Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Adipose-Renal Axis in Diabetic Nephropathy

Author(s): Ming Yang, Panai Song, Li Zhao and Xi Wang*

Volume 30, Issue 16, 2023

Published on: 03 October, 2022

Page: [1860 - 1874] Pages: 15

DOI: 10.2174/0929867329666220806115518

Price: $65

Abstract

Long-term diabetes can lead to renal injury known as diabetic nephropathy (DN), which is a major cause of end-stage renal disease (ESRD). However, its pathogenesis has not been well explained. Adipose tissue is recognized as an important energy storage device for the body. Interestingly, many studies have shown that adipose tissue can also act as an endocrine organ by secreting a variety of adipokines to maintain homeostasis. Here, we summarize some of the adipokines that have been identified so far to, more specifically, emphasize their role in DN progression and propose that the “adipose-renal axis” may be a potential target for treating DN.

Keywords: Diabetic nephropathy (DN), Adipose tissues, Adipokines, Adiponectin, Kidney, Diabetes

[1]
Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic retinopathy. Lancet, 2010, 376(9735), 124-136.
[http://dx.doi.org/10.1016/S0140-6736(09)62124-3] [PMID: 20580421]
[2]
Zuo, Y.; Chen, L.; Gu, H.; He, X.; Ye, Z.; Wang, Z.; Shao, Q.; Xue, C. GSDMD-mediated pyroptosis: A critical mechanism of diabetic nephropathy. Expert Rev. Mol. Med., 2021, 23, e23.
[http://dx.doi.org/10.1017/erm.2021.27] [PMID: 34955116]
[3]
Yang, M.; Li, C.; Yang, S.; Xiao, Y.; Chen, W.; Gao, P.; Jiang, N.; Xiong, S.; Wei, L.; Zhang, Q.; Yang, J.; Zeng, L.; Sun, L. Mitophagy: A novel therapeutic target for treating DN. Curr. Med. Chem., 2021, 28(14), 2717-2728.
[http://dx.doi.org/10.2174/0929867327666201006152656] [PMID: 33023427]
[4]
Jha, J.C.; Banal, C.; Chow, B.S.; Cooper, M.E.; Jandeleit-Dahm, K. Diabetes and kidney disease: Role of oxidative stress. Antioxid. Redox Signal., 2016, 25(12), 657-684.
[http://dx.doi.org/10.1089/ars.2016.6664] [PMID: 26906673]
[5]
Cui, J.; Bai, X.; Chen, X. Autophagy and diabetic nephropathy. Adv. Exp. Med. Biol., 2020, 1207, 487-494.
[http://dx.doi.org/10.1007/978-981-15-4272-5_36] [PMID: 32671771]
[6]
Tsai, Y.Z.; Tsai, M.L.; Hsu, L.Y.; Ho, C.T.; Lai, C.S. Tetrahydrocurcumin upregulates the Adiponectin-AdipoR pathway and improves insulin signaling and pancreatic beta-Cell function in high-fat diet/streptozotocin-induced diabetic obese mice. Nutrients, 2021, 13(12), 13.
[http://dx.doi.org/10.3390/nu13124552] [PMID: 34960104]
[7]
Ceja-Galicia, Z.; Calderón-DuPont, D.; Daniel, A.; Chiu, L.M.; Díaz-Villaseñor, A. Leptin and adiponectin synthesis and secretion in mature 3T3-L1 adipocytes are differentially down-regulated by arsenic and palmitic acid exposure throughout different stages of adipogenesis. Life Sci., 2022, 291, 120262.
[http://dx.doi.org/10.1016/j.lfs.2021.120262] [PMID: 34968464]
[8]
Miao, J.; He, X.; Hu, J.; Cai, W. Emodin inhibits NF-κB signaling pathway to protect obese asthmatic rats from pathological damage via Visfatin. Tissue Cell, 2022, 74, 101713.
[http://dx.doi.org/10.1016/j.tice.2021.101713] [PMID: 34952398]
[9]
Zhang, Y.; Cai, Y.; Zhang, H.; Zhang, J.; Zeng, Y.; Fan, C.; Zou, S.; Wu, C.; Fang, S.; Li, P.; Lin, X.; Wang, L.; Guan, M. Brown adipose tissue transplantation ameliorates diabetic nephropathy through the miR-30b pathway by targeting Runx1. Metabolism, 2021, 125, 154916.
[http://dx.doi.org/10.1016/j.metabol.2021.154916] [PMID: 34666067]
[10]
Cai, Y.Y.; Zhang, H.B.; Fan, C.X.; Zeng, Y.M.; Zou, S.Z.; Wu, C.Y.; Wang, L.; Fang, S.; Li, P.; Xue, Y.M.; Guan, M.P. Renoprotective effects of brown adipose tissue activation in diabetic mice. J. Diabetes, 2019, 11(12), 958-970.
[http://dx.doi.org/10.1111/1753-0407.12938] [PMID: 31020790]
[11]
Zhu, Q.; Scherer, P.E. Immunologic and endocrine functions of adipose tissue: Implications for kidney disease. Nat. Rev. Nephrol., 2018, 14(2), 105-120.
[http://dx.doi.org/10.1038/nrneph.2017.157] [PMID: 29199276]
[12]
Frigolet, M.E.; Gutiérrez-Aguilar, R. The colors of adipose tissue. Gac. Med. Mex., 2020, 156(2), 142-149.
[http://dx.doi.org/10.24875/GMM.M20000356] [PMID: 32285854]
[13]
Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab., 2004, 89(6), 2548-2556.
[http://dx.doi.org/10.1210/jc.2004-0395] [PMID: 15181022]
[14]
Chouchani, E.T.; Kajimura, S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab., 2019, 1(2), 189-200.
[http://dx.doi.org/10.1038/s42255-018-0021-8] [PMID: 31903450]
[15]
Lehnig, A.C.; Stanford, K.I. Exercise-induced adaptations to white and brown adipose tissue. J. Exp. Biol., 2018, 221(Suppl. 1), 221.
[http://dx.doi.org/10.1242/jeb.161570] [PMID: 29514893]
[16]
Ibrahim, M.M. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes. Rev., 2010, 11(1), 11-18.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00623.x] [PMID: 19656312]
[17]
Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci., 2019, 20(9), 20.
[http://dx.doi.org/10.3390/ijms20092358] [PMID: 31085992]
[18]
Heinonen, S.; Jokinen, R.; Rissanen, A.; Pietiläinen, K.H. White adipose tissue mitochondrial metabolism in health and in obesity. Obes. Rev., 2020, 21(2), e12958.
[http://dx.doi.org/10.1111/obr.12958] [PMID: 31777187]
[19]
Martínez-Sánchez, N. There and back again: Leptin actions in white adipose tissue. Int. J. Mol. Sci., 2020, 21(17), 21.
[http://dx.doi.org/10.3390/ijms21176039] [PMID: 32839413]
[20]
Choi, H.M.; Doss, H.M.; Kim, K.S. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int. J. Mol. Sci., 2020, 21(4), 21.
[http://dx.doi.org/10.3390/ijms21041219] [PMID: 32059381]
[21]
Fenzl, A.; Kiefer, F.W. Brown adipose tissue and thermogenesis. Horm. Mol. Biol. Clin. Investig., 2014, 19(1), 25-37.
[http://dx.doi.org/10.1515/hmbci-2014-0022] [PMID: 25390014]
[22]
Nedergaard, J.; Bengtsson, T.; Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab., 2007, 293(2), E444-E452.
[http://dx.doi.org/10.1152/ajpendo.00691.2006] [PMID: 17473055]
[23]
Ikeda, K.; Yamada, T. UCP1 dependent and independent thermogenesis in brown and beige adipocytes. Front. Endocrinol. (Lausanne), 2020, 11, 498.
[http://dx.doi.org/10.3389/fendo.2020.00498] [PMID: 32849287]
[24]
Enerbäck, S.; Jacobsson, A.; Simpson, E.M.; Guerra, C.; Yamashita, H.; Harper, M.E.; Kozak, L.P. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature, 1997, 387(6628), 90-94.
[http://dx.doi.org/10.1038/387090a0] [PMID: 9139827]
[25]
Zoico, E.; Rubele, S.; De Caro, A.; Nori, N.; Mazzali, G.; Fantin, F.; Rossi, A.; Zamboni, M. Brown and beige adipose tissue and aging. Front. Endocrinol. (Lausanne), 2019, 10, 368.
[http://dx.doi.org/10.3389/fendo.2019.00368] [PMID: 31281288]
[26]
Petrovic, N.; Walden, T.B.; Shabalina, I.G.; Timmons, J.A.; Cannon, B.; Nedergaard, J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem., 2010, 285(10), 7153-7164.
[http://dx.doi.org/10.1074/jbc.M109.053942] [PMID: 20028987]
[27]
Wu, J.; Boström, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A.H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G.; Huang, K.; Tu, H.; van Marken Lichtenbelt, W.D.; Hoeks, J.; Enerbäck, S.; Schrauwen, P.; Spiegelman, B.M. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 2012, 150(2), 366-376.
[http://dx.doi.org/10.1016/j.cell.2012.05.016] [PMID: 22796012]
[28]
Rui, L. Brown and beige adipose tissues in health and disease. Compr. Physiol., 2017, 7(4), 1281-1306.
[http://dx.doi.org/10.1002/cphy.c170001] [PMID: 28915325]
[29]
Singh, R.; Parveen, M.; Basgen, J.M.; Fazel, S.; Meshesha, M.F.; Thames, E.C.; Moore, B.; Martinez, L.; Howard, C.B.; Vergnes, L.; Reue, K.; Pervin, S. Increased expression of beige/brown adipose markers from host and breast cancer cells influence xenograft formation in mice. Mol. Cancer Res., 2016, 14(1), 78-92.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0151] [PMID: 26464213]
[30]
Azamar-Llamas, D.; Hernández-Molina, G.; Ramos-Ávalos, B.; Furuzawa-Carballeda, J. Adipokine contribution to the pathogenesis of osteoarthritis. Mediators Inflamm., 2017, 2017, 5468023.
[http://dx.doi.org/10.1155/2017/5468023] [PMID: 28490838]
[31]
Maximus, P.S.; Al Achkar, Z.; Hamid, P.F.; Hasnain, S.S.; Peralta, C.A. Adipocytokines: Are they the theory of everything? Cytokine, 2020, 133, 155144.
[http://dx.doi.org/10.1016/j.cyto.2020.155144] [PMID: 32559663]
[32]
Francisco, V.; Ruiz-Fernández, C.; Pino, J.; Mera, A.; González-Gay, M.A.; Gómez, R.; Lago, F.; Mobasheri, A.; Gualillo, O. Adipokines: Linking metabolic syndrome, the immune system, and arthritic diseases. Biochem. Pharmacol., 2019, 165, 196-206.
[http://dx.doi.org/10.1016/j.bcp.2019.03.030] [PMID: 30910694]
[33]
Abella, V.; Scotece, M.; Conde, J.; Pino, J.; Gonzalez-Gay, M.A.; Gómez-Reino, J.J.; Mera, A.; Lago, F.; Gómez, R.; Gualillo, O. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol., 2017, 13(2), 100-109.
[http://dx.doi.org/10.1038/nrrheum.2016.209] [PMID: 28053336]
[34]
Briffa, J.F.; McAinch, A.J.; Poronnik, P.; Hryciw, D.H. Adipokines as a link between obesity and chronic kidney disease. Am. J. Physiol. Renal Physiol., 2013, 305(12), F1629-F1636.
[http://dx.doi.org/10.1152/ajprenal.00263.2013] [PMID: 24107418]
[35]
Fang, H.; Judd, R.L. Adiponectin regulation and function. Compr. Physiol., 2018, 8(3), 1031-1063.
[http://dx.doi.org/10.1002/cphy.c170046] [PMID: 29978896]
[36]
Achari, A.E.; Jain, S.K. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci., 2017, 18(6), 18.
[http://dx.doi.org/10.3390/ijms18061321] [PMID: 28635626]
[37]
Tsao, T.S. Assembly of adiponectin oligomers. Rev. Endocr. Metab. Disord., 2014, 15(2), 125-136.
[http://dx.doi.org/10.1007/s11154-013-9256-6] [PMID: 23990400]
[38]
Wang, Z.V.; Scherer, P.E. Adiponectin, the past two decades. J. Mol. Cell Biol., 2016, 8(2), 93-100.
[http://dx.doi.org/10.1093/jmcb/mjw011] [PMID: 26993047]
[39]
Yamauchi, T.; Kamon, J.; Ito, Y.; Tsuchida, A.; Yokomizo, T.; Kita, S.; Sugiyama, T.; Miyagishi, M.; Hara, K.; Tsunoda, M.; Murakami, K.; Ohteki, T.; Uchida, S.; Takekawa, S.; Waki, H.; Tsuno, N.H.; Shibata, Y.; Terauchi, Y.; Froguel, P.; Tobe, K.; Koyasu, S.; Taira, K.; Kitamura, T.; Shimizu, T.; Nagai, R.; Kadowaki, T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 2003, 423(6941), 762-769.
[http://dx.doi.org/10.1038/nature01705] [PMID: 12802337]
[40]
Fukuda, S.; Kita, S.; Obata, Y.; Fujishima, Y.; Nagao, H.; Masuda, S.; Tanaka, Y.; Nishizawa, H.; Funahashi, T.; Takagi, J.; Maeda, N.; Shimomura, I. The unique prodomain of T-cadherin plays a key role in adiponectin binding with the essential extracellular cadherin repeats 1 and 2. J. Biol. Chem., 2017, 292(19), 7840-7849.
[http://dx.doi.org/10.1074/jbc.M117.780734] [PMID: 28325833]
[41]
Ranscht, B.; Dours-Zimmermann, M.T. T-cadherin, a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region. Neuron, 1991, 7(3), 391-402.
[http://dx.doi.org/10.1016/0896-6273(91)90291-7] [PMID: 1654948]
[42]
Denzel, M.S.; Scimia, M.C.; Zumstein, P.M.; Walsh, K.; Ruiz-Lozano, P.; Ranscht, B. T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J. Clin. Invest., 2010, 120(12), 4342-4352.
[http://dx.doi.org/10.1172/JCI43464] [PMID: 21041950]
[43]
Matsuda, K.; Fujishima, Y.; Maeda, N.; Mori, T.; Hirata, A.; Sekimoto, R.; Tsushima, Y.; Masuda, S.; Yamaoka, M.; Inoue, K.; Nishizawa, H.; Kita, S.; Ranscht, B.; Funahashi, T.; Shimomura, I. Positive feedback regulation between adiponectin and T-cadherin impacts adiponectin levels in tissue and plasma of male mice. Endocrinology, 2015, 156(3), 934-946.
[http://dx.doi.org/10.1210/en.2014-1618] [PMID: 25514086]
[44]
Zha, D.; Wu, X.; Gao, P. Adiponectin and its receptors in diabetic kidney disease: Molecular mechanisms and clinical potential. Endocrinology, 2017, 158(7), 2022-2034.
[http://dx.doi.org/10.1210/en.2016-1765] [PMID: 28402446]
[45]
Cammisotto, P.G.; Londono, I.; Gingras, D.; Bendayan, M. Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats. Am. J. Physiol. Renal Physiol., 2008, 294(4), F881-F889.
[http://dx.doi.org/10.1152/ajprenal.00373.2007] [PMID: 18256313]
[46]
Gavrila, A.; Peng, C.K.; Chan, J.L.; Mietus, J.E.; Goldberger, A.L.; Mantzoros, C.S. Diurnal and ultradian dynamics of serum adiponectin in healthy men: Comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J. Clin. Endocrinol. Metab., 2003, 88(6), 2838-2843.
[http://dx.doi.org/10.1210/jc.2002-021721] [PMID: 12788897]
[47]
Halleux, C.M.; Takahashi, M.; Delporte, M.L.; Detry, R.; Funahashi, T.; Matsuzawa, Y.; Brichard, S.M. Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue. Biochem. Biophys. Res. Commun., 2001, 288(5), 1102-1107.
[http://dx.doi.org/10.1006/bbrc.2001.5904] [PMID: 11700024]
[48]
Seo, J.B.; Moon, H.M.; Noh, M.J.; Lee, Y.S.; Jeong, H.W.; Yoo, E.J.; Kim, W.S.; Park, J.; Youn, B.S.; Kim, J.W.; Park, S.D.; Kim, J.B. Adipocyte determination- and differentiation-dependent factor 1/sterol regulatory element-binding protein 1c regulates mouse adiponectin expression. J. Biol. Chem., 2004, 279(21), 22108-22117.
[http://dx.doi.org/10.1074/jbc.M400238200] [PMID: 15037635]
[49]
Mao, X.; Kikani, C.K.; Riojas, R.A.; Langlais, P.; Wang, L.; Ramos, F.J.; Fang, Q.; Christ-Roberts, C.Y.; Hong, J.Y.; Kim, R.Y.; Liu, F.; Dong, L.Q. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat. Cell Biol., 2006, 8(5), 516-523.
[http://dx.doi.org/10.1038/ncb1404] [PMID: 16622416]
[50]
Deepa, S.S.; Dong, L.Q. APPL1: Role in adiponectin signaling and beyond. Am. J. Physiol. Endocrinol. Metab., 2009, 296(1), E22-E36.
[http://dx.doi.org/10.1152/ajpendo.90731.2008] [PMID: 18854421]
[51]
Li, P.; Zhang, S.; Song, H.; Traore, S.S.; Li, J.; Raubenheimer, D.; Cui, Z.; Kou, G. Naringin promotes skeletal muscle fiber remodeling by the AdipoR1-APPL1-AMPK signaling pathway. J. Agric. Food Chem., 2021, 69(40), 11890-11899.
[http://dx.doi.org/10.1021/acs.jafc.1c04481] [PMID: 34586803]
[52]
Ryu, J.; Galan, A.K.; Xin, X.; Dong, F.; Abdul-Ghani, M.A.; Zhou, L.; Wang, C.; Li, C.; Holmes, B.M.; Sloane, L.B.; Austad, S.N.; Guo, S.; Musi, N.; DeFronzo, R.A.; Deng, C.; White, M.F.; Liu, F.; Dong, L.Q. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor. Cell Rep., 2014, 7(4), 1227-1238.
[http://dx.doi.org/10.1016/j.celrep.2014.04.006] [PMID: 24813896]
[53]
Sayeed, M.; Gautam, S.; Verma, D.P.; Afshan, T.; Kumari, T.; Srivastava, A.K.; Ghosh, J.K. A collagen domain-derived short adiponectin peptide activates APPL1 and AMPK signaling pathways and improves glucose and fatty acid metabolisms. J. Biol. Chem., 2018, 293(35), 13509-13523.
[http://dx.doi.org/10.1074/jbc.RA118.001801] [PMID: 29991592]
[54]
Prudente, S.; Jungtrakoon, P.; Marucci, A.; Ludovico, O.; Buranasupkajorn, P.; Mazza, T.; Hastings, T.; Milano, T.; Morini, E.; Mercuri, L.; Bailetti, D.; Mendonca, C.; Alberico, F.; Basile, G.; Romani, M.; Miccinilli, E.; Pizzuti, A.; Carella, M.; Barbetti, F.; Pascarella, S.; Marchetti, P.; Trischitta, V.; Di Paola, R.; Doria, A. Loss-of-Function mutations in APPL1 in familial diabetes mellitus. Am. J. Hum. Genet., 2015, 97(1), 177-185.
[http://dx.doi.org/10.1016/j.ajhg.2015.05.011] [PMID: 26073777]
[55]
Fan, L.; Ye, H.; Wan, Y.; Qin, L.; Zhu, L.; Su, J.; Zhu, X.; Zhang, L.; Miao, Q.; Zhang, Q.; Zhang, Z.; Xu, A.; Li, Y.; Li, X.; Wang, Y. Adaptor protein APPL1 coordinates HDAC3 to modulate brown adipose tissue thermogenesis in mice. Metabolism, 2019, 100, 153955.
[http://dx.doi.org/10.1016/j.metabol.2019.153955] [PMID: 31390528]
[56]
Miaczynska, M.; Christoforidis, S.; Giner, A.; Shevchenko, A.; Uttenweiler-Joseph, S.; Habermann, B.; Wilm, M.; Parton, R.G.; Zerial, M. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell, 2004, 116(3), 445-456.
[http://dx.doi.org/10.1016/S0092-8674(04)00117-5] [PMID: 15016378]
[57]
Zhu, G.; Chen, J.; Liu, J.; Brunzelle, J.S.; Huang, B.; Wakeham, N.; Terzyan, S.; Li, X.; Rao, Z.; Li, G.; Zhang, X.C. Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5. EMBO J., 2007, 26(14), 3484-3493.
[http://dx.doi.org/10.1038/sj.emboj.7601771] [PMID: 17581628]
[58]
Wang, C.; Xin, X.; Xiang, R.; Ramos, F.J.; Liu, M.; Lee, H.J.; Chen, H.; Mao, X.; Kikani, C.K.; Liu, F.; Dong, L.Q. Yin-Yang regulation of adiponectin signaling by APPL isoforms in muscle cells. J. Biol. Chem., 2009, 284(46), 31608-31615.
[http://dx.doi.org/10.1074/jbc.M109.010355] [PMID: 19661063]
[59]
Jiang, S.; Fang, Q.; Yu, W.; Zhang, R.; Hu, C.; Dong, K.; Bao, Y.; Wang, C.; Xiang, K.; Jia, W. Genetic variations in APPL2 are associated with overweight and obesity in a Chinese population with normal glucose tolerance. BMC Med. Genet., 2012, 13(1), 22.
[http://dx.doi.org/10.1186/1471-2350-13-22] [PMID: 22462604]
[60]
Cheng, K.K.; Zhu, W.; Chen, B.; Wang, Y.; Wu, D.; Sweeney, G.; Wang, B.; Lam, K.S.; Xu, A. The adaptor protein APPL2 inhibits insulin-stimulated glucose uptake by interacting with TBC1D1 in skeletal muscle. Diabetes, 2014, 63(11), 3748-3758.
[http://dx.doi.org/10.2337/db14-0337] [PMID: 24879834]
[61]
El-Shal, A.S.; Zidan, H.E.; Rashad, N.M. Adiponectin gene polymorphisms in Egyptian type 2 diabetes mellitus patients with and without diabetic nephropathy. Mol. Biol. Rep., 2014, 41(4), 2287-2298.
[http://dx.doi.org/10.1007/s11033-014-3082-0] [PMID: 24469713]
[62]
Martinez Cantarin, M.P.; Waldman, S.A.; Doria, C.; Frank, A.M.; Maley, W.R.; Ramirez, C.B.; Keith, S.W.; Falkner, B. The adipose tissue production of adiponectin is increased in end-stage renal disease. Kidney Int., 2013, 83(3), 487-494.
[http://dx.doi.org/10.1038/ki.2012.421] [PMID: 23283133]
[63]
Zoccali, C.; Mallamaci, F.; Tripepi, G.; Benedetto, F.A.; Cutrupi, S.; Parlongo, S.; Malatino, L.S.; Bonanno, G.; Seminara, G.; Rapisarda, F.; Fatuzzo, P.; Buemi, M.; Nicocia, G.; Tanaka, S.; Ouchi, N.; Kihara, S.; Funahashi, T.; Matsuzawa, Y. Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J. Am. Soc. Nephrol., 2002, 13(1), 134-141.
[http://dx.doi.org/10.1681/ASN.V131134] [PMID: 11752030]
[64]
Martinez Cantarin, M.P.; Keith, S.W.; Waldman, S.A.; Falkner, B. Adiponectin receptor and adiponectin signaling in human tissue among patients with end-stage renal disease. Nephrol. Dial. Transplant., 2014, 29(12), 2268-2277.
[http://dx.doi.org/10.1093/ndt/gfu249] [PMID: 25049200]
[65]
Cha, J.J.; Min, H.S.; Kim, K.; Lee, M.J.; Lee, M.H.; Kim, J.E.; Song, H.K.; Cha, D.R.; Kang, Y.S. Long-term study of the association of adipokines and glucose variability with diabetic complications. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2018, 33(2), 367-382.
[http://dx.doi.org/10.3904/kjim.2016.114] [PMID: 27809453]
[66]
Jorsal, A.; Tarnow, L.; Frystyk, J.; Lajer, M.; Flyvbjerg, A.; Parving, H.H.; Vionnet, N.; Rossing, P. Serum adiponectin predicts all-cause mortality and end stage renal disease in patients with type I diabetes and diabetic nephropathy. Kidney Int., 2008, 74(5), 649-654.
[http://dx.doi.org/10.1038/ki.2008.201] [PMID: 18496510]
[67]
Sharma, K.; Ramachandrarao, S.; Qiu, G.; Usui, H.K.; Zhu, Y.; Dunn, S.R.; Ouedraogo, R.; Hough, K.; McCue, P.; Chan, L.; Falkner, B.; Goldstein, B.J. Adiponectin regulates albuminuria and podocyte function in mice. J. Clin. Invest., 2008, 118(5), 1645-1656.
[http://dx.doi.org/10.1172/JCI32691] [PMID: 18431508]
[68]
Han, Y.; Xiong, S.; Zhao, H.; Yang, S.; Yang, M.; Zhu, X.; Jiang, N.; Xiong, X.; Gao, P.; Wei, L.; Xiao, Y.; Sun, L. Lipophagy deficiency exacerbates ectopic lipid accumulation and tubular cells injury in diabetic nephropathy. Cell Death Dis., 2021, 12(11), 1031.
[http://dx.doi.org/10.1038/s41419-021-04326-y] [PMID: 34718329]
[69]
Kim, Y.; Lim, J.H.; Kim, M.Y.; Kim, E.N.; Yoon, H.E.; Shin, S.J.; Choi, B.S.; Kim, Y.S.; Chang, Y.S.; Park, C.W. The adiponectin receptor agonist AdipoRon ameliorates diabetic nephropathy in a model of type 2 diabetes. J. Am. Soc. Nephrol., 2018, 29(4), 1108-1127.
[http://dx.doi.org/10.1681/ASN.2017060627] [PMID: 29330340]
[70]
Sugiyama, S.; Fukushima, H.; Kugiyama, K.; Maruyoshi, H.; Kojima, S.; Funahashi, T.; Sakamoto, T.; Horibata, Y.; Watanabe, K.; Koga, H.; Sugamura, K.; Otsuka, F.; Shimomura, I.; Ogawa, H. Pravastatin improved glucose metabolism associated with increasing plasma adiponectin in patients with impaired glucose tolerance and coronary artery disease. Atherosclerosis, 2007, 194(2), e43-e51.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.08.023] [PMID: 17112529]
[71]
Hasan, A.U.; Ohmori, K.; Hashimoto, T.; Kamitori, K.; Yamaguchi, F.; Ishihara, Y.; Ishihara, N.; Noma, T.; Tokuda, M.; Kohno, M. Valsartan ameliorates the constitutive adipokine expression pattern in mature adipocytes: A role for inverse agonism of the angiotensin II type 1 receptor in obesity. Hypertens. Res., 2014, 37(7), 621-628.
[http://dx.doi.org/10.1038/hr.2014.51] [PMID: 24599011]
[72]
Miyazaki, Y.; Cersosimo, E.; Triplitt, C.; DeFronzo, R.A. Rosiglitazone decreases albuminuria in type 2 diabetic patients. Kidney Int., 2007, 72(11), 1367-1373.
[http://dx.doi.org/10.1038/sj.ki.5002516] [PMID: 17805239]
[73]
Kennedy, G.C. The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. Lond., B, 1953, 140(901), 578-596.
[http://dx.doi.org/10.1098/rspb.1953.0009] [PMID: 13027283]
[74]
Coleman, D.L. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia, 1973, 9(4), 294-298.
[http://dx.doi.org/10.1007/BF01221857] [PMID: 4767369]
[75]
Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372(6505), 425-432.
[http://dx.doi.org/10.1038/372425a0] [PMID: 7984236]
[76]
Münzberg, H.; Morrison, C.D. Structure, production and signaling of leptin. Metabolism, 2015, 64(1), 13-23.
[http://dx.doi.org/10.1016/j.metabol.2014.09.010] [PMID: 25305050]
[77]
Akther, A.; Khan, K.H.; Begum, M.; Parveen, S.; Kaiser, M.S.; Chowdhury, A.Z. Leptin: A mysterious hormone; its physiology and pathophysiology. Mymensingh Med. J., 2009, 18(1), S140-S144.
[PMID: 19436260]
[78]
Bado, A.; Levasseur, S.; Attoub, S.; Kermorgant, S.; Laigneau, J.P.; Bortoluzzi, M.N.; Moizo, L.; Lehy, T.; Guerre-Millo, M.; Le Marchand-Brustel, Y.; Lewin, M.J. The stomach is a source of leptin. Nature, 1998, 394(6695), 790-793.
[http://dx.doi.org/10.1038/29547] [PMID: 9723619]
[79]
Vernooy, J.H.; Drummen, N.E.; van Suylen, R.J.; Cloots, R.H.; Möller, G.M.; Bracke, K.R.; Zuyderduyn, S.; Dentener, M.A.; Brusselle, G.G.; Hiemstra, P.S.; Wouters, E.F. Enhanced pulmonary leptin expression in patients with severe COPD and asymptomatic smokers. Thorax, 2009, 64(1), 26-32.
[http://dx.doi.org/10.1136/thx.2007.085423] [PMID: 18835960]
[80]
Hoggard, N.; Hunter, L.; Duncan, J.S.; Williams, L.M.; Trayhurn, P.; Mercer, J.G. Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta. Proc. Natl. Acad. Sci. USA, 1997, 94(20), 11073-11078.
[http://dx.doi.org/10.1073/pnas.94.20.11073] [PMID: 9380761]
[81]
Wiesner, G.; Vaz, M.; Collier, G.; Seals, D.; Kaye, D.; Jennings, G.; Lambert, G.; Wilkinson, D.; Esler, M. Leptin is released from the human brain: Influence of adiposity and gender. J. Clin. Endocrinol. Metab., 1999, 84(7), 2270-2274.
[http://dx.doi.org/10.1210/jc.84.7.2270] [PMID: 10404789]
[82]
Friedman, J.M.; Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature, 1998, 395(6704), 763-770.
[http://dx.doi.org/10.1038/27376] [PMID: 9796811]
[83]
Schwartz, M.W.; Woods, S.C.; Porte, D., Jr.; Seeley, R.J.; Baskin, D.G. Central nervous system control of food intake. Nature, 2000, 404(6778), 661-671.
[http://dx.doi.org/10.1038/35007534] [PMID: 10766253]
[84]
Ahima, R.S.; Prabakaran, D.; Mantzoros, C.; Qu, D.; Lowell, B.; Maratos-Flier, E.; Flier, J.S. Role of leptin in the neuroendocrine response to fasting. Nature, 1996, 382(6588), 250-252.
[http://dx.doi.org/10.1038/382250a0] [PMID: 8717038]
[85]
Zhang, Y.; Chua, S., Jr. Leptin function and regulation. Compr. Physiol., 2017, 8(1), 351-369.
[http://dx.doi.org/10.1002/cphy.c160041] [PMID: 29357132]
[86]
Pereira, S.; Cline, D.L.; Glavas, M.M.; Covey, S.D.; Kieffer, T.J. Tissue-specific effects of leptin on glucose and lipid metabolism. Endocr. Rev., 2021, 42(1), 1-28.
[http://dx.doi.org/10.1210/endrev/bnaa027] [PMID: 33150398]
[87]
La Cava, A. Leptin in inflammation and autoimmunity. Cytokine, 2017, 98, 51-58.
[http://dx.doi.org/10.1016/j.cyto.2016.10.011] [PMID: 27916613]
[88]
Poetsch, M.S.; Strano, A.; Guan, K. Role of leptin in cardiovascular diseases. Front. Endocrinol. (Lausanne), 2020, 11, 354.
[http://dx.doi.org/10.3389/fendo.2020.00354] [PMID: 32655492]
[89]
Greco, M.; De Santo, M.; Comandè, A.; Belsito, E.L.; Andò, S.; Liguori, A.; Leggio, A. Leptin-Activity modulators and their potential pharmaceutical applications. Biomolecules, 2021, 11(7), 11.
[http://dx.doi.org/10.3390/biom11071045] [PMID: 34356668]
[90]
Wauman, J.; Zabeau, L.; Tavernier, J. The leptin receptor complex: Heavier than expected? Front. Endocrinol. (Lausanne), 2017, 8, 30.
[http://dx.doi.org/10.3389/fendo.2017.00030] [PMID: 28270795]
[91]
Myers, M.G.; Cowley, M.A.; Münzberg, H. Mechanisms of leptin action and leptin resistance. Annu. Rev. Physiol., 2008, 70(1), 537-556.
[http://dx.doi.org/10.1146/annurev.physiol.70.113006.100707] [PMID: 17937601]
[92]
Yassin, M.M.; AbuMustafa, A.M.; Yassin, M.M. Serum leptin in diabetic nephropathy male patients from Gaza Strip. Diabetes Metab. Syndr., 2019, 13(2), 1245-1250.
[http://dx.doi.org/10.1016/j.dsx.2019.02.004] [PMID: 31336472]
[93]
Huang, J.; Peng, X.; Dong, K.; Tao, J.; Yang, Y. The association between insulin resistance, leptin, and resistin and diabetic nephropathy in type 2 diabetes mellitus patients with different body mass indexes. Diabetes Metab. Syndr. Obes., 2021, 14, 2357-2365.
[http://dx.doi.org/10.2147/DMSO.S305054] [PMID: 34079314]
[94]
Chung, F.M.; Tsai, J.C.; Chang, D.M.; Shin, S.J.; Lee, Y.J. Peripheral total and differential leukocyte count in diabetic nephropathy: The relationship of plasma leptin to leukocytosis. Diabetes Care, 2005, 28(7), 1710-1717.
[http://dx.doi.org/10.2337/diacare.28.7.1710] [PMID: 15983324]
[95]
Hanai, K.; Babazono, T.; Mugishima, M.; Yoshida, N.; Nyumura, I.; Toya, K.; Bouchi, R.; Tanaka, N.; Uchigata, Y. Association of serum leptin levels with progression of diabetic kidney disease in patients with type 2 diabetes. Diabetes Care, 2011, 34(12), 2557-2559.
[http://dx.doi.org/10.2337/dc11-1039] [PMID: 21994433]
[96]
Sharma, K.; McCue, P.; Dunn, S.R. Diabetic kidney disease in the db/db mouse. Am. J. Physiol. Renal Physiol., 2003, 284(6), F1138-F1144.
[http://dx.doi.org/10.1152/ajprenal.00315.2002] [PMID: 12736165]
[97]
Tesch, G.H.; Lim, A.K. Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2011, 300(2), F301-F310.
[http://dx.doi.org/10.1152/ajprenal.00607.2010] [PMID: 21147843]
[98]
Suganami, T.; Mukoyama, M.; Mori, K.; Yokoi, H.; Koshikawa, M.; Sawai, K.; Hidaka, S.; Ebihara, K.; Tanaka, T.; Sugawara, A.; Kawachi, H.; Vinson, C.; Ogawa, Y.; Nakao, K. Prevention and reversal of renal injury by leptin in a new mouse model of diabetic nephropathy. FASEB J., 2005, 19(1), 127-129.
[http://dx.doi.org/10.1096/fj.04-2183fje] [PMID: 15496495]
[99]
Wolf, G.; Hamann, A.; Han, D.C.; Helmchen, U.; Thaiss, F.; Ziyadeh, F.N.; Stahl, R.A. Leptin stimulates proliferation and TGF-beta expression in renal glomerular endothelial cells: Potential role in glomerulosclerosis [seecomments]. Kidney Int., 1999, 56(3), 860-872.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00626.x] [PMID: 10469355]
[100]
Samal, B.; Sun, Y.; Stearns, G.; Xie, C.; Suggs, S.; Mc- Niece, I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol., 1994, 14(2), 1431-1437.
[PMID: 8289818]
[101]
Martin, P.R.; Shea, R.J.; Mulks, M.H. Identification of a plasmid-encoded gene from Haemophilus ducreyi which confers NAD independence. J. Bacteriol., 2001, 183(4), 1168-1174.
[http://dx.doi.org/10.1128/JB.183.4.1168-1174.2001] [PMID: 11157928]
[102]
Rongvaux, A.; Shea, R.J.; Mulks, M.H.; Gigot, D.; Urbain, J.; Leo, O.; Andris, F. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur. J. Immunol., 2002, 32(11), 3225-3234.
[http://dx.doi.org/10.1002/1521-4141(200211)32:11<3225::AID-IMMU3225>3.0.CO;2-L] [PMID: 12555668]
[103]
Radzicka, S.; Pietryga, M.; Iciek, R.; Brązert, J. The role of visfatin in pathogenesis of gestational diabetes (GDM). Ginekol. Pol., 2018, 89(9), 518-521.
[http://dx.doi.org/10.5603/GP.a2018.0088] [PMID: 30318580]
[104]
Ognjanovic, S.; Bao, S.; Yamamoto, S.Y.; Garibay-Tupas, J.; Samal, B.; Bryant-Greenwood, G.D. Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes. J. Mol. Endocrinol., 2001, 26(2), 107-117.
[http://dx.doi.org/10.1677/jme.0.0260107] [PMID: 11241162]
[105]
Revollo, J.R.; Körner, A.; Mills, K.F.; Satoh, A.; Wang, T.; Garten, A.; Dasgupta, B.; Sasaki, Y.; Wolberger, C.; Townsend, R.R.; Milbrandt, J.; Kiess, W.; Imai, S. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab., 2007, 6(5), 363-375.
[http://dx.doi.org/10.1016/j.cmet.2007.09.003] [PMID: 17983582]
[106]
Yoon, M.J.; Yoshida, M.; Johnson, S.; Takikawa, A.; Usui, I.; Tobe, K.; Nakagawa, T.; Yoshino, J.; Imai, S. SIRT1-Mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD+ and function in mice. Cell Metab., 2015, 21(5), 706-717.
[http://dx.doi.org/10.1016/j.cmet.2015.04.002] [PMID: 25921090]
[107]
Dakroub, A. Visfatin: A possible role in cardiovasculo-metabolic disorders. Cells-Basel, 2020, 9(11), 2444.
[108]
Mageswari, R.; Sridhar, M.G.; Nandeesha, H.; Parameshwaran, S.; Vinod, K.V. Irisin and visfatin predicts severity of diabetic nephropathy. Indian J. Clin. Biochem., 2019, 34(3), 342-346.
[http://dx.doi.org/10.1007/s12291-018-0749-7] [PMID: 31391726]
[109]
Akbarian, N.; Zarghami, N.; Mota, A.; Abediazar, S.; Abroon, S.; Mihanfar, A.; Amanzadeh, M.; Darbin, A.; Bannazadeh Baghi, H.; Rahmati-Yamchi, M. Correlation between circulating visfatin and nitric oxide metabolites levels in patients with diabetic nephropathy. Iran. J. Kidney Dis., 2018, 12(3), 163-168.
[PMID: 29891746]
[110]
Eyileten, T.; Sonmez, A.; Saglam, M.; Cakir, E.; Caglar, K.; Oguz, Y.; Vural, A.; Yenicesu, M.; Yilmaz, M.I. Effect of renin-angiotensin-aldosterone system (RAAS) blockade on visfatin levels in diabetic nephropathy. Nephrology (Carlton), 2010, 15(2), 225-229.
[http://dx.doi.org/10.1111/j.1440-1797.2009.01173.x] [PMID: 20470283]
[111]
El Samahi, M.H.; Ismail, N.A.; Matter, R.M.; Selim, A.; Ibrahim, A.A.; Nabih, W. Study of visfatin level in type 1 diabetic children and adolescents. Open Access Maced. J. Med. Sci., 2017, 5(3), 299-304.
[http://dx.doi.org/10.3889/oamjms.2017.065] [PMID: 28698746]
[112]
Song, H.K.; Lee, M.H.; Kim, B.K.; Park, Y.G.; Ko, G.J.; Kang, Y.S.; Han, J.Y.; Han, S.Y.; Han, K.H.; Kim, H.K.; Cha, D.R. Visfatin: A new player in mesangial cell physiology and diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2008, 295(5), F1485-F1494.
[http://dx.doi.org/10.1152/ajprenal.90231.2008] [PMID: 18768589]
[113]
Kang, Y.S.; Song, H.K.; Lee, M.H.; Ko, G.J.; Han, J.Y.; Han, S.Y.; Han, K.H.; Kim, H.K.; Cha, D.R. Visfatin is upregulated in type-2 diabetic rats and targets renal cells. Kidney Int., 2010, 78(2), 170-181.
[http://dx.doi.org/10.1038/ki.2010.98] [PMID: 20375985]
[114]
Muraoka, H.; Hasegawa, K.; Sakamaki, Y.; Minakuchi, H.; Kawaguchi, T.; Yasuda, I.; Kanda, T.; Tokuyama, H.; Wakino, S.; Itoh, H. Role of Nampt-Sirt6 axis in renal proximal tubules in extracellular matrix deposition in diabetic nephropathy. Cell Rep., 2019, 27(1), 199-212.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.03.024] [PMID: 30943401]
[115]
Kacso, A.C.; Bondor, C.I.; Coman, A.L.; Potra, A.R.; Georgescu, C.E. Determinants of visfatin in type 2 diabetes patients with diabetic kidney disease: Relationship to inflammation, adiposity and undercarboxylated osteocalcin. Scand. J. Clin. Lab. Invest., 2016, 76(3), 217-225.
[http://dx.doi.org/10.3109/00365513.2015.1137349] [PMID: 26922969]
[116]
Steppan, C.M.; Brown, E.J.; Wright, C.M.; Bhat, S.; Banerjee, R.R.; Dai, C.Y.; Enders, G.H.; Silberg, D.G.; Wen, X.; Wu, G.D.; Lazar, M.A. A family of tissue-specific resistin-like molecules. Proc. Natl. Acad. Sci. USA, 2001, 98(2), 502-506.
[http://dx.doi.org/10.1073/pnas.98.2.502] [PMID: 11209052]
[117]
Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The hormone resistin links obesity to diabetes. Nature, 2001, 409(6818), 307-312.
[http://dx.doi.org/10.1038/35053000] [PMID: 11201732]
[118]
Lazar, M.A. Resistin- and Obesity-associated metabolic diseases. Horm. Metab. Res., 2007, 39(10), 710-716.
[http://dx.doi.org/10.1055/s-2007-985897] [PMID: 17952831]
[119]
Filková, M.; Haluzík, M.; Gay, S.; Senolt, L. The role of resistin as a regulator of inflammation: Implications for various human pathologies. Clin. Immunol., 2009, 133(2), 157-170.
[http://dx.doi.org/10.1016/j.clim.2009.07.013] [PMID: 19740705]
[120]
Lehrke, M.; Reilly, M.P.; Millington, S.C.; Iqbal, N.; Rader, D.J.; Lazar, M.A. An inflammatory cascade leading to hyperresistinemia in humans. PLoS Med., 2004, 1(2), e45.
[http://dx.doi.org/10.1371/journal.pmed.0010045] [PMID: 15578112]
[121]
Acquarone, E.; Monacelli, F.; Borghi, R.; Nencioni, A.; Odetti, P. Resistin: A reappraisal. Mech. Ageing Dev., 2019, 178, 46-63.
[http://dx.doi.org/10.1016/j.mad.2019.01.004] [PMID: 30650338]
[122]
Yang, R.Z.; Huang, Q.; Xu, A.; McLenithan, J.C.; Eisen, J.A.; Shuldiner, A.R.; Alkan, S.; Gong, D.W. Comparative studies of resistin expression and phylogenomics in human and mouse. Biochem. Biophys. Res. Commun., 2003, 310(3), 927-935.
[http://dx.doi.org/10.1016/j.bbrc.2003.09.093] [PMID: 14550293]
[123]
Codoñer-Franch, P.; Alonso-Iglesias, E. Resistin: Insulin resistance to malignancy. Clin. Chim. Acta, 2015, 438, 46-54.
[http://dx.doi.org/10.1016/j.cca.2014.07.043] [PMID: 25128719]
[124]
Sudan, S.K.; Deshmukh, S.K.; Poosarla, T.; Holliday, N.P.; Dyess, D.L.; Singh, A.P.; Singh, S. Resistin: An inflammatory cytokine with multi-faceted roles in cancer. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(2), 188419.
[http://dx.doi.org/10.1016/j.bbcan.2020.188419] [PMID: 32822824]
[125]
Benomar, Y.; Gertler, A.; De Lacy, P.; Crépin, D.; Ould Hamouda, H.; Riffault, L.; Taouis, M. Central resistin overexposure induces insulin resistance through toll-like receptor 4. Diabetes, 2013, 62(1), 102-114.
[http://dx.doi.org/10.2337/db12-0237] [PMID: 22961082]
[126]
Wang, C.H.; Wang, P.J.; Hsieh, Y.C.; Lo, S.; Lee, Y.C.; Chen, Y.C.; Tsai, C.H.; Chiu, W.C.; Chu-Sung Hu, S.; Lu, C.W.; Yang, Y.F.; Chiu, C.C.; Ou-Yang, F.; Wang, Y.M.; Hou, M.F.; Yuan, S.S. Resistin facilitates breast cancer progression via TLR4-mediated induction of mesenchymal phenotypes and stemness properties. Oncogene, 2018, 37(5), 589-600.
[http://dx.doi.org/10.1038/onc.2017.357] [PMID: 28991224]
[127]
Hayder, Z.S.; Kareem, Z.S. Resistin hormone in diabetic kidney disease and its relation to iron status and hepcidin. Int. Urol. Nephrol., 2020, 52(4), 749-756.
[http://dx.doi.org/10.1007/s11255-020-02434-w] [PMID: 32173772]
[128]
Bonito, B.; Silva, A.P.; Rato, F.; Santos, N.; Neves, P.L. Resistin as a predictor of cardiovascular hospital admissions and renal deterioration in diabetic patients with chronic kidney disease. J. Diabetes Complicat., 2019, 33(11), 107422.
[http://dx.doi.org/10.1016/j.jdiacomp.2019.107422] [PMID: 31484628]
[129]
Cebeci, E.; Cakan, C.; Gursu, M.; Uzun, S.; Karadag, S.; Koldas, M.; Calhan, T.; Helvaci, S.A.; Ozturk, S. The main determinants of serum resistin level in type 2 diabetic patients are renal function and inflammation not presence of microvascular complication, obesity and insulin resistance. Exp. Clin. Endocrinol. Diabetes, 2019, 127(4), 189-194.
[http://dx.doi.org/10.1055/s-0043-121262] [PMID: 29421824]
[130]
Bauer, S.; Neumeier, M.; Wanninger, J.; Walter, R.; Kopp, A.; Bala, M.; Schäffler, A.; Buechler, C. Systemic resistin is increased in type 2 diabetic patients treated with loop diuretics. J. Diabetes Complicat., 2011, 25(6), 377-381.
[http://dx.doi.org/10.1016/j.jdiacomp.2011.06.001] [PMID: 21813294]
[131]
Hida, K.; Wada, J.; Eguchi, J.; Zhang, H.; Baba, M.; Seida, A.; Hashimoto, I.; Okada, T.; Yasuhara, A.; Nakatsuka, A.; Shikata, K.; Hourai, S.; Futami, J.; Watanabe, E.; Matsuki, Y.; Hiramatsu, R.; Akagi, S.; Makino, H.; Kanwar, Y.S. Visceral adipose tissue-derived serine protease inhibitor: A unique insulin-sensitizing adipocytokine in obesity. Proc. Natl. Acad. Sci. USA, 2005, 102(30), 10610-10615.
[http://dx.doi.org/10.1073/pnas.0504703102] [PMID: 16030142]
[132]
Heiker, J.T. Vaspin (serpinA12) in obesity, insulin resistance, and inflammation. J. Pept. Sci., 2014, 20(5), 299-306.
[http://dx.doi.org/10.1002/psc.2621] [PMID: 24596079]
[133]
Kurowska, P.; Mlyczynska, E.; Dawid, M.; Jurek, M.; Klimczyk, D.; Dupont, J.; Rak, A. Review: Vaspin (SERPINA12) expression and function in endocrine cells. Cells-Basel, 2021, 10(7), 1710.
[134]
Heiker, J.T.; Klöting, N.; Kovacs, P.; Kuettner, E.B.; Sträter, N.; Schultz, S.; Kern, M.; Stumvoll, M.; Blüher, M.; Beck-Sickinger, A.G. Vaspin inhibits kallikrein 7 by serpin mechanism. Cell. Mol. Life Sci., 2013, 70(14), 2569-2583.
[http://dx.doi.org/10.1007/s00018-013-1258-8] [PMID: 23370777]
[135]
Nakatsuka, A.; Wada, J.; Iseda, I.; Teshigawara, S.; Higashio, K.; Murakami, K.; Kanzaki, M.; Inoue, K.; Terami, T.; Katayama, A.; Hida, K.; Eguchi, J.; Horiguchi, C.S.; Ogawa, D.; Matsuki, Y.; Hiramatsu, R.; Yagita, H.; Kakuta, S.; Iwakura, Y.; Makino, H. Vaspin is an adipokine ameliorating ER stress in obesity as a ligand for cell-surface GRP78/MTJ-1 complex. Diabetes, 2012, 61(11), 2823-2832.
[http://dx.doi.org/10.2337/db12-0232] [PMID: 22837305]
[136]
Nicholson, T.; Church, C.; Tsintzas, K.; Jones, R.; Breen, L.; Davis, E.T.; Baker, D.J.; Jones, S.W. Vaspin promotes insulin sensitivity of elderly muscle and is upregulated in obesity. J. Endocrinol., 2019, 241(1), JOE-18-0528.R3.
[http://dx.doi.org/10.1530/JOE-18-0528] [PMID: 30721136]
[137]
Yang, W.; Li, Y.; Tian, T.; Wang, L.; Lee, P.; Hua, Q. Serum vaspin concentration in elderly patients with type 2 diabetes mellitus and macrovascular complications. BMC Endocr. Disord., 2017, 17(1), 67.
[http://dx.doi.org/10.1186/s12902-017-0216-0] [PMID: 29065866]
[138]
Karadag, S.; Sakci, E.; Uzun, S.; Aydin, Z.; Cebeci, E.; Sumnu, A.; Ozkan, O.; Yamak, M.; Koldas, M.; Behlul, A.; Gursu, M.; Ataoglu, E.; Ozturk, S. The correlation of inflammatory markers and plasma vaspin levels in patients with diabetic nephropathy. Ren. Fail., 2016, 38(7), 1044-1049.
[http://dx.doi.org/10.1080/0886022X.2016.1183444] [PMID: 27216464]
[139]
Nakatsuka, A.; Yamaguchi, S.; Eguchi, J.; Kakuta, S.; Iwakura, Y.; Sugiyama, H.; Wada, J. A Vaspin-HSPA1L complex protects proximal tubular cells from organelle stress in diabetic kidney disease. Commun. Biol., 2021, 4(1), 373.
[http://dx.doi.org/10.1038/s42003-021-01902-y] [PMID: 33742129]
[140]
Nicholas, S.B.; Liu, J.; Kim, J.; Ren, Y.; Collins, A.R.; Nguyen, L.; Hsueh, W.A. Critical role for osteopontin in diabetic nephropathy. Kidney Int., 2010, 77(7), 588-600.
[http://dx.doi.org/10.1038/ki.2009.518] [PMID: 20130530]
[141]
Oz, O.; Tuncel, E.; Eryilmaz, S.; Fazlioglu, M.; Gul, C.B.; Ersoy, C.; Ocak, N.; Dirican, M.; Cangur, S.; Baran, I.; Imamoglu, S. Arterial elasticity and plasma levels of adiponectin and leptin in type 2 diabetic patients treated with thiazolidinediones. Endocrine, 2008, 33(1), 101-105.
[http://dx.doi.org/10.1007/s12020-008-9058-x] [PMID: 18392690]
[142]
Rose, F.J.; Webster, J.; Barry, J.B.; Phillips, L.K.; Richards, A.A.; Whitehead, J.P. Synergistic effects of ascorbic acid and thiazolidinedione on secretion of high molecular weight adiponectin from human adipocytes. Diabetes Obes. Metab., 2010, 12(12), 1084-1089.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01297.x] [PMID: 20977580]
[143]
Oki, K.; Koide, J.; Nakanishi, S.; Nakashima, R.; Yamane, K. Fenofibrate increases high molecular weight adiponectin in subjects with hypertriglyceridemia. Endocr. J., 2007, 54(3), 431-435.
[http://dx.doi.org/10.1507/endocrj.K06-172] [PMID: 17457016]
[144]
Lely, A.T.; Krikken, J.A.; Bakker, S.J.; Boomsma, F.; Dullaart, R.P.; Wolffenbuttel, B.H.; Navis, G. Low dietary sodium and exogenous angiotensin II infusion decrease plasma adiponectin concentrations in healthy men. J. Clin. Endocrinol. Metab., 2007, 92(5), 1821-1826.
[http://dx.doi.org/10.1210/jc.2006-2092] [PMID: 17341566]
[145]
Gholamin, S.; Razavi, S.M.; Taghavi-Garmestani, S.M.; Ghorbanihaghjo, A.; Rashtchizadeh, N.; Safa, J.; Vatankhah, A.M.; Azizi, T.; Argani, H. Lovastatin for reduction of leptin in nondialysis patients with type 2 diabetic nephropathy. Iran. J. Kidney Dis., 2014, 8(3), 201-206.
[PMID: 24878942]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy