messina, S.A.; Buciuc, M.; Pittock, S.J.; Chen, J.J.; Weinshenker, B.G.; Lopez-Chiriboga, A.S.; Lucchinetti, C.F.; Zalewski, N.L.; Tillema, J.M.; Kunchok, A.; Monaco, S.; Morris, P.P.; Fryer, J.P.; Nguyen, A.; Greenwood, T.; Syc-Mazurek, S.B.; Keegan, B.M.; Flanagan, E.P. Comparison of MRI lesion evolution in different central nervous system demyelinating disorders. Neurology, 2021, 97(11), e1097-e1109.
[http://dx.doi.org/10.1212/WNL.0000000000012467] [PMID: 34261784]
[63]
Menge, T.; Lalive, P.H.; von Büdingen, H.C.; Genain, C.P. Conformational epitopes of myelin oligodendrocyte glycoprotein are targets of potentially pathogenic antibody responses in multiple sclerosis. J. Neuroinflammation, 2011, 8(1), 161.
[http://dx.doi.org/10.1186/1742-2094-8-161] [PMID: 22093619]
[64]
Gastaldi, M.; Scaranzin, S.; Jarius, S.; Wildeman, B.; Zardini, E.; Mallucci, G.; Rigoni, E.; Vegezzi, E.; Foiadelli, T.; Savasta, S.; Banfi, P.; Versino, M.; Benedetti, L.; Novi, G.; Mancardi, M.M.; Giacomini, T.; Annovazzi, P.; Baroncini, D.; Ferraro, D.; Lampasona, V.; Reindl, M.; Waters, P.; Franciotta, D. Cell-based assays for the detection of MOG antibodies: A comparative study. J. Neurol., 2020, 267(12), 3555-3564.
[http://dx.doi.org/10.1007/s00415-020-10024-0] [PMID: 32623596]
[65]
Takai, Y.; Misu, T.; Kaneko, K.; Chihara, N.; Narikawa, K.; Tsuchida, S.; Nishida, H.; Komori, T.; Seki, M.; Komatsu, T.; Nakamagoe, K.; Ikeda, T.; Yoshida, M.; Takahashi, T.; Ono, H.; Nishiyama, S.; Kuroda, H.; Nakashima, I.; Suzuki, H.; Bradl, M.; Lassmann, H.; Fujihara, K.; Aoki, M. Myelin oligodendrocyte glycoprotein antibody-associated disease: An immunopathological study. Brain, 2020, 143(5), 1431-1446.
[http://dx.doi.org/10.1093/brain/awaa102] [PMID: 32412053]
[66]
Ciotti, J.R.; Eby, N.S.; Brier, M.R.; Wu, G.F.; Chahin, S.; Cross, A.H.; Naismith, R.T. Central vein sign and other radiographic features distinguishing myelin oligodendrocyte glycoprotein antibody disease from multiple sclerosis and aquaporin-4 antibody-positive neuromyelitis optica. Mult. Scler., 2022, 28(1), 49-60.
[http://dx.doi.org/10.1177/13524585211007086] [PMID: 33870786]
[67]
Wynford-Thomas, R.; Jacob, A.; Tomassini, V. Neurological update: MOG antibody disease. J. Neurol., 2019, 266(5), 1280-1286.
[http://dx.doi.org/10.1007/s00415-018-9122-2] [PMID: 30569382]
[68]
Perwein, M.K.; Smestad, J.A.; Warrington, A.E.; Heider, R.M.; Kaczor, M.W.; Maher, L.J., III; Wootla, B.; Kunbaz, A.; Rodriguez, M. A comparison of human natural monoclonal antibodies and aptamer conjugates for promotion of CNS remyelination: Where are we now and what comes next? Expert Opin. Biol. Ther., 2018, 18(5), 545-560.
[http://dx.doi.org/10.1080/14712598.2018.1441284] [PMID: 29460650]
[69]
Asakura, K.; Miller, D.J.; Murray, K.; Bansal, R.; Pfeiffer, S.E.; Rodriguez, M. Monoclonal autoantibody SCH94.03, which promotes central nervous system remyelination, recognizes an antigen on the surface of oligodendrocytes. J. Neurosci. Res., 1996, 43(3), 273-281.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19960201)43:3<273:AID-JNR2>3.0.CO;2-G] [PMID: 8714516]
[70]
Asakura, K.; Pogulis, R.J.; Pease, L.R.; Rodriguez, M. A monoclonal autoantibody which promotes central nervous system remyelination is highly polyreactive to multiple known and novel antigens. J. Neuroimmunol., 1996, 65(1), 11-19.
[http://dx.doi.org/10.1016/0165-5728(95)00175-1] [PMID: 8642059]
[71]
Guan, T.; Kong, J. Functional regeneration of the brain: White matter matters. Neural Regen. Res., 2015, 10(3), 355-356.
[http://dx.doi.org/10.4103/1673-5374.153675] [PMID: 25878574]
[72]
Chan, J.R.; Watkins, T.A.; Cosgaya, J.M.; Zhang, C.; Chen, L.; Reichardt, L.F.; Shooter, E.M.; Barres, B.A. NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron, 2004, 43(2), 183-191.
[http://dx.doi.org/10.1016/j.neuron.2004.06.024] [PMID: 15260955]
[73]
Brinkmann, B.G.; Agarwal, A.; Sereda, M.W.; Garratt, A.N.; Müller, T.; Wende, H.; Stassart, R.M.; Nawaz, S.; Humml, C.; Velanac, V.; Radyushkin, K.; Goebbels, S.; Fischer, T.M.; Franklin, R.J.; Lai, C.; Ehrenreich, H.; Birchmeier, C.; Schwab, M.H.; Nave, K.A. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron, 2008, 59(4), 581-595.
[http://dx.doi.org/10.1016/j.neuron.2008.06.028] [PMID: 18760695]
[74]
Zawadzka, M.; Rivers, L.E.; Fancy, S.P.; Zhao, C.; Tripathi, R.; Jamen, F.; Young, K.; Goncharevich, A.; Pohl, H.; Rizzi, M.; Rowitch, D.H.; Kessaris, N.; Suter, U.; Richardson, W.D.; Franklin, R.J. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell, 2010, 6(6), 578-590.
[http://dx.doi.org/10.1016/j.stem.2010.04.002] [PMID: 20569695]
[75]
Rhodes, K.E.; Raivich, G.; Fawcett, J.W. The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation-associated cytokines. Neuroscience, 2006, 140(1), 87-100.
[http://dx.doi.org/10.1016/j.neuroscience.2006.01.055] [PMID: 16631314]
[76]
Fancy, S.P.; Chan, J.R.; Baranzini, S.E.; Franklin, R.J.; Rowitch, D.H. Myelin regeneration: A recapitulation of development? Annu. Rev. Neurosci., 2011, 34, 21-43.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113629] [PMID: 21692657]
[77]
Farrokhi, M. Plasmapheresis for multiple sclerosis in the twenty-first century: Take it or leave it? J. Res. Med. Sci., 2021, 1(1), 1-5.
[78]
Vala, M.; Jordan, L.R.; Warrington, A.E.; Maher, L.J., III; Rodriguez, M.; Wittenberg, N.J.; Oh, S.H. Surface plasmon resonance sensing on naturally derived membranes: A remyelination-promoting human antibody binds myelin with extraordinary affinity. Anal. Chem., 2018, 90(21), 12567-12573.
[http://dx.doi.org/10.1021/acs.analchem.8b02664] [PMID: 30231202]
[79]
de Jong, C.G.H.M.; Gabius, H.J.; Baron, W. The emerging role of galectins in (re)myelination and its potential for developing new approaches to treat multiple sclerosis. Cell. Mol. Life Sci., 2020, 77(7), 1289-1317.
[http://dx.doi.org/10.1007/s00018-019-03327-7] [PMID: 31628495]
[80]
Warrington, A.E.; Rodriguez, M. Remyelination-promoting human IgMs: Developing a therapeutic reagent for demyelinating disease. Adv. Multiple Sclerosis Exper. Demyel. Dis., 2008, 318, 213-239.
[http://dx.doi.org/10.1007/978-3-540-73677-6_9]
[81]
Whittam, D.H.; Karthikeayan, V.; Gibbons, E.; Kneen, R.; Chandratre, S.; Ciccarelli, O.; Hacohen, Y.; de Seze, J.; Deiva, K.; Hintzen, R.Q.; Wildemann, B.; Jarius, S.; Kleiter, I.; Rostasy, K.; Huppke, P.; Hemmer, B.; Paul, F.; Aktas, O.; Pröbstel, A.K.; Arrambide, G.; Tintore, M.; Amato, M.P.; Nosadini, M.; Mancardi, M.M.; Capobianco, M.; Illes, Z.; Siva, A.; Altintas, A.; Akman-Demir, G.; Pandit, L.; Apiwattankul, M.; Hor, J.Y.; Viswanathan, S.; Qiu, W.; Kim, H.J.; Nakashima, I.; Fujihara, K.; Ramanathan, S.; Dale, R.C.; Boggild, M.; Broadley, S.; Lana-Peixoto, M.A.; Sato, D.K.; Tenembaum, S.; Cabre, P.; Wingerchuk, D.M.; Weinshenker, B.G.; Greenberg, B.; Matiello, M.; Klawiter, E.C.; Bennett, J.L.; Wallach, A.I.; Kister, I.; Banwell, B.L.; Traboulsee, A.; Pohl, D.; Palace, J.; Leite, M.I.; Levy, M.; Marignier, R.; Solomon, T.; Lim, M.; Huda, S.; Jacob, A. Treatment of MOG antibody associated disorders: Results of an international survey. J. Neurol., 2020, 267(12), 3565-3577.
[http://dx.doi.org/10.1007/s00415-020-10026-y] [PMID: 32623595]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy