Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

SARS-CoV-2 Infection and C1-Esterase Inhibitor: Camouflage Pattern and New Perspective

Author(s): Hayder M. Al-kuraishy, Ali I. Al-Gareeb, Naif A. Jalal, Saeed M Kabrah, Athanasios Alexiou* and Gaber El-Saber Batiha*

Volume 23, Issue 7, 2022

Published on: 03 September, 2022

Page: [465 - 474] Pages: 10

DOI: 10.2174/1389203723666220811121803

Price: $65

Abstract

In Covid-19, the pathological effect of SARS-CoV-2 infection is arbitrated through direct viral toxicity, unusual immune response, endothelial dysfunction, deregulated renin-angiotensin system [RAS], and thrombo-inflammation, leading to acute lung injury (ALI), with a succession of acute respiratory distress syndrome (ARDS) in critical conditions. C1 esterase inhibitor (C1INH) is a protease inhibitor that inhibits the spontaneous activation of complement and contact systems and kinin pathway, clotting, and fibrinolytic systems. Therefore, targeting the complement system through activation of C1INH might be a novel therapeutic modality in the treatment of Covid-19. Therefore, this study aims to illustrate the potential nexus between C1INH and the pathophysiology of SARS-CoV-2 infection. C1INH is highly dysregulated in Covid-19 due to inflammatory and coagulation disorders. C1INH is up-regulated in Covid-19 and sepsis as an acute phase response, but this increase is insufficient to block the activated complement system. In addition, the C1INH serum level predicts the development of ARDS in Covid-19 patients, as its up-regulation is associated with the development of cytokine storm. In Covid-19, C1INH might be inhibited or dysregulated by SARS-CoV-2, leading to propagation of complement system activation with subsequent uncontrolled immunological stimulation due to activation of bradykinin and FXII with sequential activation of coagulation cascades and polymerization of fibrin. Thus, suppression of C1INH by SARS-CoV-2 infection leads to thrombosis and excessive inflammation due to uncontrolled activation of complements and contact systems.

Keywords: Covid-19, SARS-CoV-2, C1-esterase inhibitor, complement system, acute lung injury (ALI), acute respiratory distress syndrome (ARDS).

Graphical Abstract

[1]
Al-Kuraishy, H.M.; Hussien, N.R.; Al-Naimi, M.S.; Al-Buhadily, A.K.; Al-Gareeb, A.I.; Lungnier, C. Is ivermectin-Azithromycin combi-nation the next step for COVID-19? Biomed. Biotechnol. Res. J., 2020, 4(5), 101.
[2]
Al-Kuraishy, H.M.; Al-Gareeb, A.I. From SARS-CoV to nCoV-2019: Ruction and argument. Arch. Clin. Infect. Dis., 2020, 15.
[3]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusty, N.; Cruz-Martins, N.; El-Saber Batiha, G. Sequential doxycycline and colchicine combination therapy in Covid-19: The salutary effects. Pulm. Pharmacol. Ther., 2021, 67, 102008.
[http://dx.doi.org/10.1016/j.pupt.2021.102008] [PMID: 33727066]
[4]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alblihed, M.; Cruz-Martins, N.; Batiha, G.E. COVID-19 and risk of acute ischemic stroke and acute lung injury in patients with type II diabetes mellitus: The anti-inflammatory role of metformin. Front. Med. (Lausanne), 2021, 8, 644295.
[http://dx.doi.org/10.3389/fmed.2021.644295] [PMID: 33718411]
[5]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Faidah, H.; Al-Maiahy, T.J.; Cruz-Martins, N.; Batiha, G.E. The looming effects of estrogen in Covid-19: A rocky rollout. Front. Nutr., 2021, 8, 649128.
[http://dx.doi.org/10.3389/fnut.2021.649128] [PMID: 33816542]
[6]
Lugnier, C.; Al-Kuraishy, H.M.; Rousseau, E. PDE4 inhibition as a therapeutic strategy for improvement of pulmonary dysfunctions in Covid-19 and cigarette smoking. Biochem. Pharmacol., 2021, 185, 114431-114438.
[http://dx.doi.org/10.1016/j.bcp.2021.114431] [PMID: 33515531]
[7]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Cruz-Martins, N.; Batiha, G.E. Hyperbilirubinemia in Gilbert syndrome attenuates Covid-19 induced-metabolic disturbances: A case-report study. Front. Cardiovasc. Med., 2021, 8, 71.
[8]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alzahrani, K.J.; Cruz-Martins, N.; Batiha, G.E. The potential role of neopterin in Covid-19: A new perspective. Mol. Cell. Biochem., 2021, 476(11), 4161-4166.
[http://dx.doi.org/10.1007/s11010-021-04232-z] [PMID: 34319496]
[9]
Jordan, S.C.; Choi, J.; Aubert, O.; Haas, M.; Loupy, A.; Huang, E.; Peng, A.; Kim, I.; Louie, S.; Ammerman, N.; Najjar, R.; Puliyanda, D.; Vo, A. A phase I/II, double-blind, placebo-controlled study assessing safety and efficacy of C1 esterase inhibitor for prevention of de-layed graft function in deceased donor kidney transplant recipients. Am. J. Transplant., 2018, 18(12), 2955-2964.
[http://dx.doi.org/10.1111/ajt.14767] [PMID: 29637714]
[10]
Agostoni, A.; Aygören-Pürsün, E.; Binkley, K.E.; Blanch, A.; Bork, K.; Bouillet, L.; Bucher, C.; Castaldo, A.J.; Cicardi, M.; Davis, A.E., III; De Carolis, C.; Drouet, C.; Duponchel, C.; Farkas, H.; Fáy, K.; Fekete, B.; Fischer, B.; Fontana, L.; Füst, G.; Giacomelli, R.; Gröner, A.; Hack, C.E.; Harmat, G.; Jakenfelds, J.; Juers, M.; Kalmár, L.; Kaposi, P.N.; Karádi, I.; Kitzinger, A.; Kollár, T.; Kreuz, W.; Lakatos, P.; Longhurst, H.J.; Lopez-Trascasa, M.; Martinez-Saguer, I.; Monnier, N.; Nagy, I.; Németh, E.; Nielsen, E.W.; Nuijens, J.H.; O’grady, C.; Pappalardo, E.; Penna, V.; Perricone, C.; Perricone, R.; Rauch, U.; Roche, O.; Rusicke, E.; Späth, P.J.; Szendei, G.; Takács, E.; Tordai, A.; Truedsson, L.; Varga, L.; Visy, B.; Williams, K.; Zanichelli, A.; Zingale, L. Hereditary and acquired angioedema: Problems and progress: Proceedings of the third C1 esterase inhibitor deficiency workshop and beyond. J. Allergy Clin. Immunol., 2004, 114(3)(Suppl.), S51-S131.
[http://dx.doi.org/10.1016/j.jaci.2004.06.047] [PMID: 15356535]
[11]
de Maat, S.; Joseph, K.; Maas, C.; Kaplan, A.P. Blood clotting and the pathogenesis of types I and II hereditary angioedema. Clin. Rev. Allergy Immunol., 2021, 60(3), 348-356.
[http://dx.doi.org/10.1007/s12016-021-08837-6] [PMID: 33956309]
[12]
Kajdácsi, E.; Jandrasics, Z.; Veszeli, N.; Makó, V.; Koncz, A.; Gulyás, D.; Köhalmi, K.V.; Temesszentandrási, G.; Cervenak, L.; Gál, P.; Dobó, J.; de Maat, S.; Maas, C.; Farkas, H.; Varga, L. Patterns of C1-inhibitor/plasma serine protease complexes in healthy humans and in hereditary angioedema patients. Front. Immunol., 2020, 11, 794.
[http://dx.doi.org/10.3389/fimmu.2020.00794] [PMID: 32431708]
[13]
Levy, D.; Craig, T.; Keith, P.K.; Krishnarajah, G.; Beckerman, R.; Prusty, S. Co-occurrence between C1 esterase inhibitor deficiency and autoimmune disease: A systematic literature review. Allergy Asthma Clin. Immunol., 2020, 16, 41.
[http://dx.doi.org/10.1186/s13223-020-00437-x] [PMID: 32514272]
[14]
Panagiotou, A.; Trendelenburg, M.; Osthoff, M. The lectin pathway of complement in myocardial ischemia/reperfusion injury-Review of its significance and the potential impact of therapeutic interference by C1 esterase inhibitor. Front. Immunol., 2018, 9, 1151.
[http://dx.doi.org/10.3389/fimmu.2018.01151] [PMID: 29910807]
[15]
Trouw, L.A.; Pickering, M.C.; Blom, A.M. The complement system as a potential therapeutic target in rheumatic disease. Nat. Rev. Rheumatol., 2017, 13(9), 538-547.
[http://dx.doi.org/10.1038/nrrheum.2017.125] [PMID: 28794515]
[16]
Parker, S.E.; Hanton, A.M.; Stefanou, S.N.; Noakes, P.G.; Woodruff, T.M.; Lee, J.D. Revisiting the role of the innate immune complement system in ALS. Neurobiol. Dis., 2019, 127, 223-232.
[http://dx.doi.org/10.1016/j.nbd.2019.03.003] [PMID: 30849511]
[17]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alblihed, M.; Guerreiro, S.G.; Cruz-Martins, N.; Batiha, G.E. COVID-19 in relation to hyperglycemia and diabetes mellitus. Front. Cardiovasc. Med., 2021, 8, 644095.
[http://dx.doi.org/10.3389/fcvm.2021.644095] [PMID: 34124187]
[18]
Conde, J.N.; Silva, E.M.; Barbosa, A.S.; Mohana-Borges, R. The complement system in flavivirus infections. Front. Microbiol., 2017, 8, 213.
[http://dx.doi.org/10.3389/fmicb.2017.00213] [PMID: 28261172]
[19]
Immunobiology of the complement system: An introduction for research and clinical medicine. Academic Press 2014.
[20]
Bernet, J.; Mullick, J.; Singh, A.K.; Sahu, A. Viral mimicry of the complement system. J. Biosci., 2003, 28(3), 249-264.
[http://dx.doi.org/10.1007/BF02970145] [PMID: 12734404]
[21]
Stoermer, K.A.; Morrison, T.E. Complement and viral pathogenesis. Virology, 2011, 411(2), 362-373.
[http://dx.doi.org/10.1016/j.virol.2010.12.045] [PMID: 21292294]
[22]
Rynda-Apple, A.; Patterson, D.P.; Douglas, T. Virus-like particles as antigenic nanomaterials for inducing protective immune responses in the lung. Nanomedicine (Lond.), 2014, 9(12), 1857-1868.
[http://dx.doi.org/10.2217/nnm.14.107] [PMID: 25325241]
[23]
Moulton, E.A.; Atkinson, J.P.; Buller, R.M. Surviving mousepox infection requires the complement system. PLoS Pathog., 2008, 4(12), e1000249.
[http://dx.doi.org/10.1371/journal.ppat.1000249] [PMID: 19112490]
[24]
Malekshahi, Z.; Schiela, B.; Bernklau, S.; Banki, Z.; Würzner, R.; Stoiber, H. Interference of the zika virus E-protein with the membrane attack complex of the complement system. Front. Immunol., 2020, 11, 569549.
[http://dx.doi.org/10.3389/fimmu.2020.569549] [PMID: 33193347]
[25]
West, E.E.; Kolev, M.; Kemper, C. Complement and the regulation of T cell responses. Annu. Rev. Immunol., 2018, 36, 309-338.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053245] [PMID: 29677470]
[26]
Shresta, S. Role of complement in dengue virus infection: Protection or pathogenesis? MBio, 2012, 3(1), e00003-e00012.
[http://dx.doi.org/10.1128/mBio.00003-12] [PMID: 22318317]
[27]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Fageyinbo, M.S.; Batiha, G.E. Vinpocetine is the forthcoming adjuvant agent in the management of COVID-19. Future Sci. OA, 2022, (0), FSO797.
[http://dx.doi.org/10.2144/fsoa-2021-0099]
[28]
Gralinski, L.E.; Sheahan, T.P.; Morrison, T.E.; Menachery, V.D.; Jensen, K.; Leist, S.R.; Whitmore, A.; Heise, M.T.; Baric, R.S. Comple-ment activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio, 2018, 9(5), e01753-e18.
[http://dx.doi.org/10.1128/mBio.01753-18] [PMID: 30301856]
[29]
Bosmann, M.; Ward, P.A. Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis. Adv. Exp. Med. Biol., 2012, 946, 147-159.
[http://dx.doi.org/10.1007/978-1-4614-0106-3_9] [PMID: 21948367]
[30]
Wang, R.; Xiao, H.; Guo, R.; Li, Y.; Shen, B. The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerg. Microbes Infect., 2015, 4(5), e28.
[http://dx.doi.org/10.1038/emi.2015.28] [PMID: 26060601]
[31]
Jiménez-Bluhm, P.; Karlsson, E.A.; Freiden, P.; Sharp, B.; Di Pillo, F.; Osorio, J.E.; Hamilton-West, C.; Schultz-Cherry, S. Wild birds in Chile Harbor diverse avian influenza A viruses. Emerg. Microbes Infect., 2018, 7(1), 44.
[http://dx.doi.org/10.1038/s41426-018-0046-9] [PMID: 29593259]
[32]
Peng, Q.; Li, K.; Sacks, S.H.; Zhou, W. The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses. Inflam. Aller. Drug Tar., 2009, 8(3), 236-246.
[http://dx.doi.org/10.2174/187152809788681038]
[33]
Gerenčer, M.; Burek, V.; Barrett, N.P.; Dorner, F. Acquired deficiency of functional C1-esterase inhibitor in HIV type 1-infected patients. AIDS Res. Hum. Retroviruses, 1997, 13(10), 813-814.
[http://dx.doi.org/10.1089/aid.1997.13.813] [PMID: 9197374]
[34]
Bernstein, J.A. Human plasma-derived C1 esterase inhibitor for on-demand or prophylaxis treatment of patients with hereditary angi-oedema: Intravenous and subcutaneous formulations. Expert Opin. Orphan Drugs, 2018, 6(3), 237-245.
[http://dx.doi.org/10.1080/21678707.2018.1441022]
[35]
Thomson, T.M.; Toscano-Guerra, E.; Casis, E.; Paciucci, R. C1 esterase inhibitor and the contact system in COVID-19. Br. J. Haematol., 2020, 190(4), 520-524.
[http://dx.doi.org/10.1111/bjh.16938] [PMID: 32531085]
[36]
Reshef, A.; Levy, D.; Longhurst, H.; Cicardi, M.; Craig, T.; Keith, P.K.; Feussner, A.; Feuersenger, H.; Machnig, T.; Prusty, S.; Pragst, I. Effects of continuous plasma-derived subcutaneous C1-esterase inhibitor on coagulation and fibrinolytic parameters. Thromb. Haemost., 2021, 121(5), 690-693.
[http://dx.doi.org/10.1055/s-0040-1721147] [PMID: 33202446]
[37]
Adesanya, T.M.A.; Campbell, C.M.; Cheng, L.; Ogbogu, P.U.; Kahwash, R. C1 esterase inhibition: Targeting multiple systems in COVID-19. J. Clin. Immunol., 2021, 41(4), 729-732.
[http://dx.doi.org/10.1007/s10875-021-00972-1] [PMID: 33474624]
[38]
Grewal, E.; Sutarjono, B.; Mohammed, I. Angioedema, ACE inhibitor and COVID-19. BMJ Case Rep., 2020, 13(9), e237888.
[http://dx.doi.org/10.1136/bcr-2020-237888] [PMID: 32912894]
[39]
Cohen, A.J.; DiFrancesco, M.F.; Solomon, S.D.; Vaduganathan, M. Angioedema in COVID-19. Eur. Heart J., 2020, 41(34), 3283-3284.
[http://dx.doi.org/10.1093/eurheartj/ehaa452] [PMID: 32441750]
[40]
van de Veerdonk, F.L.; Netea, M.G.; van Deuren, M.; van der Meer, J.W.; de Mast, Q.; Brüggemann, R.J.; van der Hoeven, H. Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome. eLife, 2020, 9, e57555.
[http://dx.doi.org/10.7554/eLife.57555] [PMID: 32338605]
[41]
Urwyler, P.; Charitos, P.; Moser, S.; Heijnen, I.A.F.M.; Trendelenburg, M.; Thoma, R.; Sumer, J.; Camacho-Ortiz, A.; Bacci, M.R.; Huber, L.C.; Stüssi-Helbling, M.; Albrich, W.C.; Sendi, P.; Osthoff, M. Recombinant human C1 esterase inhibitor (conestat alfa) in the prevention of severe SARS-CoV-2 infection in hospitalized patients with COVID-19: A structured summary of a study protocol for a randomized, parallel-group, open-label, multi-center pilot trial (PROTECT-COVID-19). Trials, 2021, 22(1), 1-3.
[http://dx.doi.org/10.1186/s13063-020-04976-x] [PMID: 33397449]
[42]
Crowther, M; Bauer, KA; Kaplan, AP The thrombogenicity of C1 esterase inhibitor (human): Review of the evidence. Allergy Asthma Proceed., 2014, 35(6)
[43]
Hirose, T.; Ogura, H.; Takahashi, H.; Ojima, M.; Jinkoo, K.; Nakamura, Y.; Kojima, T.; Shimazu, T. Serial change of C1 inhibitor in pa-tients with sepsis: A prospective observational study. J. Intensive Care, 2018, 6(1), 37.
[http://dx.doi.org/10.1186/s40560-018-0309-5] [PMID: 30002833]
[44]
Risitano, A.M.; Mastellos, D.C.; Huber-Lang, M.; Yancopoulou, D.; Garlanda, C.; Ciceri, F.; Lambris, J.D. Complement as a target in COVID-19? Nat. Rev. Immunol., 2020, 20(6), 343-344.
[http://dx.doi.org/10.1038/s41577-020-0320-7] [PMID: 32327719]
[45]
Hasankhani, A.; Bahrami, A.; Sheybani, N.; Aria, B.; Hemati, B.; Fatehi, F.; Ghaem Maghami Farahani, H.; Javanmard, G.; Rezaee, M.; Kastelic, J.P.; Barkema, H.W. Differential co-expression network analysis reveals key hub-high traffic genes as potential therapeutic tar-gets for covid-19 pandemic. Front. Immunol., 2021, 12, 789317.
[http://dx.doi.org/10.3389/fimmu.2021.789317] [PMID: 34975885]
[46]
Kousathanas, A.; Pairo-Castineira, E.; Rawlik, K.; Stuckey, A.; Odhams, C.A.; Walker, S.; Russell, C.D.; Malinauskas, T.; Wu, Y.; Millar, J.; Shen, X.; Elliott, K.S.; Griffiths, F.; Oosthuyzen, W.; Morrice, K.; Keating, S.; Wang, B.; Rhodes, D.; Klaric, L.; Zechner, M.; Parkinson, N.; Siddiq, A.; Goddard, P.; Donovan, S.; Maslove, D.; Nichol, A.; Semple, M.G.; Zainy, T.; Maleady-Crowe, F.; Todd, L.; Salehi, S.; Knight, J.; Elgar, G.; Chan, G.; Arumugam, P.; Patch, C.; Rendon, A.; Bentley, D.; Kingsley, C.; Kosmicki, J.A.; Horowitz, J.E.; Baras, A.; Abecasis, G.R.; Ferreira, M.A.R.; Justice, A.; Mirshahi, T.; Oetjens, M.; Rader, D.J.; Ritchie, M.D.; Verma, A.; Fowler, T.A.; Shankar-Hari, M.; Summers, C.; Hinds, C.; Horby, P.; Ling, L.; McAuley, D.; Montgomery, H.; Openshaw, P.J.M.; Elliott, P.; Walsh, T.; Tenesa, A.; Fawkes, A.; Murphy, L.; Rowan, K.; Ponting, C.P.; Vitart, V.; Wilson, J.F.; Yang, J.; Bretherick, A.D.; Scott, R.H.; Hendry, S.C.; Moutsianas, L.; Law, A.; Caulfield, M.J.; Baillie, J.K. Whole genome sequencing reveals host factors underlying critical Covid-19. Nature, 2022, 1-0.
[http://dx.doi.org/10.1038/s41586-022-04576-6] [PMID: 35255492]
[47]
Santiesteban-Lores, L.E.; Amamura, T.A.; da Silva, T.F.; Midon, L.M.; Carneiro, M.C.; Isaac, L.; Bavia, L. A double edged-sword - The complement system during SARS-CoV-2 infection. Life Sci., 2021, 272, 119245.
[http://dx.doi.org/10.1016/j.lfs.2021.119245] [PMID: 33609539]
[48]
Caliezi, C.; Wuillemin, W.A.; Zeerleder, S.; Redondo, M.; Eisele, B.; Hack, C.E. C1-Esterase inhibitor: An anti-inflammatory agent and its potential use in the treatment of diseases other than hereditary angioedema. Pharmacol. Rev., 2000, 52(1), 91-112.
[PMID: 10699156]
[49]
Cai, S.; Davis, A.E., III Complement regulatory protein C1 inhibitor binds to selectins and interferes with endothelial-leukocyte adhesion. J. Immunol., 2003, 171(9), 4786-4791.
[http://dx.doi.org/10.4049/jimmunol.171.9.4786] [PMID: 14568956]
[50]
Wilk, C.M. Coronaviruses hijack the complement system. Nat. Rev. Immunol., 2020, 20(6), 350.
[http://dx.doi.org/10.1038/s41577-020-0314-5] [PMID: 32286536]
[51]
Lu, F.; Fernandes, S.M.; Davis, A.E., III The role of the complement and contact systems in the dextran sulfate sodium-induced colitis model: The effect of C1 inhibitor in inflammatory bowel disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 298(6), G878-G883.
[http://dx.doi.org/10.1152/ajpgi.00400.2009] [PMID: 20338925]
[52]
Nicolau, L.A.D.; Magalhães, P.J.C.; Vale, M.L. What would Sérgio Ferreira say to your physician in this war against COVID-19: How about kallikrein/kinin system? Med. Hypotheses, 2020, 143, 109886.
[http://dx.doi.org/10.1016/j.mehy.2020.109886] [PMID: 32504925]
[53]
Moreira, A. Kawasaki disease linked to COVID-19 in children. Nat. Rev. Immunol., 2020, 20(7), 407.
[http://dx.doi.org/10.1038/s41577-020-0350-1] [PMID: 32461672]
[54]
Mansour, E.; Bueno, F.F.; de Lima-Júnior, J.C.; Palma, A.; Monfort-Pires, M.; Bombassaro, B.; Araujo, E.P.; Bernardes, A.F.; Ulaf, R.G.; Nunes, T.A.; Ribeiro, L.C.; Falcão, A.L.E.; Santos, T.M.; Trabasso, P.; Dertkigil, R.P.; Dertkigil, S.S.; Maia, R.P.; Benaglia, T.; Moretti, M.L.; Velloso, L.A. Evaluation of the efficacy and safety of icatibant and C1 esterase/kallikrein inhibitor in severe COVID-19: Study pro-tocol for a three-armed randomized controlled trial. Trials, 2021, 22(1), 71.
[http://dx.doi.org/10.1186/s13063-021-05027-9] [PMID: 33472675]
[55]
Mansour, E.; Palma, A.C.; Ulaf, R.G.; Ribeiro, L.C.; Bernardes, A.F.; Nunes, T.A.; Agrela, M.V.; Bombassaro, B.; Monfort-Pires, M.; Camargo, R.L.; Araujo, E.P.; Brunetti, N.S.; Farias, A.S.; Falcão, A.L.E.; Santos, T.M.; Trabasso, P.; Dertkigil, R.P.; Dertkigil, S.S.; Moretti, M.L.; Velloso, L.A. Safety and outcomes associated with the pharmacological inhibition of the kinin-kallikrein system in severe covid-19. Viruses, 2021, 13(2), 309.
[http://dx.doi.org/10.3390/v13020309] [PMID: 33669276]
[56]
Mayr, F.B.; Yende, S.; Linde-Zwirble, W.T.; Peck-Palmer, O.M.; Barnato, A.E.; Weissfeld, L.A.; Angus, D.C. Infection rate and acute organ dysfunction risk as explanations for racial differences in severe sepsis. JAMA, 2010, 303(24), 2495-2503.
[http://dx.doi.org/10.1001/jama.2010.851] [PMID: 20571016]
[57]
De Maat, S.; Hofman, Z.L.M.; Maas, C. Hereditary angioedema: The plasma contact system out of control. J. Thromb. Haemost., 2018, 16(9), 1674-1685.
[http://dx.doi.org/10.1111/jth.14209] [PMID: 29920929]
[58]
Maas, C. Plasminflammation-An emerging pathway to bradykinin production. Front. Immunol., 2019, 10, 2046.
[http://dx.doi.org/10.3389/fimmu.2019.02046] [PMID: 31507620]
[59]
Karnaukhova, E. C1-esterase inhibitor: Biological activities and therapeutic applications. J. Hematol. Thromboemb. Dis., 2013, 1, 1-7.
[http://dx.doi.org/10.4172/2329-8790.1000113]
[60]
Du, L.; Kao, R.Y.; Zhou, Y.; He, Y.; Zhao, G.; Wong, C.; Jiang, S.; Yuen, K.Y.; Jin, D.Y.; Zheng, B.J. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity. Biochem. Biophys. Res. Commun., 2007, 359(1), 174-179.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.092] [PMID: 17533109]
[61]
Chen, Z.; Boon, S.S.; Wang, M.H.; Chan, R.W.Y.; Chan, P.K.S. Genomic and evolutionary comparison between SARS-CoV-2 and other human coronaviruses. J. Virol. Methods, 2021, 289, 114032.
[http://dx.doi.org/10.1016/j.jviromet.2020.114032] [PMID: 33290786]
[62]
Stenmark, K.R.; Frid, M.G.; Gerasimovskaya, E.; Zhang, H.; McCarthy, M.K.; Thurman, J.M.; Morrison, T.E. Mechanisms of SARS-CoV-2-induced lung vascular disease: Potential role of complement. Pulm. Circ., 2021, 11(2), 20458940211015799.
[http://dx.doi.org/10.1177/20458940211015799] [PMID: 34046161]
[63]
Yan, B.; Freiwald, T.; Chauss, D.; Wang, L.; West, E.; Mirabelli, C.; Zhang, C.J.; Nichols, E.M.; Malik, N.; Gregory, R.; Bantscheff, M.; Ghidelli-Disse, S.; Kolev, M.; Frum, T.; Spence, J.R.; Sexton, J.Z.; Alysandratos, K.D.; Kotton, D.N.; Pittaluga, S.; Bibby, J.; Niyonzima, N.; Olson, M.R.; Kordasti, S.; Portilla, D.; Wobus, C.E.; Laurence, A.; Lionakis, M.S.; Kemper, C.; Afzali, B.; Kazemian, M. SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation. Sci. Immunol., 2021, 6(58), eabg0833.
[http://dx.doi.org/10.1126/sciimmunol.abg0833] [PMID: 33827897]
[64]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Butnariu, M.; Batiha, G.E. The crucial role of prolactin-lactogenic hormone in Covid-19. Mol. Cell. Biochem., 2022, 477(5), 1381-1392.
[http://dx.doi.org/10.1007/s11010-022-04381-9] [PMID: 35147901]
[65]
Liu, M. Wang, H.; Zhang, J.; Yang, X.; Li, B.; Wu, C.; Zhu, Q. NF-κB signaling pathway-enhanced complement activation mediates renal injury in trichloroethylene-sensitized mice. J. Immunotoxicol., 2018, 15(1), 63-72.
[http://dx.doi.org/10.1080/1547691X.2017.1420712] [PMID: 29534626]
[66]
Hippensteel, J.A.; LaRiviere, W.B.; Colbert, J.F.; Langouët-Astrié, C.J.; Schmidt, E.P. Heparin as a therapy for COVID-19: Current evi-dence and future possibilities. Am. J. Physiol. Lung Cell. Mol. Physiol., 2020, 319(2), L211-L217.
[http://dx.doi.org/10.1152/ajplung.00199.2020] [PMID: 32519894]
[67]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Hussaniy, H.A.; Al-Harcan, N.A.H.; Alexiou, A.; Batiha, G.E. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality. Int. Immunopharmacol., 2022, 104, 108516.
[http://dx.doi.org/10.1016/j.intimp.2021.108516] [PMID: 35032828]
[68]
Tapia, M.A.; González-Navarrete, I.; Dalmases, A.; Bosch, M.; Rodriguez-Fanjul, V.; Rolfe, M.; Ross, J.S.; Mezquita, J.; Mezquita, C.; Bachs, O.; Gascón, P.; Rojo, F.; Perona, R.; Rovira, A.; Albanell, J. Inhibition of the canonical IKK/NF κ B pathway sensitizes human can-cer cells to doxorubicin. Cell Cycle, 2007, 6(18), 2284-2292.
[http://dx.doi.org/10.4161/cc.6.18.4721] [PMID: 17890907]
[69]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Niemi, M.S.; Aljowaie, R.M.; Almutairi, S.M.; Alexiou, A.; Batiha, G.E. The prospective effect of allopurinol on the oxidative stress index and endothelial dysfunction in covid-19. Inflammation, 2022, 1-7.
[http://dx.doi.org/10.1007/s10753-022-01648-7] [PMID: 35199285]
[70]
Zhang, C.; Li, Y.; Wang, C.; Wu, Y.; Cui, W.; Miwa, T.; Sato, S.; Li, H.; Song, W.C.; Du, J. Complement 5a receptor mediates angiotensin II-induced cardiac inflammation and remodeling. Arterioscler. Thromb. Vasc. Biol., 2014, 34(6), 1240-1248.
[http://dx.doi.org/10.1161/ATVBAHA.113.303120] [PMID: 24743429]
[71]
Satyam, A.; Tsokos, M.G.; Brook, O.R.; Hecht, J.L.; Moulton, V.R.; Tsokos, G.C. Activation of classical and alternative complement pathways in the pathogenesis of lung injury in COVID-19. Clin. Immunol., 2021, 226, 108716.
[http://dx.doi.org/10.1016/j.clim.2021.108716] [PMID: 33774179]
[72]
Oz, M.; Lorke, D.E. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed. Pharmacother., 2021, 136, 111193.
[http://dx.doi.org/10.1016/j.biopha.2020.111193] [PMID: 33461019]
[73]
Vonnahme, K.A.; Lemley, C.O.; Shukla, P.; O’Rourke, S.T. 2011 and 2012 early careers achievement awards: Placental programming: How the maternal environment can impact placental function. J. Anim. Sci., 2013, 91(6), 2467-2480.
[http://dx.doi.org/10.2527/jas.2012-5929] [PMID: 23307854]
[74]
Thompson, C.A. FDA approves kallikrein inhibitor to treat hereditary angioedema. Am. J. Health Syst. Pharm., 2010, 67(2), 93.
[http://dx.doi.org/10.2146/news100005] [PMID: 20065259]
[75]
Garvin, M.R.; Alvarez, C.; Miller, J.I.; Prates, E.T.; Walker, A.M.; Amos, B.K.; Mast, A.E.; Justice, A.; Aronow, B.; Jacobson, D. A mech-anistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. eLife, 2020, 9, e59177.
[http://dx.doi.org/10.7554/eLife.59177] [PMID: 32633718]
[76]
Sidarta-Oliveira, D.; Jara, C.P.; Ferruzzi, A.J.; Skaf, M.S.; Velander, W.H.; Araujo, E.P.; Velloso, L.A. SARS-CoV-2 receptor is co-expressed with elements of the kinin-kallikrein, renin-angiotensin and coagulation systems in alveolar cells. Sci. Rep., 2020, 10(1), 19522.
[http://dx.doi.org/10.1038/s41598-020-76488-2] [PMID: 33177594]
[77]
Yao, Y.; Cao, J.; Wang, Q.; Shi, Q.; Liu, K.; Luo, Z.; Chen, X.; Chen, S.; Yu, K.; Huang, Z.; Hu, B. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: A case control study. J. Intensive Care, 2020, 8(1), 49.
[http://dx.doi.org/10.1186/s40560-020-00466-z] [PMID: 32665858]
[78]
Janeway, C.A., Jr; Travers, P.; Walport, M. The complement system and innate immunity. In: Immunobiology: The Immune System in Health and Disease, 5th ed;; Garland Science: New York, 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27100/
[79]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; El-Saber Batiha, G. The possible role of ursolic acid in Covid-19: A real game changer. Clin. Nutr. ESPEN, 2022, 47, 414-417.
[http://dx.doi.org/10.1016/j.clnesp.2021.12.030] [PMID: 35063236]
[80]
Triantafilou, K.; Hughes, T.R.; Triantafilou, M.; Morgan, B.P. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J. Cell Sci., 2013, 126(Pt 13), 2903-2913.
[http://dx.doi.org/10.1242/jcs.124388] [PMID: 23613465]
[81]
de Rivero Vaccari, J.C.; Dietrich, W.D.; Keane, R.W.; de Rivero Vaccari, J.P. The inflammasome in times of COVID-19. Front. Immunol., 2020, 11, 583373.
[http://dx.doi.org/10.3389/fimmu.2020.583373] [PMID: 33149733]
[82]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Faidah, H.; Alexiou, A.; Batiha, G.E. Testosterone in covid-19: An adversary bane or comrade boon. Front. Cell. Infect. Microbiol., 2021, 11, 666987.
[http://dx.doi.org/10.3389/fcimb.2021.666987] [PMID: 34568081]
[83]
Hayashi, R.; Yamashita, N.; Matsui, S.; Fujita, T.; Araya, J.; Sassa, K.; Arai, N.; Yoshida, Y.; Kashii, T.; Maruyama, M.; Sugiyama, E.; Kobayashi, M. Bradykinin stimulates IL-6 and IL-8 production by human lung fibroblasts through ERK- and p38 MAPK-dependent mechanisms. Eur. Respir. J., 2000, 16(3), 452-458.
[http://dx.doi.org/10.1034/j.1399-3003.2000.016003452.x] [PMID: 11028659]
[84]
Ghasemnejad-Berenji, M.; Pashapour, S. SARS-CoV-2 and the possible role of Raf/MEK/ERK pathway in viral survival: Is this a potential therapeutic strategy for COVID-19? Pharmacology, 2021, 106(1-2), 119-122.
[http://dx.doi.org/10.1159/000511280] [PMID: 33011728]
[85]
Fattahi, F.; Kalbitz, M.; Malan, E.A.; Abe, E.; Jajou, L.; Huber-Lang, M.S.; Bosmann, M.; Russell, M.W.; Zetoune, F.S.; Ward, P.A. Com-plement-induced activation of MAPKs and Akt during sepsis: Role in cardiac dysfunction. FASEB J., 2017, 31(9), 4129-4139.
[http://dx.doi.org/10.1096/fj.201700140R] [PMID: 28572445]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy