Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Immuno-informatic Prediction of B and T cell Epitopes of Cysteine Protease Allergen from Phaseolus vulgaris with Cross-reactive Potential and Population Coverage

Author(s): Akansha Sharma, Srishti Vashisht, Shailendra Nath Gaur, Janendra K. Batra and Naveen Arora*

Volume 23, Issue 7, 2022

Published on: 25 August, 2022

Page: [475 - 494] Pages: 20

DOI: 10.2174/1389203723666220804124927

Price: $65

conference banner
Abstract

Background: In-silico mapping of epitopes by immune-informatics has simplified the efforts towards understanding antigen-antibody interactions. The knowledge of allergen epitopes may help in advancing the diagnosis and therapy of allergic diseases.

Objective: This study was intended to identify B and T cell epitopes of cysteine protease allergen of Phaseolus vulgaris.

Methods: Modeller 9v20 software was used for the generation of three-dimensional model of cysteine protease and quality assessment was performed using SAVES webserver and other in silico software. Linear and conformational B and T cell epitopes were predicted via immuno-informatics based computational servers. Epitopes were synthesized and their immunoreactivity was analyzed using specific IgE ELISA with food allergy positive patient’s sera. Cellular immune response of peptides was determined through basophil activation assay. Consurf and SDAP (property distance) were used to examine the evolutionary conservancy and potential cross-reactivity of predicted epitopes. MSA based positional conservancy between HDM allergen epitopes and predicted peptides was also established using IEDB epitope database. Finally, population coverage for each promiscuous T cell epitope was predicted using IEDB population coverage analysis tool.

Results: Cysteine protease structure was derived by homology modeling and combination of bioinformatic tools predicted three B- and three T-cell peptides by consensus method and validated computationally. ELISA with kidney bean sensitive patient’s sera showed higher IgE binding of B-cell peptides as compared to T-cell or control peptides. Epitope conservancy revealed B-cell epitopes being upto 95% conserved in comparison to variable T-cell epitopes (upto 69%). B-cell peptides were crossreactive with homologous allergens based on PD values. Structural comparison of cysteine protease with Der p 1 and Der f 1 showed similar epitopic regions, validating the prediction accuracy of epitopes. Promiscuous T-cell epitopes binding to broad-spectrum class-II MHC alleles demonstrated the distribution of T-cell peptides world-wide (30-98%) and in Asian population (99%).

Conclusion: The current approach can be applied for identification of epitopes. Analysis of crossreactive and widely-distributed specific epitopes of allergen and knowledge about their interactive surfaces will help in understanding of food allergy and related immune responses.

Keywords: Phaseolus vulgaris, Cysteine protease, Homology modeling, IgE binding and promiscuous T-cell peptides, crossreactivity, basophil activation test.

Graphical Abstract

[1]
Verma, S.; Dixit, R.; Pandey, K.C. Cysteine proteases: Modes of activation and future prospects as pharmacological targets. Front. Pharmacol., 2016, 7, 107.
[http://dx.doi.org/10.3389/fphar.2016.00107] [PMID: 27199750]
[2]
Bouley, J.; Groeme, R.; Le Mignon, M.; Jain, K.; Chabre, H.; Bordas-Le Floch, V.; Couret, M.N.; Bussières, L.; Lautrette, A.; Naveau, M.; Baron-Bodo, V.; Lombardi, V.; Mascarell, L.; Batard, T.; Nony, E.; Moingeon, P. Identification of the cysteine protease Amb a 11 as a novel major allergen from short ragweed. J. Allergy Clin. Immunol., 2015, 136(4), 1055-1064.
[http://dx.doi.org/10.1016/j.jaci.2015.03.001] [PMID: 25865353]
[3]
Sircar, G.; Saha, B.; Mandal, R.S.; Pandey, N.; Saha, S.; Gupta Bhattacharya, S. Purification, cloning and immuno-biochemical characteri-zation of a fungal aspartic protease allergen Rhi o 1 from the airborne mold Rhizopus oryzae. PLoS One, 2015, 10(12), e0144547.
[http://dx.doi.org/10.1371/journal.pone.0144547] [PMID: 26672984]
[4]
Uberti, F.; Peñas, E.; Manzoni, Y.; di Lorenzo, C.; Ballabio, C.; Fiocchi, A.; Terracciano, L.; Restani, P. Molecular characterization of aller-gens in raw and processed kiwifruit. Pediatr. Allergy Immunol., 2015, 26(2), 139-144.
[http://dx.doi.org/10.1111/pai.12345] [PMID: 25640609]
[5]
Takai, T.; Kato, T.; Sakata, Y.; Yasueda, H.; Izuhara, K.; Okumura, K.; Ogawa, H. Recombinant Der p 1 and Der f 1 exhibit cysteine pro-tease activity but no serine protease activity. Biochem. Biophys. Res. Commun., 2005, 328(4), 944-952.
[http://dx.doi.org/10.1016/j.bbrc.2005.01.051] [PMID: 15707969]
[6]
Liu, X.; Zheng, P.; Zheng, S.G.; Zhai, Y.; Zhao, X.; Chen, Y.; Cai, C.; Wu, Z.; Huang, Z.; Zou, X.; Liao, C.; Sun, B. Co-sensitization and cross-reactivity of Blomia tropicalis with two Dermatophagoides species in Guangzhou, China. J. Clin. Lab. Anal., 2019, 33(9), e22981.
[http://dx.doi.org/10.1002/jcla.22981] [PMID: 31325210]
[7]
Urbani, S.; Aruanno, A.; Nucera, E. Adverse reaction to Ficus Carica: Reported case of a possible cross-reactivity with Der p1. Clin. Mol. Allergy, 2020, 18(1), 9.
[http://dx.doi.org/10.1186/s12948-020-00125-6] [PMID: 32518529]
[8]
Nugraha, R.; Kamath, S.D.; Johnston, E.; Karnaneedi, S.; Ruethers, T.; Lopata, A.L. Conservation analysis of B-cell allergen epitopes to predict clinical cross-reactivity between shellfish and inhalant invertebrate allergens. Front. Immunol., 2019, 10, 2676.
[http://dx.doi.org/10.3389/fimmu.2019.02676] [PMID: 31803189]
[9]
Pomés, A. Relevant B cell epitopes in allergic disease. Int. Arch. Allergy Immunol., 2010, 152(1), 1-11.
[http://dx.doi.org/10.1159/000260078] [PMID: 19940500]
[10]
Raith, M.; Zach, D.; Sonnleitner, L.; Woroszylo, K.; Focke-Tejkl, M.; Wank, H.; Graf, T.; Kuehn, A.; Pascal, M.; Muñoz-Cano, R.M.; Wortmann, J.; Aschauer, P.; Keller, W.; Braeuer, S.; Goessler, W.; Swoboda, I. Rational design of a hypoallergenic Phl p 7 variant for im-munotherapy of polcalcin-sensitized patients. Sci. Rep., 2019, 9(1), 7802.
[http://dx.doi.org/10.1038/s41598-019-44208-0] [PMID: 31127132]
[11]
Tscheppe, A.; Palmberger, D.; van Rijt, L.; Kalic, T.; Mayr, V.; Palladino, C.; Kitzmüller, C.; Hemmer, W.; Hafner, C.; Bublin, M.; van Ree, R.; Grabherr, R.; Radauer, C.; Breiteneder, H. Development of a novel Ara h 2 hypoallergen with no IgE binding or anaphylactogenic activ-ity. J. Allergy Clin. Immunol., 2020, 145(1), 229-238.
[http://dx.doi.org/10.1016/j.jaci.2019.08.036] [PMID: 31525384]
[12]
Reese, G.; Ayuso, R.; Leong-Kee, S.M.; Plante, M.J.; Lehrer, S.B. Characterization and identification of allergen epitopes: Recombinant peptide libraries and synthetic, overlapping peptides. J. Chromatogr. B Biomed. Sci. Appl., 2001, 756(1-2), 157-163.
[http://dx.doi.org/10.1016/S0378-4347(01)00104-9] [PMID: 11419707]
[13]
Soman, K.V.; Midoro-Horiuti, T.; Ferreon, J.C.; Goldblum, R.M.; Brooks, E.G.; Kurosky, A.; Braun, W.; Schein, C.H. Homology model-ing and characterization of IgE binding epitopes of mountain cedar allergen Jun a 3. Biophys. J., 2000, 79(3), 1601-1609.
[http://dx.doi.org/10.1016/S0006-3495(00)76410-1] [PMID: 10969020]
[14]
Spangfort, M.D.; Mirza, O.; Ipsen, H.; Van Neerven, R.J.; Gajhede, M.; Larsen, J.N. Dominating IgE-binding epitope of Bet v 1, the major allergen of birch pollen, characterized by X-ray crystallography and site-directed mutagenesis. J. Immunol., 2003, 171(6), 3084-3090.
[http://dx.doi.org/10.4049/jimmunol.171.6.3084] [PMID: 12960334]
[15]
Sanchez-Trincado, J.L.; Gomez-Perosanz, M.; Reche, P.A. Fundamentals and methods for T- and B-cell epitope prediction. J. Immunol. Res., 2017, 2017, 2680160.
[http://dx.doi.org/10.1155/2017/2680160] [PMID: 29445754]
[16]
Fanuel, S.; Tabesh, S.; Mokhtarian, K.; Saroddiny, E.; Fazlollahi, M.R.; Pourpak, Z.; Falak, R.; Kardar, G.A. Construction of a recombi-nant B-cell epitope vaccine based on a Der p1-derived hypoallergen: a bioinformatics approach. Immunotherapy, 2018, 10(7), 537-553.
[http://dx.doi.org/10.2217/imt-2017-0163] [PMID: 29569512]
[17]
Adji, A.; Niode, N.J.; Memah, V.V.; Posangi, J.; Wahongan, G.J.P.; Ophinni, Y.; Idroes, R.; Mahmud, S.; Emran, T.B.; Nainu, F.; Tallei, T.E.; Harapan, H. Designing an epitope vaccine against Dermatophagoides pteronyssinus: An in silico study. Acta Trop., 2021, 222, 106028.
[http://dx.doi.org/10.1016/j.actatropica.2021.106028] [PMID: 34217726]
[18]
Sharma, A.; Vashisht, S.; Mishra, R.; Gaur, S.N.; Prasad, N.; Lavasa, S.; Batra, J.K.; Arora, N. Molecular and immunological characteriza-tion of cysteine protease from Phaseolus vulgaris and evolutionary cross-reactivity. J. Food Biochem., 2022, e14232.
[http://dx.doi.org/10.1111/jfbc.14232] [PMID: 35592951]
[19]
Venkatarajan, M.; Braun, W. New quantitative descriptors of amino acids based on multidimensional scaling of a large number of physi-cal–chemical properties. J. Mol. Model., 2001, 7(12), 445-453.
[http://dx.doi.org/10.1007/s00894-001-0058-5]
[20]
Glesner, J.; Vailes, L.D.; Schlachter, C.; Mank, N.; Minor, W.; Osinski, T.; Chruszcz, M.; Chapman, M.D.; Pomés, A. Antigenic determi-nants of Der p 1: Specificity and cross-reactivity associated with IgE antibody recognition. J. Immunol., 2017, 198(3), 1334-1344.
[http://dx.doi.org/10.4049/jimmunol.1600072] [PMID: 28039303]
[21]
Bui, H.H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 2006, 7(1), 153.
[http://dx.doi.org/10.1186/1471-2105-7-153] [PMID: 16545123]
[22]
Benkert, P.; Tosatto, S.C.; Schomburg, D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins, 2008, 71(1), 261-277.
[http://dx.doi.org/10.1002/prot.21715] [PMID: 17932912]
[23]
Dall’antonia, F.; Pavkov-Keller, T.; Zangger, K.; Keller, W. Structure of allergens and structure based epitope predictions. Methods, 2014, 66(1), 3-21.
[http://dx.doi.org/10.1016/j.ymeth.2013.07.024] [PMID: 23891546]
[24]
Oezguen, N.; Zhou, B.; Negi, S.S.; Ivanciuc, O.; Schein, C.H.; Labesse, G.; Braun, W. Comprehensive 3D-modeling of allergenic proteins and amino acid composition of potential conformational IgE epitopes. Mol. Immunol., 2008, 45(14), 3740-3747.
[http://dx.doi.org/10.1016/j.molimm.2008.05.026] [PMID: 18621419]
[25]
Govindaraj, D.; Sharma, S.; Gaur, S.N.; Lavasa, S.; Prasad, N.; Arora, N. Immunogenic peptides: B & T Cell Epitopes of Per a 10 Allergen of Periplaneta americana. Mol. Immunol., 2016, 80, 24-32.
[http://dx.doi.org/10.1016/j.molimm.2016.10.007] [PMID: 27792882]
[26]
He, S.; Zhao, J.; Elfalleh, W.; Jemaà, M.; Sun, H.; Sun, X.; Tang, M.; He, Q.; Wu, Z.; Lang, F. In silico identification and in vitro analysis of B and T-cell epitopes of the black turtle bean (Phaseolus vulgaris L.) lectin. Cell. Physiol. Biochem., 2018, 49(4), 1600-1614.
[http://dx.doi.org/10.1159/000493496] [PMID: 30223257]
[27]
Mishra, A.; Jain, A.; Arora, N. Mapping B-cell epitopes of major and minor peanut allergens and identifying residues contributing to IgE binding. J. Sci. Food Agric., 2016, 96(2), 539-547.
[http://dx.doi.org/10.1002/jsfa.7121] [PMID: 25652191]
[28]
Sharma, P.; Gaur, S.N.; Goel, N.; Arora, N. Engineered hypoallergenic variants of osmotin demonstrate hypoallergenicity with in vitro and in vivo methods. Mol. Immunol., 2015, 64(1), 46-54.
[http://dx.doi.org/10.1016/j.molimm.2014.10.019] [PMID: 25467800]
[29]
Sharma, V.; Singh, B.P.; Arora, N. Cur l 3, a major allergen of Curvularia lunata-derived short synthetic peptides, shows promise for successful immunotherapy. Am. J. Respir. Cell Mol. Biol., 2011, 45(6), 1178-1184.
[http://dx.doi.org/10.1165/rcmb.2011-0048OC] [PMID: 21659658]
[30]
Savojardo, C.; Manfredi, M.; Martelli, P.L.; Casadio, R. Solvent accessibility of residues undergoing pathogenic variations in humans: From protein structures to protein sequences. Front. Mol. Biosci., 2021, 7, 626363.
[http://dx.doi.org/10.3389/fmolb.2020.626363] [PMID: 33490109]
[31]
Singh, S.; Taneja, B.; Salvi, S.S.; Agrawal, A. Physical properties of intact proteins may predict allergenicity or lack thereof. PLoS One, 2009, 4(7), e6273.
[http://dx.doi.org/10.1371/journal.pone.0006273] [PMID: 19609445]
[32]
Wang, W.; Zhang, L.; Guo, N.; Zhang, X.; Zhang, C.; Sun, G.; Xie, J. Functional properties of a cysteine proteinase from pineapple fruit with improved resistance to fungal pathogens in Arabidopsis thaliana. Molecules, 2014, 19(2), 2374-2389.
[http://dx.doi.org/10.3390/molecules19022374] [PMID: 24566309]
[33]
Tanabe, S. Epitope peptides and immunotherapy. Curr. Protein Pept. Sci., 2007, 8(1), 109-118.
[http://dx.doi.org/10.2174/138920307779941569] [PMID: 17305564]
[34]
Calzada, D.; Cremades-Jimeno, L.; Pedro, M.Á.; Baos, S.; Rial, M.; Sastre, J.; Quiralte, J.; Florido, F.; Lahoz, C.; Cárdaba, B. Therapeutic potential of peptides from Ole e 1 in olive-pollen allergy. Sci. Rep., 2019, 9(1), 15942.
[http://dx.doi.org/10.1038/s41598-019-52286-3] [PMID: 31685862]
[35]
Albrecht, M.; Kühne, Y.; Ballmer-Weber, B.K.; Becker, W.M.; Holzhauser, T.; Lauer, I.; Reuter, A.; Randow, S.; Falk, S.; Wangorsch, A.; Lidholm, J.; Reese, G. Vieths, S Relevance of IgE binding to short peptides for the allergenic activity of food allergens. J. Allergy Clin. Immunol., 2009, 124(2), 328-336.
[http://dx.doi.org/10.1016/j.jaci.2009.05.031]
[36]
Beyer, K.; Ellman-Grunther, L.; Järvinen, K.M.; Wood, R.A.; Hourihane, J.; Sampson, H.A. Measurement of peptide-specific IgE as an additional tool in identifying patients with clinical reactivity to peanuts. J. Allergy Clin. Immunol., 2003, 112(1), 202-207.
[http://dx.doi.org/10.1067/mai.2003.1621] [PMID: 12847500]
[37]
Beyer, K.; Jarvinen, K.M.; Bardina, L.; Mishoe, M.; Turjanmaa, K.; Niggemann, B.; Ahlstedt, S.; Venemalm, L.; Sampson, H.A. IgE-binding peptides coupled to a commercial matrix as a diagnostic instrument for persistent cow’s milk allergy. J. Allergy Clin. Immunol., 2005, 116(3), 704-705.
[http://dx.doi.org/10.1016/j.jaci.2005.05.007] [PMID: 16159646]
[38]
Järvinen, K.M.; Beyer, K.; Vila, L.; Bardina, L.; Mishoe, M.; Sampson, H.A. Specificity of IgE antibodies to sequential epitopes of hen’s egg ovomucoid as a marker for persistence of egg allergy. Allergy, 2007, 62(7), 758-765.
[http://dx.doi.org/10.1111/j.1398-9995.2007.01332.x] [PMID: 17573723]
[39]
Vila, L.; Beyer, K.; Järvinen, K.M.; Chatchatee, P.; Bardina, L.; Sampson, H.A. Role of conformational and linear epitopes in the achieve-ment of tolerance in cow’s milk allergy. Clin. Exp. Allergy, 2001, 31(10), 1599-1606.
[http://dx.doi.org/10.1046/j.1365-2222.2001.01218.x] [PMID: 11678861]
[40]
Crespo, L.M.; de Oliveira, N.D.; Damatta, R.A.; do Nascimento, V.V.; Soares, T.P.; Machado, O.L. Identification of IgE-binding peptide and critical amino acids of Jatropha curcas allergen involved in allergenic response. Springerplus, 2016, 5(1), 454.
[http://dx.doi.org/10.1186/s40064-016-2036-5] [PMID: 27119058]
[41]
Gieras, A.; Focke-Tejkl, M.; Ball, T.; Verdino, P.; Hartl, A.; Thalhamer, J.; Valenta, R. Molecular determinants of allergen-induced effector cell degranulation. J. Allergy Clin. Immunol., 2007, 119(2), 384-390.
[http://dx.doi.org/10.1016/j.jaci.2006.09.034] [PMID: 17291855]
[42]
Chruszcz, M.; Pomés, A.; Glesner, J.; Vailes, L.D.; Osinski, T.; Porebski, P.J.; Majorek, K.A.; Heymann, P.W.; Platts-Mills, T.A.; Minor, W.; Chapman, M.D. Molecular determinants for antibody binding on group 1 house dust mite allergens. J. Biol. Chem., 2012, 287(10), 7388-7398.
[http://dx.doi.org/10.1074/jbc.M111.311159] [PMID: 22210776]
[43]
Osinski, T.; Pomés, A.; Majorek, K.A.; Glesner, J.; Offermann, L.R.; Vailes, L.D.; Chapman, M.D.; Minor, W.; Chruszcz, M. Structural analysis of Der p 1-antibody complexes and comparison with complexes of proteins or peptides with monoclonal antibodies. J. Immunol., 2015, 195(1), 307-316.
[http://dx.doi.org/10.4049/jimmunol.1402199] [PMID: 26026055]
[44]
Ivanciuc, O.; Midoro-Horiuti, T.; Schein, C.H.; Xie, L.; Hillman, G.R.; Goldblum, R.M.; Braun, W. The property distance index PD pre-dicts peptides that cross-react with IgE antibodies. Mol. Immunol., 2009, 46(5), 873-883.
[http://dx.doi.org/10.1016/j.molimm.2008.09.004] [PMID: 18950868]
[45]
Candreva, Á.M.; Smaldini, P.L.; Curciarello, R.; Fossati, C.A.; Docena, G.H.; Petruccelli, S. The major soybean allergen Gly m Bd 28K induces hypersensitivity reactions in mice sensitized to cow’s milk proteins. J. Agric. Food Chem., 2016, 64(7), 1590-1599.
[http://dx.doi.org/10.1021/acs.jafc.5b05623] [PMID: 26859063]
[46]
Fleri, W.; Paul, S.; Dhanda, S.K.; Mahajan, S.; Xu, X.; Peters, B.; Sette, A. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front. Immunol., 2017, 8, 278.
[http://dx.doi.org/10.3389/fimmu.2017.00278] [PMID: 28352270]
[47]
Oseroff, C.; Sidney, J.; Kotturi, M.F.; Kolla, R.; Alam, R.; Broide, D.H.; Wasserman, S.I.; Weiskopf, D.; McKinney, D.M.; Chung, J.L.; Petersen, A.; Grey, H.; Peters, B.; Sette, A. Molecular determinants of T cell epitope recognition to the common Timothy grass allergen. J. Immunol., 2010, 185(2), 943-955.
[http://dx.doi.org/10.4049/jimmunol.1000405] [PMID: 20554959]
[48]
Greene, W.K.; Thomas, W.R. IgE binding structures of the major house dust mite allergen Der p I. Mol. Immunol., 1992, 29(2), 257-262.
[http://dx.doi.org/10.1016/0161-5890(92)90107-9] [PMID: 1371823]
[49]
Greene, W.K.; Cyster, J.G.; Chua, K.Y.; O’Brien, R.M.; Thomas, W.R. IgE and IgG binding of peptides expressed from fragments of cDNA encoding the major house dust mite allergen Der p I. J. Immunol., 1991, 147(11), 3768-3773.
[PMID: 1940366]
[50]
Dai, Y.C.; Chuang, W.J.; Chua, K.Y.; Shieh, C.C.; Wang, J.Y. Epitope mapping and structural analysis of the anti-Der p 1 monoclonal anti-body: Insight into therapeutic potential. J. Mol. Med. (Berl.), 2011, 89(7), 701-712.
[http://dx.doi.org/10.1007/s00109-011-0744-4] [PMID: 21567139]
[51]
Kerekov, N.; Michova, A.; Muhtarova, M.; Nikolov, G.; Mihaylova, N.; Petrunov, B.; Nikolova, M.; Tchorbanov, A. Suppression of aller-gen-specific B lymphocytes by chimeric protein-engineered antibodies. Immunobiology, 2014, 219(1), 45-52.
[http://dx.doi.org/10.1016/j.imbio.2013.07.009] [PMID: 24021574]
[52]
Collins, S.P.; Ball, G.; Vonarx, E.; Hosking, C.; Shelton, M.; Hill, D.; Howden, M.E. Absence of continuous epitopes in the house dust mite major allergens Der p I from Dermatophagoides pteronyssinus and Der f I from Dermatophagoides farinae. Clin. Exp. Allergy, 1996, 26(1), 36-42.
[53]
Jeannin, P.; Delneste, Y.; Buisine, E.; Le Mao, J.; Didierlaurent, A.; Stewart, G.A.; Tartar, A.; Tonnel, A.B.; Pestel, J. Immunogenicity and antigenicity of synthetic peptides derived from the mite allergen Der p I. Mol. Immunol., 1993, 30(16), 1511-1518.
[http://dx.doi.org/10.1016/0161-5890(93)90459-O] [PMID: 7694088]
[54]
Jeannin, P.; Didierlaurent, A.; Gras-Masse, H.; Elass, A.A.; Delneste, Y.; Cardot, E.; Joseph, M.; Tartar, A.; Vergoten, G.; Pestel, J. Specif-ic histamine release capacity of peptides selected from the modelized Der p I protein, a major allergen of Dermatophagoides pteronyssinus. Mol. Immunol., 1992, 29(6), 739-749.
[http://dx.doi.org/10.1016/0161-5890(92)90184-Y] [PMID: 1376413]
[55]
Rodríguez-Domínguez, A.; Berings, M.; Rohrbach, A.; Huang, H.J.; Curin, M.; Gevaert, P.; Matricardi, P.M.; Valenta, R.; Vrtala, S. Mo-lecular profiling of allergen-specific antibody responses may enhance success of specific immunotherapy. J. Allergy Clin. Immunol., 2020, 146(5), 1097-1108.
[http://dx.doi.org/10.1016/j.jaci.2020.03.029] [PMID: 32298697]
[56]
Huang, H.J.; Curin, M.; Banerjee, S.; Chen, K.W.; Garmatiuk, T.; Resch-Marat, Y.; Carvalho-Queiroz, C.; Blatt, K.; Gafvelin, G.; Grönlund, H.; Valent, P.; Campana, R.; Focke-Tejkl, M.; Valenta, R.; Vrtala, S. A hypoallergenic peptide mix containing T cell epitopes of the clinical-ly relevant house dust mite allergens. Allergy, 2019, 74(12), 2461-2478.
[http://dx.doi.org/10.1111/all.13956] [PMID: 31228873]
[57]
Chen, K.W.; Blatt, K.; Thomas, W.R.; Swoboda, I.; Valent, P.; Valenta, R.; Vrtala, S. Hypoallergenic Der p 1/Der p 2 combination vaccines for immunotherapy of house dust mite allergy. J. Allergy Clin. Immunol., 2012, 130(2), 435-43.e4.
[http://dx.doi.org/10.1016/j.jaci.2012.05.035] [PMID: 22789398]
[58]
Hoyne, G.F.; Callow, M.G.; Kuo, M.C.; Thomas, W.R. Inhibition of T-cell responses by feeding peptides containing major and cryptic epitopes: Studies with the Der p I allergen. Immunology, 1994, 83(2), 190-195.
[PMID: 7530688]
[59]
Jarnicki, A.G.; Thomas, W.R. Stimulatory and inhibitory epitopes in the T cell responses of mice to Der p 1. Clin. Exp. Allergy, 2002, 32(6), 942-950.
[60]
Smith, W.A.; Hales, B.J.; Jarnicki, A.G.; Thomas, W.R. Allergens of wild house dust mites: Environmental Der p 1 and Der p 2 sequence polymorphisms. J. Allergy Clin. Immunol., 2001, 107(6), 985-992.
[http://dx.doi.org/10.1067/mai.2001.114652] [PMID: 11398075]
[61]
Hales, B.J.; Thomas, W.R. T-cell sensitization to epitopes from the house dust mites Dermatophagoides pteronyssinus and Euroglyphus maynei. Clin. Exp. Allergy, 1997, 27(8), 868-875.
[http://dx.doi.org/10.1111/j.1365-2222.1997.tb01226.x] [PMID: 9291282]
[62]
Oseroff, C.; Sidney, J.; Vita, R.; Tripple, V.; McKinney, D.M.; Southwood, S.; Brodie, T.M.; Sallusto, F.; Grey, H.; Alam, R.; Broide, D.; Greenbaum, J.A.; Kolla, R.; Peters, B.; Sette, A. T cell responses to known allergen proteins are differently polarized and account for a variable fraction of total response to allergen extracts. J. Immunol., 2012, 189(4), 1800-1811.
[http://dx.doi.org/10.4049/jimmunol.1200850] [PMID: 22786768]
[63]
Teng, F.; Han, F.; Zhu, X.; Yu, L.; Gai, D.; Xu, C.; Cui, Y. Identification of continuous immunoglobulin G epitopes of Dermatophagoides farinae allergens by peptide microarray immunoassay. IUBMB Life, 2020, 72(9), 1976-1985.
[http://dx.doi.org/10.1002/iub.2333] [PMID: 32710808]
[64]
Cui, Y.; Teng, F.; Yu, L.; Zhou, Y.; Wang, N.; Zhang, C.; Yang, L. Sequential epitopes of Dermatophagoides farinae allergens identified using peptide microarray-based immunoassay. IUBMB Life, 2016, 68(10), 792-798.
[http://dx.doi.org/10.1002/iub.1540] [PMID: 27481284]
[65]
Matsuoka, T.; Kohrogi, H.; Ando, M.; Nishimura, Y.; Matsushita, S. Dermatophagoides farinae-1-derived peptides and HLA molecules recognized by T cells from atopic individuals. Int. Arch. Allergy Immunol., 1997, 112(4), 365-370.
[http://dx.doi.org/10.1159/000237481] [PMID: 9104792]
[66]
Seneviratne, S.L.; Jones, L.; King, A.S.; Black, A.; Powell, S.; McMichael, A.J.; Ogg, G.S. Allergen-specific CD8(+) T cells and atopic disease. J. Clin. Invest., 2002, 110(9), 1283-1291.
[http://dx.doi.org/10.1172/JCI15753]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy