Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Micro RNAs as Emerging Therapeutic Targets in Liver Diseases

Author(s): Uzma Latief, Gurleen Kaur Tung, Tasir Sharief Per, Manjot Kaur, Shubham Thakur, Harjeet Singh and Subheet Kumar Jain*

Volume 23, Issue 6, 2022

Published on: 11 August, 2022

Page: [369 - 383] Pages: 15

DOI: 10.2174/1389203723666220721122240

Price: $65

Abstract

MicroRNAs (MiRNAs) are endogenous non-coding small RNA molecules that regulate gene expression in plants, animals and some viruses. Both normal and pathological liver processes are regulated by miRNAs. Recent research indicated that miRNAs have been implicated in liver diseases caused by viral hepatitis (Hepatitis B and Hepatitis C), metabolic problems, alcohol and drug abuse. Because altered miRNA expression is linked to liver metabolic dysregulation, liver damage, liver fibrosis, and tumour growth, miRNAs are promising therapeutic targets for the detection and treatment of liver diseases. In this review, we summarise the current knowledge about the role of microRNAs in acute and chronic liver diseases, including hepatocellular carcinoma. We cover the miRNA-based therapy for liver disorders as well as the use of miRNAs as biomarkers for early diagnosis, prognosis and assessment of liver diseases. The investigation of miRNAs in liver diseases will provide a better understanding of the pathogeneses, identification of biomarkers and therapeutic targets for liver diseases in the future.

Keywords: NAFLD, ALD, Viral hepatitis, Liver fibrosis, HCC, MiRNAs.

Next »
Graphical Abstract

[1]
Sobolewski, C.; Calo, N.; Portius, D.; Foti, M. MicroRNAs in fatty liver disease. Semin. Liver Dis., 2015, 35(1), 12-25.
[http://dx.doi.org/10.1055/s-0034-1397345]
[2]
Chen, X.; Xie, D.; Zhao, Q.; You, Z.H. MicroRNAs and complex diseases: From experimental results to computational models. Brief. Bioinform., 2019, 20(2), 515-539.
[http://dx.doi.org/10.1093/bib/bbx130] [PMID: 29045685]
[3]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[4]
Winter, J.; Jung, S.; Keller, S.; Gregory, R.I.; Diederichs, S. Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nat. Cell Biol., 2009, 11(3), 228-234.
[http://dx.doi.org/10.1038/ncb0309-228] [PMID: 19255566]
[5]
Lawrie, C.H.; Gal, S.; Dunlop, H.M.; Pushkaran, B.; Liggins, A.P.; Pulford, K.; Banham, A.H.; Pezzella, F.; Boultwood, J.; Wainscoat, J.S.; Hatton, C.S.; Harris, A.L. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lym-phoma. Br. J. Haematol., 2008, 141(5), 672-675.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07077.x] [PMID: 18318758]
[6]
Cortez, M.A.; Bueso-Ramos, C.; Ferdin, J.; Lopez-Berestein, G.; Sood, A.K.; Calin, G.A. MicroRNAs in body fluids - the mix of hor-mones and biomarkers. Nat. Rev. Clin. Oncol., 2011, 8(8), 467-477.
[http://dx.doi.org/10.1038/nrclinonc.2011.76] [PMID: 21647195]
[7]
Ferreira, D.M.; Simão, A.L.; Rodrigues, C.M.; Castro, R.E. Revisiting the metabolic syndrome and paving the way for microRNAs in non-alcoholic fatty liver disease. FEBS J., 2014, 281(11), 2503-2524.
[http://dx.doi.org/10.1111/febs.12806] [PMID: 24702768]
[8]
Jiang, H.; Qian, Y.; Shen, Z.; Liu, Y.; He, Y.; Gao, R.; Shen, M.; Chen, S.; Fu, Q.; Yang, T. Circulating microRNA 135a 3p in serum extra-cellular vesicles as a potential biological marker of non alcoholic fatty liver disease. Mol. Med. Rep., 2021, 24(1), 1-12.
[http://dx.doi.org/10.3892/mmr.2021.12137] [PMID: 33955511]
[9]
Vinciguerra, M.; Sgroi, A.; Veyrat-Durebex, C.; Rubbia-Brandt, L.; Buhler, L.H.; Foti, M. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology, 2009, 49(4), 1176-1184.
[http://dx.doi.org/10.1002/hep.22737] [PMID: 19072831]
[10]
Kida, K.; Nakajima, M.; Mohri, T.; Oda, Y.; Takagi, S.; Fukami, T.; Yokoi, T. PPARα is regulated by miR-21 and miR-27b in human liver. Pharm. Res., 2011, 28(10), 2467-2476.
[http://dx.doi.org/10.1007/s11095-011-0473-y] [PMID: 21562928]
[11]
Min, H.K.; Kapoor, A.; Fuchs, M.; Mirshahi, F.; Zhou, H.; Maher, J.; Kellum, J.; Warnick, R.; Contos, M.J.; Sanyal, A.J. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab., 2012, 15(5), 665-674.
[http://dx.doi.org/10.1016/j.cmet.2012.04.004] [PMID: 22560219]
[12]
Pirola, C.J.; Fernández Gianotti, T.; Castaño, G.O.; Mallardi, P.; San Martino, J.; Mora Gonzalez Lopez Ledesma, M.; Flichman, D.; Mirshahi, F.; Sanyal, A.J.; Sookoian, S. Circulating microRNA signature in non-alcoholic fatty liver disease: From serum non-coding RNAs to liver histology and disease pathogenesis. Gut, 2015, 64(5), 800-812.
[http://dx.doi.org/10.1136/gutjnl-2014-306996] [PMID: 24973316]
[13]
Cheung, O.; Puri, P.; Eicken, C.; Contos, M.J.; Mirshahi, F.; Maher, J.W.; Kellum, J.M.; Min, H.; Luketic, V.A.; Sanyal, A.J. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology, 2008, 48(6), 1810-1820.
[http://dx.doi.org/10.1002/hep.22569] [PMID: 19030170]
[14]
Fukuhara, T.; Matsuura, Y. Role of miR-122 and lipid metabolism in HCV infection. J. Gastroenterol., 2013, 48(2), 169-176.
[http://dx.doi.org/10.1007/s00535-012-0661-5] [PMID: 22965312]
[15]
Meng, F.; Glaser, S.S.; Francis, H.; Yang, F.; Han, Y.; Stokes, A.; Staloch, D.; McCarra, J.; Liu, J.; Venter, J.; Zhao, H.; Liu, X.; Francis, T.; Swendsen, S.; Liu, C.G.; Tsukamoto, H.; Alpini, G. Epigenetic regulation of miR-34a expression in alcoholic liver injury. Am. J. Pathol., 2012, 181(3), 804-817.
[http://dx.doi.org/10.1016/j.ajpath.2012.06.010] [PMID: 22841474]
[16]
McDaniel, K.; Huang, L.; Sato, K.; Wu, N.; Annable, T.; Zhou, T.; Ramos-Lorenzo, S.; Wan, Y.; Huang, Q.; Francis, H.; Glaser, S.; Tsu-kamoto, H.; Alpini, G.; Meng, F. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury. J. Biol. Chem., 2017, 292(27), 11336-11347.
[http://dx.doi.org/10.1074/jbc.M116.773291] [PMID: 28536261]
[17]
Jiang, M.; Broering, R.; Trippler, M.; Wu, J.; Zhang, E.; Zhang, X.; Gerken, G.; Lu, M.; Schlaak, J.F.; Schlaak, J.F. MicroRNA-155 controls Toll-like receptor 3- and hepatitis C virus-induced immune responses in the liver. J. Viral Hepat., 2014, 21(2), 99-110.
[http://dx.doi.org/10.1111/jvh.12126] [PMID: 24383923]
[18]
Sarma, N.J.; Tiriveedhi, V.; Crippin, J.S.; Chapman, W.C.; Mohanakumar, T. Hepatitis C virus-induced changes in microRNA 107 (miR-NA-107) and miRNA-449a modulate CCL2 by targeting the interleukin-6 receptor complex in hepatitis. J. Virol., 2014, 88(7), 3733-3743.
[http://dx.doi.org/10.1128/JVI.03060-13] [PMID: 24429361]
[19]
Dooley, S.; ten Dijke, P. TGF-β in progression of liver disease. Cell Tissue Res., 2012, 347(1), 245-256.
[http://dx.doi.org/10.1007/s00441-011-1246-y] [PMID: 22006249]
[20]
Lakner, A.M.; Steuerwald, N.M.; Walling, T.L.; Ghosh, S.; Li, T.; McKillop, I.H.; Russo, M.W.; Bonkovsky, H.L.; Schrum, L.W. Inhibito-ry effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology, 2012, 56(1), 300-310.
[http://dx.doi.org/10.1002/hep.25613] [PMID: 22278637]
[21]
Zhang, Z.; Zha, Y.; Hu, W.; Huang, Z.; Gao, Z.; Zang, Y.; Chen, J.; Dong, L.; Zhang, J. The autoregulatory feedback loop of microRNA-21/programmed cell death protein 4/activation protein-1 (MiR-21/PDCD4/AP-1) as a driving force for hepatic fibrosis development. J. Biol. Chem., 2013, 288(52), 37082-37093.
[http://dx.doi.org/10.1074/jbc.M113.517953] [PMID: 24196965]
[22]
Halegoua-De Marzio, D.; Navarro, V.J. Drug-induced hepatotoxicity in humans. Curr. Opin. Drug Discov. Devel., 2008, 11(1), 53-59.
[PMID: 18175267]
[23]
Ozer, J.; Ratner, M.; Shaw, M.; Bailey, W.; Schomaker, S. The current state of serum biomarkers of hepatotoxicity. Toxicology, 2008, 245(3), 194-205.
[http://dx.doi.org/10.1016/j.tox.2007.11.021] [PMID: 18291570]
[24]
Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; Lin, D.W.; Urban, N.; Drescher, C.W.; Knudsen, B.S.; Stirewalt, D.L.; Gentleman, R.; Vessella, R.L.; Nelson, P.S.; Martin, D.B.; Tewari, M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA, 2008, 105(30), 10513-10518.
[http://dx.doi.org/10.1073/pnas.0804549105] [PMID: 18663219]
[25]
Lodes, M.J.; Caraballo, M.; Suciu, D.; Munro, S.; Kumar, A.; Anderson, B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One, 2009, 4(7), e6229.
[http://dx.doi.org/10.1371/journal.pone.0006229] [PMID: 19597549]
[26]
Resnick, K.E.; Alder, H.; Hagan, J.P.; Richardson, D.L.; Croce, C.M.; Cohn, D.E. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol. Oncol., 2009, 112(1), 55-59.
[http://dx.doi.org/10.1016/j.ygyno.2008.08.036] [PMID: 18954897]
[27]
Uematsu, Y.; Akai, S.; Tochitani, T.; Oda, S.; Yamada, T.; Yokoi, T. MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice. Toxicol. Appl. Pharmacol., 2016, 307, 1-9.
[http://dx.doi.org/10.1016/j.taap.2016.07.008] [PMID: 27421576]
[28]
Yuan, K.; Zhang, X.; Lv, L.; Zhang, J.; Liang, W.; Wang, P. Fine-tuning the expression of microRNA-155 controls acetaminophen-induced liver inflammation. Int. Immunopharmacol., 2016, 40, 339-346.
[http://dx.doi.org/10.1016/j.intimp.2016.09.011] [PMID: 27673475]
[29]
Vliegenthart, A.D.B.; Berends, C.; Potter, C.M.J.; Kersaudy-Kerhoas, M.; Dear, J.W. MicroRNA-122 can be measured in capillary blood which facilitates point-of-care testing for drug-induced liver injury. Br. J. Clin. Pharmacol., 2017, 83(9), 2027-2033.
[http://dx.doi.org/10.1111/bcp.13282] [PMID: 28257154]
[30]
Rissin, D.M.; López-Longarela, B.; Pernagallo, S.; Ilyine, H.; Vliegenthart, A.D.B.; Dear, J.W.; Díaz-Mochón, J.J.; Duffy, D.C. Polymerase-free measurement of microRNA-122 with single base specificity using single molecule arrays: Detection of drug-induced liver injury. PLoS One, 2017, 12(7), e0179669.
[http://dx.doi.org/10.1371/journal.pone.0179669] [PMID: 28678845]
[31]
Messner, C.J.; Premand, C.; Gaiser, C.; Kluser, T.; Kübler, E.; Suter-Dick, L. Exosomal microRNAs release as a sensitive marker for drug-induced liver injury in vitro. Appl. In Vitro Toxicol., 2020, 6(3), 77-89.
[http://dx.doi.org/10.1089/aivt.2020.0008]
[32]
Cotter, T.G.; Rinella, M. Nonalcoholic fatty liver disease 2020: The state of the disease. Gastroenterology, 2020, 158(7), 1851-1864.
[http://dx.doi.org/10.1053/j.gastro.2020.01.052] [PMID: 32061595]
[33]
Febbraio, M.A.; Reibe, S.; Shalapour, S.; Ooi, G.J.; Watt, M.J.; Karin, M. Preclinical models for studying NASH-driven HCC: How useful are they? Cell Metab., 2019, 29(1), 18-26.
[http://dx.doi.org/10.1016/j.cmet.2018.10.012] [PMID: 30449681]
[34]
Aryal, B.; Singh, A.K.; Rotllan, N.; Price, N.; Fernández-Hernando, C. MicroRNAs and lipid metabolism. Curr. Opin. Lipidol., 2017, 28(3), 273-280.
[http://dx.doi.org/10.1097/MOL.0000000000000420] [PMID: 28333713]
[35]
Benhamouche-Trouillet, S.; Postic, C. Emerging role of miR-21 in non-alcoholic fatty liver disease. Gut, 2016, 65(11), 1781-1783.
[http://dx.doi.org/10.1136/gutjnl-2015-310044] [PMID: 27436271]
[36]
Liu, J.; Xiao, Y.; Wu, X.; Jiang, L.; Yang, S.; Ding, Z.; Fang, Z.; Hua, H.; Kirby, M.S.; Shou, J. A circulating microRNA signature as nonin-vasive diagnostic and prognostic biomarkers for nonalcoholic steatohepatitis. BMC Genomics, 2018, 19(1), 188.
[http://dx.doi.org/10.1186/s12864-018-4575-3] [PMID: 29523084]
[37]
Pillai, S.S.; Lakhani, H.V.; Zehra, M.; Wang, J.; Dilip, A.; Puri, N.; O’Hanlon, K.; Sodhi, K. Predicting nonalcoholic fatty liver disease through a panel of plasma biomarkers and microRNAs in female West Virginia population. Int. J. Mol. Sci., 2020, 21(18), 6698.
[http://dx.doi.org/10.3390/ijms21186698] [PMID: 32933141]
[38]
Calo, N.; Ramadori, P.; Sobolewski, C.; Romero, Y.; Maeder, C.; Fournier, M.; Rantakari, P.; Zhang, F.P.; Poutanen, M.; Dufour, J.F.; Hu-mar, B.; Nef, S.; Foti, M. Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption. Gut, 2016, 65(11), 1871-1881.
[http://dx.doi.org/10.1136/gutjnl-2015-310822] [PMID: 27222533]
[39]
Wang, X.M.; Wang, X.Y.; Huang, Y.M.; Chen, X.; Lü, M.H.; Shi, L.; Li, C.P. Role and mechanisms of action of microRNA 21 as regards the regulation of the WNT/β catenin signaling pathway in the pathogenesis of non alcoholic fatty liver disease. Int. J. Mol. Med., 2019, 44(6), 2201-2212.
[http://dx.doi.org/10.3892/ijmm.2019.4375] [PMID: 31638173]
[40]
Huang, P.; Huang, F.Z.; Liu, H.Z.; Zhang, T.Y.; Yang, M.S.; Sun, C.Z. LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogen-esis by competitively binding to miR-21 with LRP6. Metabolism, 2019, 94, 1-8.
[http://dx.doi.org/10.1016/j.metabol.2019.01.018] [PMID: 30711569]
[41]
Wu, H.; Ng, R.; Chen, X.; Steer, C.J.; Song, G. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellu-lar carcinoma via modulation of the HBP1-p53-Srebp1c pathway. Gut, 2016, 65(11), 1850-1860.
[http://dx.doi.org/10.1136/gutjnl-2014-308430] [PMID: 26282675]
[42]
Pawlak, M.; Lefebvre, P.; Staels, B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol., 2015, 62(3), 720-733.
[http://dx.doi.org/10.1016/j.jhep.2014.10.039] [PMID: 25450203]
[43]
Loyer, X.; Paradis, V.; Hénique, C.; Vion, A.C.; Colnot, N.; Guerin, C.L.; Devue, C.; On, S.; Scetbun, J.; Romain, M.; Paul, J.L.; Rothen-berg, M.E.; Marcellin, P.; Durand, F.; Bedossa, P.; Prip-Buus, C.; Baugé, E.; Staels, B.; Boulanger, C.M.; Tedgui, A.; Rautou, P.E. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut, 2016, 65(11), 1882-1894.
[http://dx.doi.org/10.1136/gutjnl-2014-308883] [PMID: 26338827]
[44]
Lai, C.Y.; Yeh, K.Y.; Lin, C.Y.; Hsieh, Y.W.; Lai, H.H.; Chen, J.R.; Hsu, C.C.; Her, G.M. MicroRNA-21 plays multiple oncometabolic roles in the process of NAFLD-related hepatocellular carcinoma via PI3K/AKT, TGF-β and STAT3 signaling. Cancers (Basel), 2021, 13(5), 940.
[http://dx.doi.org/10.3390/cancers13050940] [PMID: 33668153]
[45]
Tessitore, A.; Cicciarelli, G.; Del Vecchio, F.; Gaggiano, A.; Verzella, D.; Fischietti, M.; Mastroiaco, V.; Vetuschi, A.; Sferra, R.; Barnabei, R.; Capece, D.; Zazzeroni, F.; Alesse, E. MicroRNA expression analysis in high fat diet-induced NAFLD-NASH-HCC progression: Study on C57BL/6J mice. BMC Cancer, 2016, 16(1), 3.
[http://dx.doi.org/10.1186/s12885-015-2007-1] [PMID: 26728044]
[46]
Jopling, C. Liver-specific microRNA-122: Biogenesis and function. RNA Biol., 2012, 9(2), 137-142.
[http://dx.doi.org/10.4161/rna.18827] [PMID: 22258222]
[47]
Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; Subramaniam, A.; Propp, S.; Lollo, B.A.; Freier, S.; Bennett, C.F.; Bhanot, S.; Monia, B.P. miR-122 regulation of lipid metabolism revealed by in vivo anti-sense targeting. Cell Metab., 2006, 3(2), 87-98.
[http://dx.doi.org/10.1016/j.cmet.2006.01.005] [PMID: 16459310]
[48]
Miyaaki, H.; Ichikawa, T.; Kamo, Y.; Taura, N.; Honda, T.; Shibata, H.; Milazzo, M.; Fornari, F.; Gramantieri, L.; Bolondi, L.; Nakao, K. Significance of serum and hepatic microRNA-122 levels in patients with non-alcoholic fatty liver disease. Liver Int., 2014, 34(7), e302-e307.
[http://dx.doi.org/10.1111/liv.12429] [PMID: 24313922]
[49]
Gjorgjieva, M.; Sobolewski, C.; Dolicka, D.; Correia de Sousa, M.; Foti, M. miRNAs and NAFLD: From pathophysiology to therapy. Gut, 2019, 68(11), 2065-2079.
[http://dx.doi.org/10.1136/gutjnl-2018-318146] [PMID: 31300518]
[50]
Baranova, A.; Maltseva, D.; Tonevitsky, A. Adipose may actively delay progression of NAFLD by releasing tumor-suppressing, anti-fibrotic miR-122 into circulation. Obes. Rev., 2019, 20(1), 108-118.
[http://dx.doi.org/10.1111/obr.12765] [PMID: 30248223]
[51]
Jin, X.; Gao, J.; Zheng, R.; Yu, M.; Ren, Y.; Yan, T.; Huang, Y.; Li, Y. Antagonizing circRNA_002581-miR-122-CPEB1 axis alleviates NASH through restoring PTEN-AMPK-mTOR pathway regulated autophagy. Cell Death Dis., 2020, 11(2), 123.
[http://dx.doi.org/10.1038/s41419-020-2293-7] [PMID: 32054840]
[52]
Long, J.K.; Dai, W.; Zheng, Y.W.; Zhao, S.P. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Mol. Med., 2019, 25(1), 26.
[http://dx.doi.org/10.1186/s10020-019-0085-2] [PMID: 31195981]
[53]
Ding, J.; Li, M.; Wan, X.; Jin, X.; Chen, S.; Yu, C.; Li, Y. Effect of miR-34a in regulating steatosis by targeting PPARα expression in non-alcoholic fatty liver disease. Sci. Rep., 2015, 5(1), 1-10.
[http://dx.doi.org/10.1038/srep13729]
[54]
Xu, Y.; Zalzala, M.; Xu, J.; Li, Y.; Yin, L.; Zhang, Y. A metabolic stress-inducible miR-34a-HNF4α pathway regulates lipid and lipopro-tein metabolism. Nat. Commun., 2015, 6(1), 1-11.
[http://dx.doi.org/10.1038/ncomms8466]
[55]
Natarajan, S.K.; Stringham, B.A.; Mohr, A.M.; Wehrkamp, C.J.; Lu, S.; Phillippi, M.A.; Harrison-Findik, D.; Mott, J.L. FoxO3 increases miR-34a to cause palmitate-induced cholangiocyte lipoapoptosis. J. Lipid Res., 2017, 58(5), 866-875.
[http://dx.doi.org/10.1194/jlr.M071357] [PMID: 28250026]
[56]
Kim, Y.; Lee, D.H.; Park, S.H.; Jeon, T.I.; Jung, C.H. The interplay of microRNAs and transcription factors in autophagy regulation in nonalcoholic fatty liver disease. Exp. Mol. Med., 2021, 53(4), 548-559.
[http://dx.doi.org/10.1038/s12276-021-00611-0] [PMID: 33879861]
[57]
Auguet, T.; Aragonès, G.; Berlanga, A.; Guiu-Jurado, E.; Martí, A.; Martínez, S.; Sabench, F.; Hernández, M.; Aguilar, C.; Sirvent, J.J.; Del Castillo, D.; Richart, C. miR33a/miR33b* and miR122 as possible contributors to hepatic lipid metabolism in obese women with nonalco-holic fatty liver disease. Int. J. Mol. Sci., 2016, 17(10), 1620.
[http://dx.doi.org/10.3390/ijms17101620] [PMID: 27669236]
[58]
Pan, J.H.; Cha, H.; Tang, J.; Lee, S.; Lee, S.H.; Le, B.; Redding, M.C.; Kim, S.; Batish, M.; Kong, B.C.; Lee, J.H.; Kim, J.K. The role of microRNA-33 as a key regulator in hepatic lipogenesis signaling and a potential serological biomarker for NAFLD with excessive dietary fructose consumption in C57BL/6N mice. Food Funct., 2021, 12(2), 656-667.
[http://dx.doi.org/10.1039/D0FO02286A] [PMID: 33404569]
[59]
Rottiers, V.; Näär, A.M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 239-250.
[http://dx.doi.org/10.1038/nrm3313] [PMID: 22436747]
[60]
Erhartova, D.; Cahova, M.; Dankova, H.; Heczkova, M.; Mikova, I.; Sticova, E.; Spicak, J.; Seda, O.; Trunecka, P. Serum miR-33a is asso-ciated with steatosis and inflammation in patients with non-alcoholic fatty liver disease after liver transplantation. PLoS One, 2019, 14(11), e0224820.
[http://dx.doi.org/10.1371/journal.pone.0224820] [PMID: 31703079]
[61]
Francis, H.; McDaniel, K.; Han, Y.; Liu, X.; Kennedy, L.; Yang, F.; McCarra, J.; Zhou, T.; Glaser, S.; Venter, J.; Huang, L.; Levine, P.; Lai, J.M.; Liu, C.G.; Alpini, G.; Meng, F. Regulation of the extrinsic apoptotic pathway by microRNA-21 in alcoholic liver injury. J. Biol. Chem., 2014, 289(40), 27526-27539.
[http://dx.doi.org/10.1074/jbc.M114.602383] [PMID: 25118289]
[62]
Dippold, R.P.; Vadigepalli, R.; Gonye, G.E.; Hoek, J.B. Chronic ethanol feeding enhances miR-21 induction during liver regeneration while inhibiting proliferation in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 303(6), G733-G743.
[http://dx.doi.org/10.1152/ajpgi.00019.2012] [PMID: 22790595]
[63]
Tang, Y.; Banan, A.; Forsyth, C.B.; Fields, J.Z.; Lau, C.K.; Zhang, L.J.; Keshavarzian, A. Effect of alcohol on miR-212 expression in in-testinal epithelial cells and its potential role in alcoholic liver disease. Alcohol. Clin. Exp. Res., 2008, 32(2), 355-364.
[http://dx.doi.org/10.1111/j.1530-0277.2007.00584.x] [PMID: 18162065]
[64]
Dolganiuc, A.; Petrasek, J.; Kodys, K.; Catalano, D.; Mandrekar, P.; Velayudham, A.; Szabo, G. MicroRNA expression profile in Lieber-DeCarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice. Alcohol. Clin. Exp. Res., 2009, 33(10), 1704-1710.
[http://dx.doi.org/10.1111/j.1530-0277.2009.01007.x] [PMID: 19572984]
[65]
Yeligar, S.; Tsukamoto, H.; Kalra, V.K. Ethanol-induced expression of ET-1 and ET-BR in liver sinusoidal endothelial cells and human endothelial cells involves hypoxia-inducible factor-1α and microrNA-199. J. Immunol., 2009, 183(8), 5232-5243.
[http://dx.doi.org/10.4049/jimmunol.0901084] [PMID: 19783678]
[66]
Bala, S.; Szabo, G. MicroRNA signature in alcoholic liver disease. Int. J. Hepatol., 2012, 2012, 498232.
[http://dx.doi.org/10.1155/2012/498232] [PMID: 22518321]
[67]
Miranda, R.C.; Pietrzykowski, A.Z.; Tang, Y.; Sathyan, P.; Mayfield, D.; Keshavarzian, A.; Sampson, W.; Hereld, D. MicroRNAs: Master regulators of ethanol abuse and toxicity? Alcohol. Clin. Exp. Res., 2010, 34(4), 575-587.
[http://dx.doi.org/10.1111/j.1530-0277.2009.01126.x] [PMID: 20102566]
[68]
Momen-Heravi, F.; Saha, B.; Kodys, K.; Catalano, D.; Satishchandran, A.; Szabo, G. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J. Transl. Med., 2015, 13(1), 261.
[http://dx.doi.org/10.1186/s12967-015-0623-9] [PMID: 26264599]
[69]
Saha, B.; Momen-Heravi, F.; Kodys, K.; Szabo, G. MicroRNA cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages. J. Biol. Chem., 2016, 291(1), 149-159.
[http://dx.doi.org/10.1074/jbc.M115.694133] [PMID: 26527689]
[70]
Blaya, D.; Coll, M.; Rodrigo-Torres, D.; Vila-Casadesús, M.; Altamirano, J.; Llopis, M.; Graupera, I.; Perea, L.; Aguilar-Bravo, B.; Díaz, A.; Banales, J.M.; Clària, J.; Lozano, J.J.; Bataller, R.; Caballería, J.; Ginès, P.; Sancho-Bru, P. Integrative microRNA profiling in alcoholic hepatitis reveals a role for microRNA-182 in liver injury and inflammation. Gut, 2016, 65(9), 1535-1545.
[http://dx.doi.org/10.1136/gutjnl-2015-311314] [PMID: 27196584]
[71]
Yin, H.; Hu, M.; Zhang, R.; Shen, Z.; Flatow, L.; You, M. MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. J. Biol. Chem., 2012, 287(13), 9817-9826.
[http://dx.doi.org/10.1074/jbc.M111.333534] [PMID: 22308024]
[72]
Li, M.; He, Y.; Zhou, Z.; Ramirez, T.; Gao, Y.; Gao, Y.; Ross, R.A.; Cao, H.; Cai, Y.; Xu, M.; Feng, D.; Zhang, P.; Liangpunsakul, S.; Gao, B. MicroRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6-p47phox-oxidative stress pathway in neutrophils. Gut, 2017, 66(4), 705-715.
[http://dx.doi.org/10.1136/gutjnl-2016-311861] [PMID: 27679493]
[73]
Ahmad, A.; Ahmad, R. Understanding the mechanism of hepatic fibrosis and potential therapeutic approaches. Saudi J. Gastroenterol., 2012, 18(3), 155-167.
[http://dx.doi.org/10.4103/1319-3767.96445] [PMID: 22626794]
[74]
Latief, U.; Ahmad, R. Herbal remedies for liver fibrosis: A review on the mode of action of fifty herbs. J. Tradit. Complement. Med., 2017, 8(3), 352-360.
[http://dx.doi.org/10.1016/j.jtcme.2017.07.002] [PMID: 29992106]
[75]
Schuppan, D.; Afdhal, N.H. Liver cirrhosis. Lancet, 2008, 371(9615), 838-851.
[http://dx.doi.org/10.1016/S0140-6736(08)60383-9] [PMID: 18328931]
[76]
Tadokoro, T.; Morishita, A.; Masaki, T. Diagnosis and therapeutic management of liver fibrosis by MicroRNA. Int. J. Mol. Sci., 2021, 22(15), 8139.
[http://dx.doi.org/10.3390/ijms22158139] [PMID: 34360904]
[77]
Gieling, R.G.; Burt, A.D.; Mann, D.A. Fibrosis and cirrhosis reversibility - molecular mechanisms. Clin. Liver Dis., 2008, 12(4), 915-937. , xi.
[http://dx.doi.org/10.1016/j.cld.2008.07.001] [PMID: 18984474]
[78]
Latief, U. Ahmad, R. β-carotene inhibits NF-κB and restrains diethylnitrosamine-induced hepatic inflammation in Wistar rats. Int. J. Vitam. Nutr. Res., 2020, 20, 1-10.
[http://dx.doi.org/10.1024/0300-9831/a000665] [PMID: 32686990]
[79]
Roderburg, C.; Mollnow, T.; Bongaerts, B.; Elfimova, N.; Vargas Cardenas, D.; Berger, K.; Zimmermann, H.; Koch, A.; Vucur, M.; Luedde, M.; Hellerbrand, C.; Odenthal, M.; Trautwein, C.; Tacke, F.; Luedde, T. Micro-RNA profiling in human serum reveals compart-ment-specific roles of miR-571 and miR-652 in liver cirrhosis. PLoS One, 2012, 7(3), e32999.
[http://dx.doi.org/10.1371/journal.pone.0032999] [PMID: 22412969]
[80]
Wang, B.; Li, W.; Guo, K.; Xiao, Y.; Wang, Y.; Fan, J. miR-181b promotes hepatic stellate cells proliferation by targeting p27 and is ele-vated in the serum of cirrhosis patients. Biochem. Biophys. Res. Commun., 2012, 421(1), 4-8.
[http://dx.doi.org/10.1016/j.bbrc.2012.03.025] [PMID: 22446332]
[81]
Murakami, Y.; Toyoda, H.; Tanaka, M.; Kuroda, M.; Harada, Y.; Matsuda, F.; Tajima, A.; Kosaka, N.; Ochiya, T.; Shimotohno, K. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS One, 2011, 6(1), e16081.
[http://dx.doi.org/10.1371/journal.pone.0016081] [PMID: 21283674]
[82]
Makhmudi, A.; Kalim, A.S. Gunadi, microRNA-21 expressions impact on liver fibrosis in biliary atresia patients. BMC Res. Notes, 2019, 12(1), 189.
[http://dx.doi.org/10.1186/s13104-019-4227-y] [PMID: 30925941]
[83]
Zhao, J.; Tang, N.; Wu, K.; Dai, W.; Ye, C.; Shi, J.; Zhang, J.; Ning, B.; Zeng, X.; Lin, Y. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS One, 2014, 9(10), e108005.
[http://dx.doi.org/10.1371/journal.pone.0108005] [PMID: 25303175]
[84]
Kitano, M.; Bloomston, P.M. Hepatic stellate cells and microRNAs in pathogenesis of liver fibrosis. J. Clin. Med., 2016, 5(3), 38.
[http://dx.doi.org/10.3390/jcm5030038] [PMID: 26999230]
[85]
Wei, J.; Feng, L.; Li, Z.; Xu, G.; Fan, X. MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling. Biomed. Pharmacother., 2013, 67(5), 387-392.
[http://dx.doi.org/10.1016/j.biopha.2013.03.014] [PMID: 23643356]
[86]
Ning, Z.W.; Luo, X.Y.; Wang, G.Z.; Li, Y.; Pan, M.X.; Yang, R.Q.; Ling, X.G.; Huang, S.; Ma, X.X.; Jin, S.Y.; Wang, D.; Li, X. MicroRNA-21 mediates angiotensin II-induced liver fibrosis by activating NLRP3 inflammasome/IL-1β axis via targeting Smad7 and Spry1. Antioxid. Redox Signal., 2017, 27(1), 1-20.
[http://dx.doi.org/10.1089/ars.2016.6669] [PMID: 27502441]
[87]
El-Ahwany, E.; Nagy, F.; Zoheiry, M.; Shemis, M.; Nosseir, M.; Taleb, H.A.; El Ghannam, M.; Atta, R.; Zada, S. Circulating miRNAs as predictor markers for activation of hepatic stellate cells and progression of HCV-induced liver fibrosis. Electron. Physician, 2016, 8(1), 1804-1810.
[http://dx.doi.org/10.19082/1804] [PMID: 26955452]
[88]
Cermelli, S.; Ruggieri, A.; Marrero, J.A.; Ioannou, G.N.; Beretta, L. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One, 2011, 6(8), e23937.
[http://dx.doi.org/10.1371/journal.pone.0023937] [PMID: 21886843]
[89]
Chang, Y.; Han, J.A.; Kang, S.M.; Jeong, S.W.; Ryu, T.; Park, H.S.; Yoo, J.J.; Lee, S.H.; Kim, S.G.; Kim, Y.S.; Kim, H.S.; Jin, S.Y.; Ryu, S.; Jang, J.Y. Clinical impact of serum exosomal microRNA in liver fibrosis. PLoS One, 2021, 16(9), e0255672.
[http://dx.doi.org/10.1371/journal.pone.0255672] [PMID: 34506494]
[90]
Tsai, W.C.; Hsu, S.D.; Hsu, C.S.; Lai, T.C.; Chen, S.J.; Shen, R.; Huang, Y.; Chen, H.C.; Lee, C.H.; Tsai, T.F.; Hsu, M.T.; Wu, J.C.; Huang, H.D.; Shiao, M.S.; Hsiao, M.; Tsou, A.P. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest., 2012, 122(8), 2884-2897.
[http://dx.doi.org/10.1172/JCI63455] [PMID: 22820290]
[91]
Hayes, C.N.; Chayama, K. MicroRNAs as biomarkers for liver disease and hepatocellular carcinoma. Int. J. Mol. Sci., 2016, 17(3), 280.
[http://dx.doi.org/10.3390/ijms17030280] [PMID: 26927063]
[92]
Tsay, H.C.; Yuan, Q.; Balakrishnan, A.; Kaiser, M.; Möbus, S.; Kozdrowska, E.; Farid, M.; Tegtmeyer, P.K.; Borst, K.; Vondran, F.W.R.; Kalinke, U.; Kispert, A.; Manns, M.P.; Ott, M.; Sharma, A.D. Hepatocyte-specific suppression of microRNA-221-3p mitigates liver fibro-sis. J. Hepatol., 2019, 70(4), 722-734.
[http://dx.doi.org/10.1016/j.jhep.2018.12.016] [PMID: 30582979]
[93]
Markovic, J.; Sharma, A.D.; Balakrishnan, A. MicroRNA-221: A fine tuner and potential biomarker of chronic liver injury. Cells, 2020, 9(8), 1767.
[http://dx.doi.org/10.3390/cells9081767] [PMID: 32717951]
[94]
Ma, L.; Yang, X.; Wei, R.; Ye, T.; Zhou, J.K.; Wen, M.; Men, R.; Li, P.; Dong, B.; Liu, L.; Fu, X.; Xu, H.; Aqeilan, R.I.; Wei, Y.Q.; Yang, L.; Peng, Y. MicroRNA-214 promotes hepatic stellate cell activation and liver fibrosis by suppressing Sufu expression. Cell Death Dis., 2018, 9(7), 718.
[http://dx.doi.org/10.1038/s41419-018-0752-1] [PMID: 29915227]
[95]
Chen, Y.J.; Zhu, J.M.; Wu, H.; Fan, J.; Zhou, J.; Hu, J.; Yu, Q.; Liu, T.T.; Yang, L.; Wu, C.L.; Guo, X.L.; Huang, X.W.; Shen, X.Z. Circu-lating microRNAs as a fingerprint for liver cirrhosis. PLoS One, 2013, 8(6), e66577.
[http://dx.doi.org/10.1371/journal.pone.0066577] [PMID: 23805240]
[96]
Zheng, J.; Zhou, Z.; Xu, Z.; Li, G.; Dong, P.; Chen, Z.; Lin, D.; Chen, B.; Yu, F. Serum microRNA-125a-5p, a useful biomarker in liver diseases, correlates with disease progression. Mol. Med. Rep., 2015, 12(1), 1584-1590.
[http://dx.doi.org/10.3892/mmr.2015.3546] [PMID: 25815788]
[97]
Zhang, H.; Yan, X.L.; Guo, X.X.; Shi, M.J.; Lu, Y.Y.; Zhou, Q.M.; Chen, Q.L.; Hu, Y.Y.; Xu, L.M.; Huang, S.; Su, S.B. MiR-27a as a predictor for the activation of hepatic stellate cells and hepatitis B virus-induced liver cirrhosis. Oncotarget, 2017, 9(1), 1075-1090.
[http://dx.doi.org/10.18632/oncotarget.23262] [PMID: 29416678]
[98]
Thabut, D.; Shah, V. Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: New targets for the treatment of portal hypertension? J. Hepatol., 2010, 53(5), 976-980.
[http://dx.doi.org/10.1016/j.jhep.2010.07.004] [PMID: 20800926]
[99]
Zhu, H.; Fan, G.C. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc. Res., 2012, 94(2), 284-292.
[http://dx.doi.org/10.1093/cvr/cvr291] [PMID: 22038740]
[100]
Guo, H.; Liu, H.; Mitchelson, K.; Rao, H.; Luo, M.; Xie, L.; Sun, Y.; Zhang, L.; Lu, Y.; Liu, R.; Ren, A.; Liu, S.; Zhou, S.; Zhu, J.; Zhou, Y.; Huang, A.; Wei, L.; Guo, Y.; Cheng, J. MicroRNAs-372/373 promote the expression of hepatitis B virus through the targeting of nucle-ar factor I/B. Hepatology, 2011, 54(3), 808-819.
[http://dx.doi.org/10.1002/hep.24441] [PMID: 21608007]
[101]
Zhang, X.; Zhang, E.; Ma, Z.; Pei, R.; Jiang, M.; Schlaak, J.F.; Roggendorf, M.; Lu, M. Modulation of hepatitis B virus replication and hepatocyte differentiation by MicroRNA-1. Hepatology, 2011, 53(5), 1476-1485.
[http://dx.doi.org/10.1002/hep.24195] [PMID: 21520166]
[102]
Jin, J.; Tang, S.; Xia, L.; Du, R.; Xie, H.; Song, J.; Fan, R.; Bi, Q.; Chen, Z.; Yang, G.; Liu, J.; Shi, Y.; Fan, D. MicroRNA-501 promotes HBV replication by targeting HBXIP. Biochem. Biophys. Res. Commun., 2013, 430(4), 1228-1233.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.071] [PMID: 23266610]
[103]
Dai, X.; Zhang, W.; Zhang, H.; Sun, S.; Yu, H.; Guo, Y.; Kou, Z.; Zhao, G.; Du, L.; Jiang, S.; Zhang, J.; Li, J.; Zhou, Y. Modulation of HBV replication by microRNA-15b through targeting hepatocyte nuclear factor 1α. Nucleic Acids Res., 2014, 42(10), 6578-6590.
[http://dx.doi.org/10.1093/nar/gku260] [PMID: 24705650]
[104]
Wu, F.L.; Jin, W.B.; Li, J.H.; Guo, A.G. Targets for human encoded microRNAs in HBV genes. Virus Genes, 2011, 42(2), 157-161.
[http://dx.doi.org/10.1007/s11262-010-0555-7] [PMID: 21113793]
[105]
Chen, Y.; Shen, A.; Rider, P.J.; Yu, Y.; Wu, K.; Mu, Y.; Hao, Q.; Liu, Y.; Gong, H.; Zhu, Y.; Liu, F.; Wu, J. A liver-specific microRNA binds to a highly conserved RNA sequence of hepatitis B virus and negatively regulates viral gene expression and replication. FASEB J., 2011, 25(12), 4511-4521.
[http://dx.doi.org/10.1096/fj.11-187781] [PMID: 21903935]
[106]
Potenza, N.; Papa, U.; Mosca, N.; Zerbini, F.; Nobile, V.; Russo, A. Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen. Nucleic Acids Res., 2011, 39(12), 5157-5163.
[http://dx.doi.org/10.1093/nar/gkr067] [PMID: 21317190]
[107]
Wang, Y.; Jiang, L.; Ji, X.; Yang, B.; Zhang, Y.; Fu, X.D. Hepatitis B viral RNA directly mediates down-regulation of the tumor suppressor microRNA miR-15a/miR-16-1 in hepatocytes. J. Biol. Chem., 2013, 288(25), 18484-18493.
[http://dx.doi.org/10.1074/jbc.M113.458158] [PMID: 23649629]
[108]
Jung, Y.J.; Kim, J.W.; Park, S.J.; Min, B.Y.; Jang, E.S.; Kim, N.Y.; Jeong, S.H.; Shin, C.M.; Lee, S.H.; Park, Y.S.; Hwang, J.H.; Kim, N.; Lee, D.H. c-Myc-mediated overexpression of miR-17-92 suppresses replication of hepatitis B virus in human hepatoma cells. J. Med. Virol., 2013, 85(6), 969-978.
[http://dx.doi.org/10.1002/jmv.23534] [PMID: 23532756]
[109]
Qiu, L.; Fan, H.; Jin, W.; Zhao, B.; Wang, Y.; Ju, Y.; Chen, L.; Chen, Y.; Duan, Z.; Meng, S. miR-122-induced down-regulation of HO-1 negatively affects miR-122-mediated suppression of HBV. Biochem. Biophys. Res. Commun., 2010, 398(4), 771-777.
[http://dx.doi.org/10.1016/j.bbrc.2010.07.021] [PMID: 20633528]
[110]
Fan, C.G.; Wang, C.M.; Tian, C.; Wang, Y.; Li, L.; Sun, W.S.; Li, R.F.; Liu, Y.G. miR-122 inhibits viral replication and cell proliferation in hepatitis B virus-related hepatocellular carcinoma and targets NDRG3. Oncol. Rep., 2011, 26(5), 1281-1286.
[PMID: 21725618]
[111]
Wang, C.M.; Wang, Y.; Fan, C.G.; Xu, F.F.; Sun, W.S.; Liu, Y.G.; Jia, J.H. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma. Biochem. Biophys. Res. Commun., 2011, 411(3), 586-592.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.191] [PMID: 21763284]
[112]
Zhang, Z.; Chen, J.; He, Y.; Zhan, X.; Zhao, R.; Huang, Y.; Xu, H.; Zhu, Z.; Liu, Q. miR-125b inhibits hepatitis B virus expression in vitro through targeting of the SCNN1A gene. Arch. Virol., 2014, 159(12), 3335-3343.
[http://dx.doi.org/10.1007/s00705-014-2208-y] [PMID: 25173609]
[113]
Hu, W.; Wang, X.; Ding, X.; Li, Y.; Zhang, X.; Xie, P.; Yang, J.; Wang, S. MicroRNA-141 represses HBV replication by targeting PPARA. PLoS One, 2012, 7(3), e34165.
[http://dx.doi.org/10.1371/journal.pone.0034165] [PMID: 22479552]
[114]
Sarkar, N.; Panigrahi, R.; Pal, A.; Biswas, A.; Singh, S.P.; Kar, S.K.; Bandopadhyay, M.; Das, D.; Saha, D.; Kanda, T.; Sugiyama, M.; Chakrabarti, S.; Banerjee, A.; Chakravarty, R. Expression of microRNA-155 correlates positively with the expression of Toll-like receptor 7 and modulates hepatitis B virus via C/EBP-β in hepatocytes. J. Viral Hepat., 2015, 22(10), 817-827.
[http://dx.doi.org/10.1111/jvh.12390] [PMID: 25720442]
[115]
Huang, J.Y.; Chou, S.F.; Lee, J.W.; Chen, H.L.; Chen, C.M.; Tao, M.H.; Shih, C. MicroRNA-130a can inhibit hepatitis B virus replication via targeting PGC1α and PPARγ. RNA, 2015, 21(3), 385-400.
[http://dx.doi.org/10.1261/rna.048744.114] [PMID: 25595716]
[116]
Ji, F.; Yang, B.; Peng, X.; Ding, H.; You, H.; Tien, P. Circulating microRNAs in hepatitis B virus-infected patients. J. Viral Hepat., 2011, 18(7), e242-e251.
[http://dx.doi.org/10.1111/j.1365-2893.2011.01443.x] [PMID: 21692939]
[117]
Chen, Y.; Li, L.; Zhou, Z.; Wang, N.; Zhang, C.Y.; Zen, K. A pilot study of serum microRNA signatures as a novel biomarker for occult hepatitis B virus infection. Med. Microbiol. Immunol. (Berl.), 2012, 201(3), 389-395.
[http://dx.doi.org/10.1007/s00430-011-0223-0] [PMID: 22392036]
[118]
Jopling, C.L.; Yi, M.; Lancaster, A.M.; Lemon, S.M.; Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific mi-croRNA. Science, 2005, 309(5740), 1577-1581.
[http://dx.doi.org/10.1126/science.1113329] [PMID: 16141076]
[119]
Hayes, C.N.; Akamatsu, S.; Tsuge, M.; Miki, D.; Akiyama, R.; Abe, H.; Ochi, H.; Hiraga, N.; Imamura, M.; Takahashi, S.; Aikata, H.; Ka-waoka, T.; Kawakami, Y.; Ohishi, W.; Chayama, K. Hepatitis B virus-specific miRNAs and Argonaute2 play a role in the viral life cycle. PLoS One, 2012, 7(10), e47490.
[http://dx.doi.org/10.1371/journal.pone.0047490] [PMID: 23091627]
[120]
Augello, C.; Vaira, V.; Caruso, L.; Destro, A.; Maggioni, M.; Park, Y.N.; Montorsi, M.; Santambrogio, R.; Roncalli, M.; Bosari, S. Mi-croRNA profiling of hepatocarcinogenesis identifies C19MC cluster as a novel prognostic biomarker in hepatocellular carcinoma. Liver Int., 2012, 32(5), 772-782.
[http://dx.doi.org/10.1111/j.1478-3231.2012.02795.x] [PMID: 22429613]
[121]
Lindblad, K.E.; Ruiz de Galarreta, M.; Lujambio, A. Tumor-intrinsic mechanisms regulating immune exclusion in liver cancers. Front. Immunol., 2021, 12, 642958.
[http://dx.doi.org/10.3389/fimmu.2021.642958] [PMID: 33981303]
[122]
Latief, U. Husain, H.; Ahmad, R. β-Carotene supplementation ameliorates experimental liver fibrogenesis via restoring antioxidant status and hepatic stellate cells activity. J. Funct. Foods, 2018, 49, 168-180.
[http://dx.doi.org/10.1016/j.jff.2018.08.027]
[123]
Yang, N.; Ekanem, N.R.; Sakyi, C.A.; Ray, S.D. Hepatocellular carcinoma and microRNA: New perspectives on therapeutics and diagnos-tics. Adv. Drug Deliv. Rev., 2015, 81, 62-74.
[http://dx.doi.org/10.1016/j.addr.2014.10.029] [PMID: 25450260]
[124]
Slack, F.J.; Chinnaiyan, A.M. The role of non-coding RNAs in oncology. Cell, 2019, 179(5), 1033-1055.
[http://dx.doi.org/10.1016/j.cell.2019.10.017] [PMID: 31730848]
[125]
Zhang, T.; Yang, Z.; Kusumanchi, P.; Han, S.; Liangpunsakul, S. Critical role of microRNA-21 in the pathogenesis of liver diseases. Front. Med. (Lausanne), 2020, 7, 7.
[http://dx.doi.org/10.3389/fmed.2020.00007] [PMID: 32083086]
[126]
O’Donnell, K.A.; Wentzel, E.A.; Zeller, K.I.; Dang, C.V.; Mendell, J.T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005, 435(7043), 839-843.
[http://dx.doi.org/10.1038/nature03677] [PMID: 15944709]
[127]
Chang, T.C.; Yu, D.; Lee, Y.S.; Wentzel, E.A.; Arking, D.E.; West, K.M.; Dang, C.V.; Thomas-Tikhonenko, A.; Mendell, J.T. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat. Genet., 2008, 40(1), 43-50.
[http://dx.doi.org/10.1038/ng.2007.30] [PMID: 18066065]
[128]
Raver-Shapira, N.; Marciano, E.; Meiri, E.; Spector, Y.; Rosenfeld, N.; Moskovits, N.; Bentwich, Z.; Oren, M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell, 2007, 26(5), 731-743.
[http://dx.doi.org/10.1016/j.molcel.2007.05.017] [PMID: 17540598]
[129]
Liu, S.; Guo, W.; Shi, J.; Li, N.; Yu, X.; Xue, J.; Fu, X.; Chu, K.; Lu, C.; Zhao, J.; Xie, D.; Wu, M.; Cheng, S.; Liu, S. MicroRNA-135a contributes to the development of portal vein tumor thrombus by promoting metastasis in hepatocellular carcinoma. J. Hepatol., 2012, 56(2), 389-396.
[http://dx.doi.org/10.1016/j.jhep.2011.08.008] [PMID: 21888875]
[130]
Ying, Q.; Liang, L.; Guo, W.; Zha, R.; Tian, Q.; Huang, S.; Yao, J.; Ding, J.; Bao, M.; Ge, C.; Yao, M.; Li, J.; He, X. Hypoxia-inducible microRNA-210 augments the metastatic potential of tumor cells by targeting vacuole membrane protein 1 in hepatocellular carcinoma. Hepatology, 2011, 54(6), 2064-2075.
[http://dx.doi.org/10.1002/hep.24614] [PMID: 22144109]
[131]
Yang, W.; Sun, T.; Cao, J.; Liu, F.; Tian, Y.; Zhu, W. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro. Exp. Cell Res., 2012, 318(8), 944-954.
[http://dx.doi.org/10.1016/j.yexcr.2012.02.010] [PMID: 22387901]
[132]
Qu, K.Z.; Zhang, K.; Li, H.; Afdhal, N.H.; Albitar, M. Circulating microRNAs as biomarkers for hepatocellular carcinoma. J. Clin. Gastroenterol., 2011, 45(4), 355-360.
[http://dx.doi.org/10.1097/MCG.0b013e3181f18ac2] [PMID: 21278583]
[133]
Shigoka, M.; Tsuchida, A.; Matsudo, T.; Nagakawa, Y.; Saito, H.; Suzuki, Y.; Aoki, T.; Murakami, Y.; Toyoda, H.; Kumada, T.; Barten-schlager, R.; Kato, N.; Ikeda, M.; Takashina, T.; Tanaka, M.; Suzuki, R.; Oikawa, K.; Takanashi, M.; Kuroda, M. Deregulation of miR-92a expression is implicated in hepatocellular carcinoma development. Pathol. Int., 2010, 60(5), 351-357.
[http://dx.doi.org/10.1111/j.1440-1827.2010.02526.x] [PMID: 20518884]
[134]
Barshack, I.; Meiri, E.; Rosenwald, S.; Lebanony, D.; Bronfeld, M.; Aviel-Ronen, S.; Rosenblatt, K.; Polak-Charcon, S.; Leizerman, I.; Ezagouri, M.; Zepeniuk, M.; Shabes, N.; Cohen, L.; Tabak, S.; Cohen, D.; Bentwich, Z.; Rosenfeld, N. Differential diagnosis of hepatocel-lular carcinoma from metastatic tumors in the liver using microRNA expression. Int. J. Biochem. Cell Biol., 2010, 42(8), 1355-1362.
[http://dx.doi.org/10.1016/j.biocel.2009.02.021] [PMID: 20619223]
[135]
Starkey Lewis, P.J.; Dear, J.; Platt, V.; Simpson, K.J.; Craig, D.G.; Antoine, D.J.; French, N.S.; Dhaun, N.; Webb, D.J.; Costello, E.M.; Ne-optolemos, J.P.; Moggs, J.; Goldring, C.E.; Park, B.K. Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology, 2011, 54(5), 1767-1776.
[http://dx.doi.org/10.1002/hep.24538] [PMID: 22045675]
[136]
Ding, X.; Ding, J.; Ning, J.; Yi, F.; Chen, J.; Zhao, D.; Zheng, J.; Liang, Z.; Hu, Z.; Du, Q. Circulating microRNA-122 as a potential bi-omarker for liver injury. Mol. Med. Rep., 2012, 5(6), 1428-1432.
[http://dx.doi.org/10.3892/mmr.2012.838] [PMID: 22427142]
[137]
Starckx, S.; Batheja, A.; Verheyen, G.R.; Jonghe, S.D.; Steemans, K.; Dijck, B.V.; Singer, M.; Bogdan, N.; Snoeys, J.; Vinken, P.; Sasaki, J.C.; Gompel, J.V.; Guzzie-Peck, P.; Lampo, A.; Lammens, L. Evaluation of miR-122 and other biomarkers in distinct acute liver injury in rats. Toxicol. Pathol., 2013, 41(5), 795-804.
[http://dx.doi.org/10.1177/0192623312464436] [PMID: 23143187]
[138]
Yamada, H.; Suzuki, K.; Ichino, N.; Ando, Y.; Sawada, A.; Osakabe, K.; Sugimoto, K.; Ohashi, K.; Teradaira, R.; Inoue, T.; Hamajima, N.; Hashimoto, S. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin. Chim. Acta, 2013, 424, 99-103.
[http://dx.doi.org/10.1016/j.cca.2013.05.021] [PMID: 23727030]
[139]
Salvoza, N.C.; Klinzing, D.C.; Gopez-Cervantes, J.; Baclig, M.O. Association of circulating serum miR-34a and miR-122 with dyslipidemia among patients with non-alcoholic fatty liver disease. PLoS One, 2016, 11(4), e0153497.
[http://dx.doi.org/10.1371/journal.pone.0153497] [PMID: 27077736]
[140]
Latorre, J.; Moreno-Navarrete, J.M.; Mercader, J.M.; Sabater, M.; Rovira, Ò.; Gironès, J.; Ricart, W.; Fernández-Real, J.M.; Ortega, F.J. Decreased lipid metabolism but increased FA biosynthesis are coupled with changes in liver microRNAs in obese subjects with NAFLD. Int. J. Obes., 2017, 41(4), 620-630.
[http://dx.doi.org/10.1038/ijo.2017.21] [PMID: 28119530]
[141]
Meng, F.; Henson, R.; Wehbe-Janek, H.; Ghoshal, K.; Jacob, S.T.; Patel, T. MicroRNA-21 regulates expression of the PTEN tumor sup-pressor gene in human hepatocellular cancer. Gastroenterology, 2007, 133(2), 647-658.
[http://dx.doi.org/10.1053/j.gastro.2007.05.022] [PMID: 17681183]
[142]
Asangani, I.A.; Rasheed, S.A.; Nikolova, D.A.; Leupold, J.H.; Colburn, N.H.; Post, S.; Allgayer, H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 2008, 27(15), 2128-2136.
[http://dx.doi.org/10.1038/sj.onc.1210856] [PMID: 17968323]
[143]
Li, W.; Xie, L.; He, X.; Li, J.; Tu, K.; Wei, L.; Wu, J.; Guo, Y.; Ma, X.; Zhang, P.; Pan, Z.; Hu, X.; Zhao, Y.; Xie, H.; Jiang, G.; Chen, T.; Wang, J.; Zheng, S.; Cheng, J.; Wan, D.; Yang, S.; Li, Y.; Gu, J. Diagnostic and prognostic implications of microRNAs in human hepatocel-lular carcinoma. Int. J. Cancer, 2008, 123(7), 1616-1622.
[http://dx.doi.org/10.1002/ijc.23693] [PMID: 18649363]
[144]
Coulouarn, C.; Factor, V.M.; Andersen, J.B.; Durkin, M.E.; Thorgeirsson, S.S. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene, 2009, 28(40), 3526-3536.
[http://dx.doi.org/10.1038/onc.2009.211] [PMID: 19617899]
[145]
Gramantieri, L.; Fornari, F.; Ferracin, M.; Veronese, A.; Sabbioni, S.; Calin, G.A.; Grazi, G.L.; Croce, C.M.; Bolondi, L.; Negrini, M. Mi-croRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin. Cancer Res., 2009, 15(16), 5073-5081.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0092] [PMID: 19671867]
[146]
Ji, J.; Shi, J.; Budhu, A.; Yu, Z.; Forgues, M.; Roessler, S.; Ambs, S.; Chen, Y.; Meltzer, P.S.; Croce, C.M.; Qin, L.X.; Man, K.; Lo, C.M.; Lee, J.; Ng, I.O.; Fan, J.; Tang, Z.Y.; Sun, H.C.; Wang, X.W. MicroRNA expression, survival, and response to interferon in liver cancer. N. Engl. J. Med., 2009, 361(15), 1437-1447.
[http://dx.doi.org/10.1056/NEJMoa0901282] [PMID: 19812400]
[147]
Tsai, W.C.; Hsu, P.W.C.; Lai, T.C.; Chau, G.Y.; Lin, C.W.; Chen, C.M.; Lin, C.D.; Liao, Y.L.; Wang, J.L.; Chau, Y.P.; Hsu, M.T.; Hsiao, M.; Huang, H.D.; Tsou, A.P. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carci-noma. Hepatology, 2009, 49(5), 1571-1582.
[http://dx.doi.org/10.1002/hep.22806] [PMID: 19296470]
[148]
Viswanathan, S.R.; Powers, J.T.; Einhorn, W.; Hoshida, Y.; Ng, T.L.; Toffanin, S.; O’Sullivan, M.; Lu, J.; Phillips, L.A.; Lockhart, V.L.; Shah, S.P.; Tanwar, P.S.; Mermel, C.H.; Beroukhim, R.; Azam, M.; Teixeira, J.; Meyerson, M.; Hughes, T.P.; Llovet, J.M.; Radich, J.; Mul-lighan, C.G.; Golub, T.R.; Sorensen, P.H.; Daley, G.Q. Lin28 promotes transformation and is associated with advanced human malignan-cies. Nat. Genet., 2009, 41(7), 843-848.
[http://dx.doi.org/10.1038/ng.392] [PMID: 19483683]
[149]
Zhang, X.; Liu, S.; Hu, T.; Liu, S.; He, Y.; Sun, S. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocar-cinoma metastasis by repressing fibronectin expression. Hepatology, 2009, 50(2), 490-499.
[http://dx.doi.org/10.1002/hep.23008] [PMID: 19472311]
[150]
Wong, Q.W.; Ching, A.K.; Chan, A.W.; Choy, K.W.; To, K.F.; Lai, P.B.; Wong, N. MiR-222 overexpression confers cell migratory ad-vantages in hepatocellular carcinoma through enhancing AKT signaling. Clin. Cancer Res., 2010, 16(3), 867-875.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1840] [PMID: 20103675]
[151]
Yao, J.; Liang, L.; Huang, S.; Ding, J.; Tan, N.; Zhao, Y.; Yan, M.; Ge, C.; Zhang, Z.; Chen, T.; Wan, D.; Yao, M.; Li, J.; Gu, J.; He, X. MicroRNA-30d promotes tumor invasion and metastasis by targeting Galphai2 in hepatocellular carcinoma. Hepatology, 2010, 51(3), 846-856.
[http://dx.doi.org/10.1002/hep.23443] [PMID: 20054866]
[152]
Huang, S.; He, X. The role of microRNAs in liver cancer progression. Br. J. Cancer, 2011, 104(2), 235-240.
[http://dx.doi.org/10.1038/sj.bjc.6606010] [PMID: 21102580]
[153]
Lan, F.F.; Wang, H.; Chen, Y.C.; Chan, C.Y.; Ng, S.S.; Li, K.; Xie, D.; He, M.L.; Lin, M.C.; Kung, H.F. Hsa-let-7g inhibits proliferation of hepatocellular carcinoma cells by downregulation of c-Myc and upregulation of p16(INK4A). Int. J. Cancer, 2011, 128(2), 319-331.
[http://dx.doi.org/10.1002/ijc.25336] [PMID: 20309945]
[154]
Bihrer, V.; Friedrich-Rust, M.; Kronenberger, B.; Forestier, N.; Haupenthal, J.; Shi, Y.; Peveling-Oberhag, J.; Radeke, H.H.; Sarrazin, C.; Herrmann, E.; Zeuzem, S.; Waidmann, O.; Piiper, A. Serum miR-122 as a biomarker of necroinflammation in patients with chronic hepati-tis C virus infection. Am. J. Gastroenterol., 2011, 106(9), 1663-1669.
[http://dx.doi.org/10.1038/ajg.2011.161] [PMID: 21606975]
[155]
Song, G.; Sharma, A.D.; Roll, G.R.; Ng, R.; Lee, A.Y.; Blelloch, R.H.; Frandsen, N.M.; Willenbring, H. MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology, 2010, 51, 1735-1743.
[156]
Sharma, A.D.; Narain, N.; Händel, E.M.; Iken, M.; Singhal, N.; Cathomen, T.; Manns, M.P.; Schöler, H.R.; Ott, M.; Cantz, T. MicroRNA-221 regulates FAS-induced fulminant liver failure. Hepatology, 2011, 53(5), 1651-1661.
[http://dx.doi.org/10.1002/hep.24243] [PMID: 21400558]
[157]
Yuan, Q.; Loya, K.; Rani, B.; Möbus, S.; Balakrishnan, A.; Lamle, J.; Cathomen, T.; Vogel, A.; Manns, M.P.; Ott, M.; Cantz, T.; Sharma, A.D. MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology, 2013, 57(1), 299-310.
[http://dx.doi.org/10.1002/hep.25984] [PMID: 22821679]
[158]
Ye, D.; Zhang, T.; Lou, G.; Liu, Y. Role of miR-223 in the pathophysiology of liver diseases. Exp. Mol. Med., 2018, 50(9), 1-12.
[http://dx.doi.org/10.1038/s12276-018-0153-7] [PMID: 30258086]
[159]
Padgett, K.A.; Lan, R.Y.; Leung, P.C.; Lleo, A.; Dawson, K.; Pfeiff, J.; Mao, T.K.; Coppel, R.L.; Ansari, A.A.; Gershwin, M.E. Primary biliary cirrhosis is associated with altered hepatic microRNA expression. J. Autoimmun., 2009, 32(3-4), 246-253.
[http://dx.doi.org/10.1016/j.jaut.2009.02.022] [PMID: 19345069]
[160]
Gupta, S.K.; Maclean, P.H.; Ganesh, S.; Shu, D.; Buddle, B.M.; Wedlock, D.N.; Heiser, A. Detection of microRNA in cattle serum and their potential use to diagnose severity of Johne’s disease. J. Dairy Sci., 2018, 101(11), 10259-10270.
[http://dx.doi.org/10.3168/jds.2018-14785] [PMID: 30197143]
[161]
Gholizadeh, M.; Szelag-Pieniek, S.; Post, M.; Kurzawski, M.; Prieto, J.; Argemi, J.; Drozdzik, M.; Kaderali, L. Identifying differentially expressed microRNAs, target genes, and key pathways deregulated in patients with liver diseases. Int. J. Mol. Sci., 2020, 21(19), 7368.
[http://dx.doi.org/10.3390/ijms21197368] [PMID: 33036164]
[162]
Tian, T.; Wang, J.; Zhou, X. A review: MicroRNA detection methods. Org. Biomol. Chem., 2015, 13(8), 2226-2238.
[http://dx.doi.org/10.1039/C4OB02104E] [PMID: 25574760]
[163]
Zhang, X.; Liu, Y.; Yang, Y.; Huang, J.; Wang, H.; Zhu, Z.; Wang, X.; Ma, P.; Zhou, X.; Wang, S.; Zhou, X. Ligation-promoted hyper-branched rolling circle amplification enables ultrasensitive detection of microRNA in clinical specimens. Sens. Actuators B Chem., 2018, 277, 634-639.
[http://dx.doi.org/10.1016/j.snb.2018.09.058]
[164]
Cheng, Y.; Dong, L.; Zhang, J.; Zhao, Y.; Li, Z. Recent advances in microRNA detection. Analyst (Lond.), 2018, 143(8), 1758-1774.
[http://dx.doi.org/10.1039/C7AN02001E] [PMID: 29560992]
[165]
Kalogianni, D.P.; Kalligosfyri, P.M.; Kyriakou, I.K.; Christopoulos, T.K. Advances in microRNA analysis. Anal. Bioanal. Chem., 2018, 410(3), 695-713.
[http://dx.doi.org/10.1007/s00216-017-0632-z] [PMID: 29032457]
[166]
Akmal, M.; Baig, M.S.; Khan, J.A. Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs. J. Biotechnol., 2017, 263, 21-29.
[http://dx.doi.org/10.1016/j.jbiotec.2017.10.003] [PMID: 29017848]
[167]
Cissell, K.A.; Deo, S.K. Trends in microRNA detection. Anal. Bioanal. Chem., 2009, 394(4), 1109-1116.
[http://dx.doi.org/10.1007/s00216-009-2744-6] [PMID: 19367400]
[168]
Mohammadi-Yeganeh, S.; Paryan, M.; Mirab Samiee, S.; Soleimani, M.; Arefian, E.; Azadmanesh, K.; Mostafavi, E.; Mahdian, R.; Karim-ipoor, M. Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis. Mol. Biol. Rep., 2013, 40(5), 3665-3674.
[http://dx.doi.org/10.1007/s11033-012-2442-x] [PMID: 23307300]
[169]
Ye, J.; Xu, M.; Tian, X.; Cai, S.; Zeng, S. Research advances in the detection of miRNA. J. Pharm. Anal., 2019, 9(4), 217-226.
[http://dx.doi.org/10.1016/j.jpha.2019.05.004] [PMID: 31452959]
[170]
Chen, X.; Zhu, C.C.; Yin, J. Ensemble of decision tree reveals potential miRNA-disease associations. PLOS Comput. Biol., 2019, 15(7), e1007209.
[http://dx.doi.org/10.1371/journal.pcbi.1007209] [PMID: 31329575]
[171]
Chen, X.; Li, T.H.; Zhao, Y.; Wang, C.C.; Zhu, C.C. Deep-belief network for predicting potential miRNA-disease associations. Brief. Bioinform., 2021, 22(3), bbaa186.
[http://dx.doi.org/10.1093/bib/bbaa186]
[172]
Chen, X.; Sun, L.G.; Zhao, Y. NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion. Brief. Bioinform., 2021, 22(1), 485-496.
[http://dx.doi.org/10.1093/bib/bbz159] [PMID: 31927572]
[173]
Bandiera, S.; Pfeffer, S.; Baumert, T.F.; Zeisel, M.B. miR-122 - a key factor and therapeutic target in liver disease. J. Hepatol., 2015, 62(2), 448-457.
[http://dx.doi.org/10.1016/j.jhep.2014.10.004] [PMID: 25308172]
[174]
Wang, X.; He, Y.; Mackowiak, B.; Gao, B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut, 2021, 70(4), 784-795.
[http://dx.doi.org/10.1136/gutjnl-2020-322526] [PMID: 33127832]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy